51
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
52
|
Zhang C, Zhao Y, Jiang J, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Identification of the key characteristics of Bifidobacterium longum strains for the alleviation of ulcerative colitis. Food Funct 2021; 12:3476-3492. [PMID: 33900330 DOI: 10.1039/d1fo00017a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bifidobacterium longum (B. longum) species are widely used to prevent and treat ulcerative colitis (UC). In this study, phylogenetic and pan-genomic characterization of 122 B. longum strains was performed on the basis of 936 core genes; among these, four strains from different branches of the phylogenetic tree were selected for an evaluation of anti-inflammatory and immune modulatory activities in a DSS-induced colitis mouse model. Among the tested B. longum strains (B. longum FBJ20M1, B. longum FGDLZ8M1, B. longum FGSZY16M3, and B. longum FJSWXJ2M1), B. longum FGDLZ8M1 was found to most effectively alleviate colitis by reducing the expression of pro-inflammatory cytokines, restoring the colon length, and maintaining the mucosal integrity. The anti-inflammatory mechanisms of B. longum FGDLZ8M1 were related to the inhibition of NF-κB signaling. Genomic analysis indicated that these protective effects of B. longum FGDLZ8M1 may be related to specific genes associated with carbohydrate transport and metabolism and defense mechanisms (e.g., tolerance to bile salts and acids). Correlation analysis indicated that gastrointestinal transit tolerance was the most strongly associated factor. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinchi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
53
|
Hasted TL, Sharif S, Boerlin P, Diarra MS. Immunostimulatory Potential of Fruits and Their Extracts in Poultry. Front Immunol 2021; 12:641696. [PMID: 34079540 PMCID: PMC8165432 DOI: 10.3389/fimmu.2021.641696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The impact of antibiotic use for growth promotion in livestock and poultry production on the rise of antimicrobial resistance (AMR) in bacteria led to the ban of this practice in the European Union in 2006 and a restriction of antimicrobial use (AMU) in animal agriculture in Canada and the United States of America. There is a high risk of infectious diseases such as necrotic enteritis due to Clostridium perfringens, and colibacillosis due to avian pathogenic Escherichia coli in antimicrobial-free broiler chickens. Thus, efficient and cost-effective methods for reducing AMU, maintaining good poultry health and reducing public health risks (food safety) are urgently needed for poultry production. Several alternative agents, including plant-derived polyphenolic compounds, have been investigated for their potential to prevent and control diseases through increasing poultry immunity. Many studies in humans reported that plant flavonoids could modulate the immune system by decreasing production of pro-inflammatory cytokines, T-cell activation, and proliferation. Fruits, especially berries, are excellent sources of flavonoids while being rich in nutrients and other functionally important molecules (vitamins and minerals). Thus, fruit byproducts or wastes could be important resources for value-added applications in poultry production. In the context of the circular economy and waste reduction, this review summarizes observed effects of fruit wastes/extracts on the general health and the immunity of poultry.
Collapse
Affiliation(s)
- Teri-Lyn Hasted
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
54
|
Guo CE, Cui Q, Cheng J, Chen J, Zhao Z, Guo R, Dai X, Wei Z, Li W. Probiotic-fermented Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] juice modulates the intestinal mucosal barrier and increases the abundance of Akkermansia in the gut in association with polyphenols. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
55
|
Blockade of TLRs-triggered macrophage activation by caffