51
|
Drug Repurposing as an Antitumor Agent: Disulfiram-Mediated Carbonic Anhydrase 12 and Anion Exchanger 2 Modulation to Inhibit Cancer Cell Migration. Molecules 2019; 24:molecules24183409. [PMID: 31546841 PMCID: PMC6767608 DOI: 10.3390/molecules24183409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Disulfiram has been used in the treatment of alcoholism and exhibits an anti-tumor effect. However, the intracellular mechanism of anti-tumor activity of Disulfiram remains unclear. In this study, we focused on the modulatory role of Disulfiram via oncogenic factor carbonic anhydrase CA12 and its associated transporter anion exchanger AE2 in lung cancer cell line A549. The surface expression of CA12 and AE2 were decreased by Disulfiram treatment with a time-dependent manner. Disulfiram treatment did not alter the expression of Na+-bicarbonate cotransporters, nor did it affect autophagy regulation. The chloride bicarbonate exchanger activity of A549 cells was reduced by Disulfiram treatment in a time-dependent manner without change in the resting pH level. The expression and activity of AE2 and the expression of CA12 were also reduced by Disulfiram treatment in the breast cancer cell line. An invasion assay and cell migration assay revealed that Disulfiram attenuated the invasion and migration of A549 cells. In conclusion, the attenuation of AE2 and its supportive enzyme CA12, and the inhibitory effect on cell migration by Disulfiram treatment in cancer cells provided the molecular evidence supporting the potential of Disulfiram as an anticancer agent.
Collapse
|
52
|
Podolski-Renić A, Dinić J, Stanković T, Jovanović M, Ramović A, Pustenko A, Žalubovskis R, Pešić M. Sulfocoumarins, specific carbonic anhydrase IX and XII inhibitors, interact with cancer multidrug resistant phenotype through pH regulation and reverse P-glycoprotein mediated resistance. Eur J Pharm Sci 2019; 138:105012. [PMID: 31330259 DOI: 10.1016/j.ejps.2019.105012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
New 6-triazolyl-substituted sulfocoumarins were described as potent inhibitors of the transmembrane human carbonic anhydrase isoforms, CAIX and CAXII. These membrane associated enzymes that maintain pH and CO2 homeostasis are involved in cancer progression, invasion, and resistance to therapy. Recently, it was shown that CAXII expression associates with the expression of P-glycoprotein in multidrug resistant cancer cells. CAXII regulates P-glycoprotein activity by maintaining high intracellular pHi. In this study, the activity of three new sulfocoumarins was evaluated in three sensitive and corresponding multidrug resistant cancer cell lines with increased P-glycoprotein expression (non-small cell lung carcinoma, colorectal carcinoma and glioblastoma). Compound 3 showed the highest potential for cancer cell growth inhibition in all tested cell lines. Flow cytometric analyses showed that compound 3 induced intracellular acidification, cell cycle arrest in G2/M phase and necrosis in non-small cell lung carcinoma cells. Compound 3 demonstrated irreversible, concentration- and time-dependent inhibition of P-glycoprotein activity in multidrug resistant non-small cell lung carcinoma cells. The suppression of P-glycoprotein activity was accompanied with increased P-glycoprotein expression suggesting a compensatory mechanism of multidrug resistant cancer cells. In addition, compound 3 was able to sensitize multidrug resistant non-small cell lung carcinoma cells to doxorubicin. Overall, results imply that compound 3 has multidrug resistance modulating effect through intracellular acidification and subsequent inhibition of P-glycoprotein activity.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelena Dinić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Stanković
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Amra Ramović
- State University of Novi Pazar, Vuka Karadzica bb, 36300 Novi Pazar, Serbia
| | - Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Milica Pešić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
53
|
Guerrini G, Durivault J, Filippi I, Criscuoli M, Monaci S, Pouyssegur J, Naldini A, Carraro F, Parks SK. Carbonic anhydrase XII expression is linked to suppression of Sonic hedgehog ligand expression in triple negative breast cancer cells. Biochem Biophys Res Commun 2019; 516:408-413. [PMID: 31221477 DOI: 10.1016/j.bbrc.2019.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Aberrant activity of the hedgehog (Hh) pathway is prevalent in pathologies such as cancer. Improved understanding of Hh activity in the aggressive tumor cell phenotype is being pursued for development of targeted therapies. Recently, we described a link between Hh activity and carbonic anhydrase XII (CAXII) expression. Extracellular facing CAs (IX/XII) are highly expressed in hypoxia, contribute to tumor pH regulation and are thus of clinical interest. Here we have extended the investigation of potential interactions between Hh activity and CAXII utilizing genomic disruption/knockout of either GLI1 (the main transcriptional factor induced with Hh activity) or CAXII in the triple negative breast cancer cell lines MDA-MB-231 and BT-549. Knockout of GLI1 and CAXII significantly decreased hallmarks of tumor aggressiveness including proliferation and migration. Most intriguingly, CAXII knockout caused a massive induction of the Sonic hedgehog (Shh) ligand expression (gene and protein). This novel finding indicates that CAXII plays a potential role in suppression of Shh and may act in a feedback loop to regulate overall Hh activity. Enhanced knowledge of these CA-Hh interactions in future studies may be of value in understanding this currently 'incurable' subclass of breast cancer.
Collapse
Affiliation(s)
- G Guerrini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - J Durivault
- Biomedical Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - I Filippi
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - M Criscuoli
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - S Monaci
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - J Pouyssegur
- Biomedical Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco; Université Côte D'Azur (UCA), Nice, France
| | - A Naldini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - F Carraro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - S K Parks
- Biomedical Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco.
| |
Collapse
|
54
|
Kumamoto K, Nakachi Y, Mizuno Y, Yokoyama M, Ishibashi K, Kosugi C, Koda K, Kobayashi M, Tanakaya K, Matsunami T, Eguchi H, Okazaki Y, Ishida H. Expressions of 10 genes as candidate predictors of recurrence in stage III colon cancer patients receiving adjuvant oxaliplatin-based chemotherapy. Oncol Lett 2019; 18:1388-1394. [PMID: 31423202 PMCID: PMC6607086 DOI: 10.3892/ol.2019.10437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/25/2019] [Indexed: 12/15/2022] Open
Abstract
Approximately 30% patients with stage III colon cancer (CC) develop local recurrence and/or distant metastasis, even if postoperative adjuvant chemotherapy with oxaliplatin plus 5-fluorouracil and leucovorin (5-FU/LV) has been completed. In the present study, molecular analysis was performed to identify molecular markers of tumor recurrence in patients with stage III CC receiving oxaliplatin-based adjuvant chemotherapy. The FACOS study was conducted as a phase II study to evaluate the safety and efficacy of oxaliplatin-based treatment for stage III CC patients. Of the 132 CC patients enrolled in the present study, gene expression analysis using a microarray was conducted in 51 patients. Of these 51 patients, 6 developed recurrence within 5 years. The topmost 5% genes that showed differential expressions between cases that developed/did not develop recurrence were selected, and a set of predictive molecular markers for recurrence was identified. Of the 34,694 genes in the microarray, 1,734 genes were extracted as topmost 5% genes showing differential expressions between cases with and without recurrence. Among these, 10 genes, includingADH1A, ADH1C, CA12, CHP2, HMGCS2, SNAR-A1, TPI1, MS4A12, PLA2G10 and PTPRO, were identified as markers that could clearly divide patients with and without recurrence. Although several prediction models of tumor recurrence have been reported for CC, the set of 10 genes that the present study identified may be useful to predict the risk of recurrence in stage III CC patients receiving oxaliplatin-based adjuvant chemotherapy. Based on these results, high-risk patients with CC should be carefully observed to detect tumor recurrence during the follow-up period.
Collapse
Affiliation(s)
- Kensuke Kumamoto
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan.,Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Yutaka Nakachi
- Division of Translation Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Yosuke Mizuno
- Division of Translation Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Masaru Yokoyama
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Keiichiro Ishibashi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Chihiro Kosugi
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan
| | - Michiya Kobayashi
- Cancer Treatment Center, Kochi Medical School Hospital, Nankoku, Kochi 783-8505, Japan
| | - Kohji Tanakaya
- Department of Surgery, Iwakuni Clinical Center, Iwakuni, Yamaguchi 740-8510, Japan
| | - Toshio Matsunami
- Department of Pharmacy, Kanazawa Red Cross Hospital, Kanazawa, Ishikawa 921-8162, Japan
| | - Hidetaka Eguchi
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 114-8431, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 114-8431, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| |
Collapse
|
55
|
Gu XF, Shi CB, Zhao W. Prognostic value of carbonic anhydrase XII (CA XII) overexpression in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2173-2183. [PMID: 31934040 PMCID: PMC6949632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Carbonic anhydrase XII (CA XII) is a key mediator of several signaling pathways that are involved in cancer development. This study was designed to investigate the clinical significance and prognostic value of postoperative CA XII expression in patients with hepatocellular carcinoma (HCC). METHODS Immunohistochemistry (IHC) was performed on HCC tissue (n = 90), and the relationships between CA XII expression in the HCC tissue, the clinicopathologic features, and survival were further evaluated. The mRNA expression of CA XII and clinicopathologic characteristics of patients with hepatocellular carcinoma were extracted from The Cancer Genome Atlas (TCGA) database. RESULTS CA XII was overexpressed in hepatocellular carcinoma tissues compared to normal liver tissues from the TCGA database. Moreover, CA XII mRNA expression was significantly associated with several clinicopathologic factors of hepatocellular carcinoma including sex (P = 0.011) and pathologic grade (P = 0.012). For HCC tissue samples in a tissue microarray (TMA), high CA XII protein expression was closely related to age (P = 0.013), tumor size (P = 0.014), and pathological grade (P = 0.015). A Kaplan-Meier analysis showed that elevated CA XII expression was associated with short disease-free survival (DFS) (P = 0.002) and overall survival (OS) (P = 0.006). In addition, a multivariate analysis showed that high CA XII expression was an independent prognostic indicator for disease-free survival (P = 0.018), but not overall survival, in HCC patients. CONCLUSION This study showed that high CA XII expression was associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Xue-Feng Gu
- Medical School, Southeast University87 Dingjiaqiao Street, Nanjing, Jiangsu, China
- The Second Hospital of Nanjing, Medical School, Southeast University1-1 Zhongfu Street, Nanjing, Jiangsu, China
| | - Chuan-Bing Shi
- Department of Pathology, Pukou District Central Hospital, Pukou Branch of Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University166 Shanghe Street, Nanjing, Jiangsu, China
| | - Wei Zhao
- Medical School, Southeast University87 Dingjiaqiao Street, Nanjing, Jiangsu, China
- The Second Hospital of Nanjing, Medical School, Southeast University1-1 Zhongfu Street, Nanjing, Jiangsu, China
| |
Collapse
|
56
|
5-Arylisothiazol-3(2H)-one-1,(1)-(di)oxides: A new class of selective tumor-associated carbonic anhydrases (hCA IX and XII) inhibitors. Eur J Med Chem 2019; 175:40-48. [PMID: 31071549 DOI: 10.1016/j.ejmech.2019.04.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Sixteen 5-aryl-substituted isothiazol-3(2H)-one-1,(1)-(di)oxide analogs have been prepared from the corresponding 5-chloroisothiazol-3(2H)-one-1-oxide or -1,1-dioxide by a Suzuki-Miyaura cross-coupling reaction and screened for their inhibition potency against four human carbonic anhydrase isoenzymes: the transmembrane tumor-associated hCA IX and XII and the cytosolic off-target hCA I and II. Most of the synthesized derivatives inhibited hCA IX and XII isoforms in nanomolar range, whereas remained inactive or modestly active against both hCA I and II isoenzymes. In the N-tert-butylisothiazolone series, the 5-phenyl-substituted analog (1a) excelled in the inhibition of tumor-associated hCA IX and XII (Ki = 4.5 and Ki = 4.3 nM, respectively) with excellent selectivity against off target hCA I and II isoenzymes (S > 2222 and S > 2325, respectively). Since the highest inhibition activities were observed with N-tert-butyl derivatives, lacking a zinc-binding group, we suppose to have a new binding mode situated out of the active site. Additionally, three free-NH containing analogs (3a, 4a, 3i) have also been prepared in order to study the impact of free-NH containing N-acyl-sulfinamide- (-SO-NH-CO-) or N-acyl-sulfonamide-type (-SO2-NH-CO-) derivatives on the inhibitory potency and selectivity. Screening experiments evidenced 5-phenylisothiazol-3(2H)-one-1,1-dioxide (4a), the closest saccharin analog, to be the most active derivative with inhibition constants of Ki = 40.3 nM and Ki = 9.6 nM against hCA IX and hCA XII, respectively. The promising biological results support the high potential of 5-arylisothiazolinone-1,(1)-(di)oxides to be exploited for the design of potent and cancer-selective carbonic anhydrase inhibitors.
Collapse
|
57
|
Mujumdar P, Kopecka J, Bua S, Supuran CT, Riganti C, Poulsen SA. Carbonic Anhydrase XII Inhibitors Overcome Temozolomide Resistance in Glioblastoma. J Med Chem 2019; 62:4174-4192. [PMID: 30925064 DOI: 10.1021/acs.jmedchem.9b00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The natural product primary sulfonamide, psammaplin C (1), when used in combination with clinically used chemotherapeutic drugs, including temozolomide, reverses multidrug resistance and increases survival in glioblastoma, a highly aggressive primary brain tumor. We showed previously that the mechanism of action of 1 is novel, acting to indirectly interfere with P-glycoprotein drug efflux activity as a consequence of carbonic anhydrase XII (CA XII) inhibition. To build structure-activity relationships, 45 derivatives of 1 were designed, synthesized, and evaluated against a panel of CA isoforms. Compound 55 was identified as a potent inhibitor of CA XII ( Ki = 0.56 nM) and was investigated in vitro and in vivo using samples from glioblastoma patients. The results strengthen the possibility that co-therapy of temozolomide with a CA XII inhibitor may more effectively treat glioblastoma by suppressing an important temozolomide resistance mechanism.
Collapse
Affiliation(s)
- Prashant Mujumdar
- Griffith Institute for Drug Discovery , Griffith University , Don Young Road , Nathan, Brisbane , Queensland 4111 , Australia
| | - Joanna Kopecka
- Department of Oncology , University of Torino , Via Santena 5/bis , 10126 Torino , Italy
| | - Silvia Bua
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Chiara Riganti
- Department of Oncology , University of Torino , Via Santena 5/bis , 10126 Torino , Italy
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery , Griffith University , Don Young Road , Nathan, Brisbane , Queensland 4111 , Australia
| |
Collapse
|
58
|
Turanli B, Zhang C, Kim W, Benfeitas R, Uhlen M, Arga KY, Mardinoglu A. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine 2019; 42:386-396. [PMID: 30905848 PMCID: PMC6491384 DOI: 10.1016/j.ebiom.2019.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genome-scale metabolic models (GEMs) offer insights into cancer metabolism and have been used to identify potential biomarkers and drug targets. Drug repositioning is a time- and cost-effective method of drug discovery that can be applied together with GEMs for effective cancer treatment. METHODS In this study, we reconstruct a prostate cancer (PRAD)-specific GEM for exploring prostate cancer metabolism and also repurposing new therapeutic agents that can be used in development of effective cancer treatment. We integrate global gene expression profiling of cell lines with >1000 different drugs through the use of prostate cancer GEM and predict possible drug-gene interactions. FINDINGS We identify the key reactions with altered fluxes based on the gene expression changes and predict the potential drug effect in prostate cancer treatment. We find that sulfamethoxypyridazine, azlocillin, hydroflumethiazide, and ifenprodil can be repurposed for the treatment of prostate cancer based on an in silico cell viability assay. Finally, we validate the effect of ifenprodil using an in vitro cell assay and show its inhibitory effect on a prostate cancer cell line. INTERPRETATION Our approach demonstate how GEMs can be used to predict therapeutic agents for cancer treatment based on drug repositioning. Besides, it paved a way and shed a light on the applicability of computational models to real-world biomedical or pharmaceutical problems.
Collapse
Affiliation(s)
- Beste Turanli
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden; Department of Bioengineering, Marmara University, Istanbul, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Rui Benfeitas
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | | | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
59
|
Salaroglio IC, Mujumdar P, Annovazzi L, Kopecka J, Mellai M, Schiffer D, Poulsen SA, Riganti C. Carbonic Anhydrase XII Inhibitors Overcome P-Glycoprotein-Mediated Resistance to Temozolomide in Glioblastoma. Mol Cancer Ther 2018; 17:2598-2609. [PMID: 30254183 DOI: 10.1158/1535-7163.mct-18-0533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/21/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
The role of carbonic anhydrase XII (CAXII) in the chemoresistance of glioblastoma is unexplored. We found CAXII and P-glycoprotein (Pgp) coexpressed in neurospheres derived from 3 of 3 patients with different genetic backgrounds and low response to temozolomide (time to recurrence: 6-9 months). CAXII was necessary for the Pgp efflux of temozolomide and second-line chemotherapeutic drugs, determining chemoresistance in neurospheres. Psammaplin C, a potent inhibitor of CAXII, resensitized primary neurospheres to temozolomide by reducing temozolomide efflux via Pgp. This effect was independent of other known temozolomide resistance factors present in the patients. The overall survival in orthotopic patient-derived xenografts of temozolomide-resistant neurospheres, codosed with Psammaplin C and temozolomide, was significantly increased over temozolomide-treated (P < 0.05) and untreated animals (P < 0.02), without detectable signs of systemic toxicity. We propose that a CAXII inhibitor in combination with temozolomide may provide a new and effective approach to reverse chemoresistance in glioblastoma stem cells. This novel mechanism of action, via the interaction of CAXII and Pgp, ultimately blocks the efflux function of Pgp to improve glioblastoma patient outcomes.
Collapse
Affiliation(s)
| | - Prashant Mujumdar
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland, Australia
| | - Laura Annovazzi
- Neuro-Bio-Oncology Center, Fondazione Policlinico di Monza, Vercelli, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Marta Mellai
- Neuro-Bio-Oncology Center, Fondazione Policlinico di Monza, Vercelli, Italy.,Department of Health Sciences, School of Medicine, UPO University, Novara, Italy
| | - Davide Schiffer
- Neuro-Bio-Oncology Center, Fondazione Policlinico di Monza, Vercelli, Italy
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland, Australia.
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.
| |
Collapse
|
60
|
Guerrini G, Criscuoli M, Filippi I, Naldini A, Carraro F. Inhibition of smoothened in breast cancer cells reduces CAXII expression and cell migration. J Cell Physiol 2018; 233:9799-9811. [PMID: 30132883 DOI: 10.1002/jcp.26947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) relapse and metastasis are the leading cause of death and, together with drug resistance, keep mortality still high. The Hedgehog (Hh) pathway is expressed during embryogenesis, organogenesis and in adult tissue homeostasis and its aberrant activation is often associated with cancer. Carbonic anhydrase (CA) enzymes are important during development; they play a key role in controlling several cellular mechanisms, such as pH regulation, survival, and migration, and they are aberrantly expressed in cancer. The goal of this study was to investigate the interplay between the Hh pathway and CAXII in terms of BC cell migration. We here demonstrated that smoothened (SMO) silencing resulted in a reduction of CAXII expression at mRNA and protein level. This led to a decrease in cell migration, which was restored when cells were treated with an SMO agonist, Sag dihydrochloride (SAG), but not when cells were cotreated with SAG and the CAs inhibitor Acetazolamide. This suggested that the ability of SAG to promote cell migration was impaired when CAXII was inhibited. The reduction was also confirmed within hypoxic and inflammatory microenvironment, typical of BC, indicating a key role of the Hh pathway in controlling CAXII expression. Our results may contribute to further understand the physiology of BC cells and indicate that the Hh pathway controls BC cell migration and cell invasion also through CAXII, with important implications in identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Giuditta Guerrini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - Mattia Criscuoli
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - Irene Filippi
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy.,Istituto Toscano Tumori, Firenze, Italy
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - Fabio Carraro
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy.,Istituto Toscano Tumori, Firenze, Italy
| |
Collapse
|
61
|
von Neubeck B, Gondi G, Riganti C, Pan C, Parra Damas A, Scherb H, Ertürk A, Zeidler R. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int J Cancer 2018; 143:2065-2075. [PMID: 29786141 DOI: 10.1002/ijc.31607] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Carbonic anhydrase XII (CAXII) is a membrane-tethered ectoenzyme involved in intracellular pH regulation and overexpressed across various types of human cancer. Because CAXII inhibition shows antitumor activity in vitro, it is thought that the enzyme is mandatory for maximum tumor growth, above all under hypoxic conditions. Recently, it has been shown that CAXII is co-expressed along with the P-glycoprotein (P-GP) on many tumor cells and that both proteins physically interact. Of interest, blocking CAXII activity also decreases P-GP activity in cancer cells both in vitro and in vivo. Previously, we have reported on the development of a monoclonal antibody, termed 6A10, which specifically and efficiently blocks human CAXII activity. Here, we demonstrate that 6A10 also indirectly reduces P-GP activity in CAXII/P-GP double-positive chemoresistant cancer cells, resulting in enhanced chemosensitivity as revealed by enhanced accumulation of anthracyclines and increased cell death in vitro. Even more important, we show that mice carrying human triple-negative breast cancer xenografts co-treated with doxorubicin (DOX) and 6A10 show a significantly reduced number of metastases. Collectively, our data provide evidence that the inhibition of CAXII with 6A10 is an attractive way to reduce chemoresistance of cancer cells and to interfere with the metastatic process in a clinical setting.
Collapse
Affiliation(s)
- Bettina von Neubeck
- Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany
| | - Gabor Gondi
- Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Arnaldo Parra Damas
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Hagen Scherb
- Institute of Computational Biology (ICB), Helmholtz Center for Environmental Health, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Reinhard Zeidler
- Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
62
|
Nocentini A, Supuran CT. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008-2018). Expert Opin Ther Pat 2018; 28:729-740. [PMID: 30074415 DOI: 10.1080/13543776.2018.1508453] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Human carbonic anhydrases (CA, EC 4.2.1.1) IX and XII are tumor-associated proteins, being part of the molecular machinery that tumor cells build as adaptive responses to hypoxia and acidic conditions characteristic of the 'glycolytic shift' of many tumors. A wealth of research depicts CA IX and CA XII as biomarkers and therapeutic targets for various cancer types. AREAS COVERED The review presents an overview of the role of CA IX and CA XII in hypoxic tumors physio-pathology as well as the principal molecular, structural, and catalytic features of both isozymes. The review then covers the patent literature of medically relevant inhibitors of the tumor-associated CAs produced during the period 2008-2018. EXPERT OPINION A variety of approaches and design strategies were reported which afford CA IX/XII-specific inhibitors and avoid the compromising effects of isoforms-promiscuous compounds. Access to the crystal structures of human CAs isoforms have improved structure-based drug design campaigns related to zinc-binder chemotypes. Nevertheless, great potential still resides in non-classical CAIs that exhibit alternative binding mechanisms able to further distinguish the various active sites architecture. CA IX inhibitors hybrids/conjugates are increasingly emerging in the field as promising therapeutic tools to combine CA inhibition to the anticancer effects of other moieties or antitumor drugs.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Sesto Fiorentino (Firenze) , Italy
| | - Claudiu T Supuran
- a Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
63
|
Biophysical, Biochemical, and Cell Based Approaches Used to Decipher the Role of Carbonic Anhydrases in Cancer and to Evaluate the Potency of Targeted Inhibitors. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:2906519. [PMID: 30112206 PMCID: PMC6077552 DOI: 10.1155/2018/2906519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Carbonic anhydrases (CAs) are thought to be important for regulating pH in the tumor microenvironment. A few of the CA isoforms are upregulated in cancer cells, with only limited expression in normal cells. For these reasons, there is interest in developing inhibitors that target these tumor-associated CA isoforms, with increased efficacy but limited nonspecific cytotoxicity. Here we present some of the biophysical, biochemical, and cell based techniques and approaches that can be used to evaluate the potency of CA targeted inhibitors and decipher the role of CAs in tumorigenesis, cancer progression, and metastatic processes. These techniques include esterase activity assays, stop flow kinetics, and mass inlet mass spectroscopy (MIMS), all of which measure enzymatic activity of purified protein, in the presence or absence of inhibitors. Also discussed is the application of X-ray crystallography and Cryo-EM as well as other structure-based techniques and thermal shift assays to the studies of CA structure and function. Further, large-scale genomic and proteomic analytical methods, as well as cell based techniques like those that measure cell growth, apoptosis, clonogenicity, and cell migration and invasion, are discussed. We conclude by reviewing approaches that test the metastatic potential of CAs and how the aforementioned techniques have contributed to the field of CA cancer research.
Collapse
|
64
|
Banerjee A, Arvinrad P, Darley M, Laversin SA, Parker R, Rose-Zerilli MJ, Townsend PA, Cutress RI, Beers SA, Houghton FD, Birts CN, Blaydes JP. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget 2018; 9:23274-23288. [PMID: 29796188 PMCID: PMC5955399 DOI: 10.18632/oncotarget.25299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Altered glycolysis is a characteristic of many cancers, and can also be associated with changes in stem cell-like cancer (SCLC) cell populations. We therefore set out to directly examine the effect of glycolysis on SCLC cell phenotype, using a model where glycolysis is stably reduced by adapting the cells to a sugar source other than glucose. Restricting glycolysis using this approach consistently resulted in cells with increased oncogenic potential; including an increase in SCLC cells, proliferation in 3D matrigel, invasiveness, chemoresistance, and altered global gene expression. Tumorigenicity in vivo was also markedly increased. SCLC cells exhibited increased dependence upon alternate metabolic pathways. They also became c-KIT dependent, indicating that their apparent state of maturation is regulated by glycolysis. Single-cell mRNA sequencing identified altered networks of metabolic-, stem- and signaling- gene expression within SCLC-enriched populations in response to glycolytic restriction. Therefore, reduced glycolysis, which may occur in niches within tumors where glucose availability is limiting, can promote tumor aggressiveness by increasing SCLC cell populations, but can also introduce novel, potentially exploitable, vulnerabilities in SCLC cells.
Collapse
Affiliation(s)
- Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Pardis Arvinrad
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stéphanie A. Laversin
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Antibody & Vaccine Group, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rachel Parker
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J.J. Rose-Zerilli
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul A. Townsend
- Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4QL, UK
| | - Ramsey I. Cutress
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephen A. Beers
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Antibody & Vaccine Group, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D. Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles N. Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jeremy P. Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
65
|
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018; 8:E19. [PMID: 29495652 PMCID: PMC5876008 DOI: 10.3390/metabo8010019] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Mam Y Mboge
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Brian P Mahon
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Susan C Frost
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
66
|
Kopecka J, Rankin GM, Salaroglio IC, Poulsen SA, Riganti C. P-glycoprotein-mediated chemoresistance is reversed by carbonic anhydrase XII inhibitors. Oncotarget 2018; 7:85861-85875. [PMID: 27811376 PMCID: PMC5349880 DOI: 10.18632/oncotarget.13040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Carbonic anhydrase XII (CAXII) is a membrane enzyme that maintains pH homeostasis and sustains optimum P-glycoprotein (Pgp) efflux activity in cancer cells. Here, we investigated a panel of eight CAXII inhibitors (compounds 1–8), for their potential to reverse Pgp mediated tumor cell chemoresistance. Inhibitors (5 nM) were screened in human and murine cancer cells (colon, lung, breast, bone) with different expression levels of CAXII and Pgp. We identified three CAXII inhibitors (compounds 1, 2 and 4) that significantly (≥ 2 fold) increased the intracellular retention of the Pgp-substrate and chemotherapeutic doxorubicin, and restored its cytotoxic activity. The inhibitors lowered intracellular pH to indirectly impair Pgp activity. Ca12-knockout assays confirmed that the chemosensitizing property of the compounds was dependent on active CAXII. Furthermore, in a preclinical model of drug-resistant breast tumors compound 1 (1900 ng/kg) restored the efficacy of doxorubicin to the same extent as the direct Pgp inhibitor tariquidar. The expression of carbonic anhydrase IX had no effect on the intracellular doxorubicin accumulation. Our work provides strong evidence that CAXII inhibitors are effective chemosensitizer agents in CAXII-positive and Pgp-positive cancer cells. The use of CAXII inhibitors may represent a turning point in combinatorial chemotherapeutic schemes to treat multidrug-resistant tumors.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Gregory M Rankin
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland, 4111, Australia
| | | | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Nathan, Queensland, 4111, Australia
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy
| |
Collapse
|
67
|
Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J Control Release 2018; 270:37-52. [DOI: 10.1016/j.jconrel.2017.11.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022]
|
68
|
Chen Y, Sun L, Guo D, Wu Z, Chen W. Co-delivery of hypoxia inducible factor-1α small interfering RNA and 5-fluorouracil to overcome drug resistance in gastric cancer SGC-7901 cells. J Gene Med 2017; 19. [PMID: 29106062 DOI: 10.1002/jgm.2998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug resistance cancer cells have become a major problem in chemotherapy. To solve this problem, the co-delivery of small interefering RNA (siRNA) and 5-fluorouracil chitosan nanoparticles was employed, aiming to reverse the multidrug resistance of gastric cancer SGC-7901 cells in vitro. METHODS Chitosan nanoparticles were prepared using an ionic gel method. siRNA nanoparticles were characterized by gel retardation assays. Particle size and zeta potential were measured to confirm nanoparticle formation. The transfection efficiency of siRNA was determined by flow cytometry and high-content screening. Western blotting and a quantitative real-time-polymerase chain reaction were used to assess the silencing efficiency of siRNA. Accumulation and efflux experiments for rhodamine-123, cell migration experiments, cell sensitivity analyses and cell apoptosis assays were used to determine whether siRNA could reverse multidrug resistance. A systemic toxicity assay was used to evaluate the safety of nanoparticles. RESULTS Compared to naked siRNA, the co-delivery system demonstrated a higher transfection efficiency and gene silencing efficiency by inhibiting the efflux of P-glycoprotein and cell migration. Moreover, the combination treatment with siRNA and 5-fluorouracil co-delivered by chitosan nanoparticles can increase the sensitivity of drug resistance cells and cell apoptosis. Finally, the safety of nanoparticles was evaluated in vivo and the results obtained suggested that nanoparticles did not have any obvious toxicity. CONCLUSIONS Co-delivery of siRNA and 5-fluorouracil chitosan nanoparticles is an attractive strategy for overcoming multidrug resistance.
Collapse
Affiliation(s)
- Yunna Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Li Sun
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongdong Guo
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Ziteng Wu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Anhui Hefei, China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
69
|
Tamura T, Song Z, Amaike K, Lee S, Yin S, Kiyonaka S, Hamachi I. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems. J Am Chem Soc 2017; 139:14181-14191. [DOI: 10.1021/jacs.7b07339] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhining Song
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin Lee
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sifei Yin
- Magdalene College, University of Cambridge, Cambridge CB3 0AG, United Kingdom
| | - Shigeki Kiyonaka
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
70
|
Imbert V, Nebout M, Mary D, Endou H, Wempe MF, Supuran CT, Winum JY, Peyron JF. Co-targeting intracellular pH and essential amino acid uptake cooperates to induce cell death of T-ALL/LL cells. Leuk Lymphoma 2017. [PMID: 28641473 DOI: 10.1080/10428194.2017.1339875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cancer cells reprogram their metabolism to optimize their growth and proliferation in the host microenvironment. For this purpose, they enhance the uptake of extracellular nutrients and deal with the metabolic waste products through the overexpression of numerous membrane proteins including amino-acid transporters (LAT1) and acid-base regulating enzymes, such as carbonic anhydrases (CAs). Here we describe the anti-tumoral effects of a new class of CAXII inhibitors, the glycosyl coumarins on T-ALL/LL cells. These effects appeared to be mediated through inhibition of mTOR/Akt pathway and c-myc downregulation. Interestingly, we show that the combined targeting of amino acid fluxes and pH regulators provides a promising therapeutic strategy in the future of T-ALL/LL management.
Collapse
Affiliation(s)
- Véronique Imbert
- a Université Côte d'Azur, Inserm U1065, Team 4, Centre Méditerranéen de Médecine Moléculaire (C3M) , Nice , France
| | - Marielle Nebout
- a Université Côte d'Azur, Inserm U1065, Team 4, Centre Méditerranéen de Médecine Moléculaire (C3M) , Nice , France
| | - Didier Mary
- a Université Côte d'Azur, Inserm U1065, Team 4, Centre Méditerranéen de Médecine Moléculaire (C3M) , Nice , France
| | - Hitoshi Endou
- b Department of Pharmacology and Toxicology , Kyorin University , Tokyo , Japan.,c J-Pharma, Co., Ltd , Yokohama , Japan
| | - Michael F Wempe
- d Medicinal Chemistry Core Facility, School of Pharmacy , University of Colorado, Anschutz Medical Campus , Aurora , CO , USA
| | - Claudiu T Supuran
- e Polo Scientifico, Neurofarba Department, Section of Pharmaceutical Sciences , Firenze , Italy
| | - Jean-Yves Winum
- f Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-ENSCM - Université de Montpellier , Cedex , France
| | - Jean-François Peyron
- a Université Côte d'Azur, Inserm U1065, Team 4, Centre Méditerranéen de Médecine Moléculaire (C3M) , Nice , France
| |
Collapse
|
71
|
Riemann A, Güttler A, Haupt V, Wichmann H, Reime S, Bache M, Vordermark D, Thews O. Inhibition of Carbonic Anhydrase IX by Ureidosulfonamide Inhibitor U104 Reduces Prostate Cancer Cell Growth, But Does Not Modulate Daunorubicin or Cisplatin Cytotoxicity. Oncol Res 2017. [PMID: 28631600 PMCID: PMC7844713 DOI: 10.3727/096504017x14965111926391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carbonic anhydrase (CA) IX has emerged as a promising target for cancer therapy. It is highly upregulated in hypoxic regions and mediates pH regulation critical for tumor cell survival as well as extracellular acidification of the tumor microenvironment, which promotes tumor aggressiveness via various mechanisms, such as augmenting metastatic potential. Therefore, the aim of this study was to analyze the complex interdependency between CA IX and the tumor microenvironment in prostate tumor cells with regard to potential therapeutic implications. CA IX was upregulated by hypoxia as well as acidosis in prostate cancer cells. This induction did not modulate intracellular pH but led to extracellular acidification. Pharmacological inhibition of CA IX activity by U104 (SLC-0111) resulted in a reduction in tumor cell growth and an increase in apoptotic cell death. Intracellular pH was reduced under normoxic and even more so under hypoxic conditions when CA IX level was high. However, although intracellular pH regulation was disturbed, targeting CA IX in combination with daunorubicin or cisplatin did not intensify apoptotic tumor cell death. Hence, targeting CA IX in prostate cancer cells can lead to intracellular pH dysregulation and, consequently, can reduce cellular growth and elevate apoptotic cell death. Attenuation of extracellular acidification by blocking CA IX might additionally impede tumor progression and metastasis. However, no beneficial effect was seen when targeting CA IX in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Anne Riemann
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | - Antje Güttler
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Verena Haupt
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | - Henri Wichmann
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Sarah Reime
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | - Matthias Bache
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Dirk Vordermark
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Oliver Thews
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
72
|
White KA, Grillo-Hill BK, Barber DL. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci 2017; 130:663-669. [PMID: 28202602 PMCID: PMC5339414 DOI: 10.1242/jcs.195297] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysregulated pH is a common characteristic of cancer cells, as they have an increased intracellular pH (pHi) and a decreased extracellular pH (pHe) compared with normal cells. Recent work has expanded our knowledge of how dysregulated pH dynamics influences cancer cell behaviors, including proliferation, metastasis, metabolic adaptation and tumorigenesis. Emerging data suggest that the dysregulated pH of cancers enables these specific cell behaviors by altering the structure and function of selective pH-sensitive proteins, termed pH sensors. Recent findings also show that, by blocking pHi increases, cancer cell behaviors can be attenuated. This suggests ion transporter inhibition as an effective therapeutic approach, either singly or in combination with targeted therapies. In this Cell Science at a Glance article and accompanying poster, we highlight the interconnected roles of dysregulated pH dynamics in cancer initiation, progression and adaptation.
Collapse
Affiliation(s)
- Katharine A White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bree K Grillo-Hill
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
73
|
Chegaev K, Fraix A, Gazzano E, Abd-Ellatef GEF, Blangetti M, Rolando B, Conoci S, Riganti C, Fruttero R, Gasco A, Sortino S. Light-Regulated NO Release as a Novel Strategy To Overcome Doxorubicin Multidrug Resistance. ACS Med Chem Lett 2017; 8:361-365. [PMID: 28337331 DOI: 10.1021/acsmedchemlett.7b00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/30/2017] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) release from a suitable NO photodonor (NOP) can be fine-tuned by visible light stimuli at doses that are not toxic to cells but that inhibit several efflux pumps; these are mainly responsible for the multidrug resistance of the anticancer agent doxorubicin (DOX). The strategy may thus increase DOX toxicity against resistant cancer cells. Moreover, a novel molecular hybrid covalently joining DOX and NOP showed similar increased toxicity toward resistant cancer cells and, in addition, lower cardiotoxicity than DOX. This opens new and underexplored approaches to overcoming the main therapeutic drawbacks of this chemotherapeutic based on light-controlled release of NO.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Aurore Fraix
- Laboratory
of Photochemistry, Department of Drug Sciences, University of Catania, I-95125 Catania, Italy
| | - Elena Gazzano
- Department
of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | | | - Marco Blangetti
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Sabrina Conoci
- STMicroelectronics, Stradale Primosole 50, I-95121 Catania, Italy
| | - Chiara Riganti
- Department
of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | - Roberta Fruttero
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Alberto Gasco
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Salvatore Sortino
- Laboratory
of Photochemistry, Department of Drug Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
74
|
Targeting pH regulating proteins for cancer therapy-Progress and limitations. Semin Cancer Biol 2017; 43:66-73. [PMID: 28137473 DOI: 10.1016/j.semcancer.2017.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na+/H+ exchangers (NHEs), carbonic anhydrases (CAs), Na+/HCO3- co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.
Collapse
|
75
|
Granja S, Tavares-Valente D, Queirós O, Baltazar F. Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Semin Cancer Biol 2017; 43:17-34. [PMID: 28065864 DOI: 10.1016/j.semcancer.2016.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Altered metabolism, associated with acidification of the extracellular milieu, is one of the major features of cancer. As pH regulation is crucial for the maintenance of all biological functions, cancer cells rely on the activity of lactate exporters and proton transporters to regulate their intracellular pH. The major players in cancer pH regulation are proton pump ATPases, sodium-proton exchangers (NHEs), monocarboxylate transporters (MCTs), carbonic anhydrases (CAs) and anion exchangers (AEs), which have been shown to be upregulated in several human malignancies. Thanks to the activity of the proton pumps and transporters, tumours acidify their microenvironment, becoming more aggressive and resistant to therapy. Thus, targeting tumour pH may contribute to more effective anticancer strategies for controlling tumour progression and therapeutic resistance. In the present study, we review the role of the main pH regulators expressed in human cancer cells, including their diagnostic and prognostic value, as well as their usefulness as therapeutic targets.
Collapse
Affiliation(s)
- Sara Granja
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Odília Queirós
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center of Molecular and Environmental Biology/Department of Biology/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
76
|
Perillo E, Porto S, Falanga A, Zappavigna S, Stiuso P, Tirino V, Desiderio V, Papaccio G, Galdiero M, Giordano A, Galdiero S, Caraglia M. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget 2016; 7:4077-92. [PMID: 26554306 PMCID: PMC4826191 DOI: 10.18632/oncotarget.6013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Emiliana Perillo
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
77
|
Mujumdar P, Teruya K, Tonissen KF, Vullo D, Supuran CT, Peat TS, Poulsen SA. An Unusual Natural Product Primary Sulfonamide: Synthesis, Carbonic Anhydrase Inhibition, and Protein X-ray Structures of Psammaplin C. J Med Chem 2016; 59:5462-70. [DOI: 10.1021/acs.jmedchem.6b00443] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Prashant Mujumdar
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Kanae Teruya
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Kathryn F. Tonissen
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Daniela Vullo
- Polo
Scientifico, Neurofarba Department, and Laboratorio di Chimica Bioinorganica, Universitádegli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Neurofarba Department, and Laboratorio di Chimica Bioinorganica, Universitádegli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Thomas S. Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
78
|
Pierobon D, Raggi F, Cambieri I, Pelassa S, Occhipinti S, Cappello P, Novelli F, Musso T, Eva A, Castagnoli C, Varesio L, Giovarelli M, Bosco MC. Regulation of Langerhans cell functions in a hypoxic environment. J Mol Med (Berl) 2016; 94:943-55. [PMID: 26960761 DOI: 10.1007/s00109-016-1400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED Langerhans cells (LCs) are a specialized dendritic cell subset that resides in the epidermis and mucosal epithelia and is critical for the orchestration of skin immunity. Recent evidence suggest that LCs are involved in aberrant wound healing and in the development of hypertrophic scars and chronic wounds, which are characterized by a hypoxic environment. Understanding LCs biology under hypoxia may, thus, lead to the identification of novel pathogenetic mechanisms of wound repair disorders and open new therapeutic opportunities to improve wound healing. In this study, we characterize a previously unrecognized role for hypoxia in significantly affecting the phenotype and functional properties of human monocyte-derived LCs, impairing their ability to stimulate naive T cell responses, and identify the triggering receptor expressed on myeloid (TREM)-1, a member of the Ig immunoregulatory receptor family, as a new hypoxia-inducible gene in LCs and an activator of their proinflammatory and Th1-polarizing functions in a hypoxic environment. Furthermore, we provide the first evidence of TREM-1 expression in vivo in LCs infiltrating hypoxic areas of active hypertrophic scars and decubitous ulcers, pointing to a potential pathogenic role of this molecule in wound repair disorders. KEY MESSAGES Hypoxia modulates surface molecule expression and cytokine profile in Langerhans cells. Hypoxia impairs human Langerhans cell stimulatory activity on naive T cells. Hypoxia selectively induces TREM-1 expression in human Langerhans cells. TREM-1 engagement stimulates Langerhans cell inflammatory and Th1-polarizing activity. TREM-1 is expressed in vivo in Langerhans cells infiltrating hypoxic skin lesions.
Collapse
Affiliation(s)
- Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica Raggi
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Irene Cambieri
- Department of Reconstructive Plastic Surgery, Burns Centre and Skin Bank, Trauma Center, Torino, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Carlotta Castagnoli
- Department of Reconstructive Plastic Surgery, Burns Centre and Skin Bank, Trauma Center, Torino, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy.
- Laboratorio di Biologia Molecolare, Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova Quarto, Italy.
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy.
- Laboratorio di Biologia Molecolare, Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova Quarto, Italy.
| |
Collapse
|
79
|
Ren Z, Gu X, Lu B, Chen Y, Chen G, Feng J, Lin J, Zhang Y, Peng H. Anticancer efficacy of a nitric oxide-modified derivative of bifendate against multidrug-resistant cancer cells. J Cell Mol Med 2016; 20:1095-105. [PMID: 26864945 PMCID: PMC4882976 DOI: 10.1111/jcmm.12796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023] Open
Abstract
The development of multidrug resistance (MDR) not only actively transports a wide range of cytotoxic drugs across drug transporters but is also a complex interaction between a number of important cellular signalling pathways. Nitric oxide donors appear to be a new class of anticancer therapeutics for satisfying all the above conditions. Previously, we reported furoxan‐based nitric oxide‐releasing compounds that exhibited selective antitumour activity in vitro and in vivo. Herein, we demonstrate that bifendate (DDB)‐nitric oxide, a synthetic furoxan‐based nitric oxide‐releasing derivative of bifendate, effectively inhibits the both sensitive and MDR tumour cell viability at a comparatively low concentration. Interestingly, the potency of DDB‐nitric oxide is the independent of inhibition of the functions and expressions of three major ABC transporters. The mechanism of DDB‐nitric oxide appears to be in two modes of actions by inducing mitochondrial tyrosine nitration and apoptosis, as well as by down‐regulating HIF‐1α expression and protein kinase B (AKT), extracellular signal‐regulated kinases (ERK), nuclear factor κB (NF‐κB) activation in MDR cells. Moreover, the addition of a typical nitric oxide scavenger significantly attenuated all the effects of DDB‐nitric oxide, indicating that the cytotoxicity of DDB‐nitric oxide is as a result of higher levels of nitric oxide release in MDR cancer cells. Given that acquired MDR to nitric oxide donors is reportedly difficult to achieve and genetically unstable, compound like DDB‐nitric oxide may be a new type of therapeutic agent for the treatment of MDR tumours.
Collapse
Affiliation(s)
- Zhiguang Ren
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, China.,Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bin Lu
- School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, China
| | - Yaqiong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Guojiang Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jiannan Feng
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jizhen Lin
- Department of Otolaryngology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
80
|
Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol Aspects Med 2016; 47-48:3-14. [DOI: 10.1016/j.mam.2015.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
81
|
Hong JH, Muhammad E, Zheng C, Hershkovitz E, Alkrinawi S, Loewenthal N, Parvari R, Muallem S. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J Physiol 2015; 593:5299-312. [PMID: 26486891 DOI: 10.1113/jp271378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. ABSTRACT Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Physiology, College of Medicine, Gachon University, 191 Hambakmeoro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Changyu Zheng
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eli Hershkovitz
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Soliman Alkrinawi
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Shmuel Muallem
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
82
|
Beckner ME, Pollack IF, Nordberg ML, Hamilton RL. Glioblastomas with copy number gains in EGFR and RNF139 show increased expressions of carbonic anhydrase genes transformed by ENO1. BBA CLINICAL 2015; 5:1-15. [PMID: 27051584 PMCID: PMC4802406 DOI: 10.1016/j.bbacli.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022]
Abstract
Background Prominence of glycolysis in glioblastomas may be non-specific or a feature of oncogene-related subgroups (i.e. amplified EGFR, etc.). Relationships between amplified oncogenes and expressions of metabolic genes associated with glycolysis, directly or indirectly via pH, were therefore investigated. Methods Using multiplex ligation-dependent probe amplification, copy numbers (CN) of 78 oncogenes were quantified in 24 glioblastomas. Related expressions of metabolic genes encoding lactate dehydrogenases (LDHA, LDHC), carbonic anhydrases (CA3, CA12), monocarboxylate transporters (SLC16A3 or MCT4, SLC16A4 or MCT5), ATP citrate lyase (ACLY), glycogen synthase1 (GYS1), hypoxia inducible factor-1A (HIF1A), and enolase1 (ENO1) were determined in 22 by RT-qPCR. To obtain supra-glycolytic levels and adjust for heterogeneity, concurrent ENO1 expression was used to mathematically transform the expression levels of metabolic genes already normalized with delta-delta crossing threshold methodology. Results Positive correlations with EGFR occurred for all metabolic genes. Significant differences (Wilcoxon Rank Sum) for oncogene CN gains in tumors of at least 2.00-fold versus less than 2.00-fold occurred for EGFR with CA3's expression (p < 0.03) and for RNF139 with CA12 (p < 0.004). Increased CN of XIAP associated negatively. Tumors with less than 2.00-fold CN gains differed from those with gains for XIAP with CA12 (p < 0.05). Male gender associated with CA12 (p < 0.05). Conclusions Glioblastomas with CN increases in EGFR had elevated CA3 expression. Similarly, tumors with RNF149 CN gains had elevated CA12 expression. General significance In larger studies, subgroups of glioblastomas may emerge according to oncogene-related effects on glycolysis, such as control of pH via effects on carbonic anhydrases, with prognostic and treatment implications. PCR of glioblastomas show oncogene copy numbers relate to metabolic gene expressions. ENO1(ENOLASE1) transformations yielded “supra-glycolytic” metabolic gene expressions. EGFR, RNF139, and XIAP associated with expressions of two carbonic anhydrase genes. Male gender associated (+) with the transformed expression of carbonic anhydrase 12. Oncogene amplifications may aid control of pH to protect glycolysis in glioblastomas.
Collapse
Key Words
- Amplified oncogenes
- CN, copy number
- Carbonic anhydrase
- DAPI, diaminephylindole
- EGFR
- GB, glioblastoma
- GOI, gene of interest
- Glycolysis
- HKG, housekeeping gene
- IRES, internal ribosome entry site
- MLPA, multiplex ligation-dependent probe amplification
- MPNST, malignant peripheral nerve sheath tumor
- MTB/GF, metabolic/growth factor
- NB, normal brain
- REMBRANDT, Repository of Molecular Brain Neoplasia Database
- RNF139
- RT-qPCR, real time quantitative PCR
- SLC, solute carrier
- WHO, World Health Organization
- XIAP
- ddCt, delta-delta crossing threshold
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, RM. 3-438, 1501 Kings Highway, Shreveport, LA 71130, United States 1(former position)
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, United States; 4th Floor, Children's Hospital of Pittsburgh, UPMC, 4129 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Mary L Nordberg
- Department of Medicine, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71130, United States; The Delta Pathology Group, One Saint Mary Place, Shreveport, LA 71101, United States
| | - Ronald L Hamilton
- Department of Pathology, Division of Neuropathology, S724.1, Scaife Hall, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
83
|
Rankin GM, Vullo D, Supuran CT, Poulsen SA. Phosphate Chemical Probes Designed for Location Specific Inhibition of Intracellular Carbonic Anhydrases. J Med Chem 2015; 58:7580-90. [DOI: 10.1021/acs.jmedchem.5b01228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gregory M. Rankin
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Daniela Vullo
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica,Università degli Studi di Firenze, Via della Lastruccia 3, Rm. 188, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica,Università degli Studi di Firenze, Via della Lastruccia 3, Rm. 188, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
84
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
85
|
Mboge MY, McKenna R, Frost SC. Advances in Anti-Cancer Drug Development Targeting Carbonic Anhydrase IX and XII. TOPICS IN ANTI-CANCER RESEARCH 2015; 5:3-42. [PMID: 30272043 PMCID: PMC6162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microenvironment within a solid tumor is heterogeneous with regions being both acidic and hypoxic. As a result of this, cancer cells upregulate genes that allow survival in such environments. Some of these genes are pH regulatory factors, including carbonic anhydrase IX (CA IX) and in some cases XII (CA XII). CA IX helps to maintain normal cytoplasmic pH (pHi) while simultaneously contributing to the extracellular pH (pHe). CA XII is also thought to be responsible for stabilizing pHe at physiological conditions. Extracellular acidification of the tumor microenvironment promotes local invasion and metastasis while decreasing the effectiveness of adjuvant therapies, thus contributing to poor cancer clinical outcomes. In this review, we describe the properties of CA IX and CA XII that substantiate their potential use as anticancer targets. We also discuss the current status of CA isoform-selective inhibitor development and patents of CA IX/XII targeted inhibitors that show potential for treating aggressive tumors. Some of the recently published patents discussed include sulfonamide-based small molecule inhibitors including derivatives of boron cluster compounds; metal complexes of poly(carboxyl)amine-containing ligands; nitroi-midazole-, ureidosulfonamide-, and coumarin-based compounds; as well as G250 and A610 monoclonal antibodies for cancer treatment.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| | | | - Susan C. Frost
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| |
Collapse
|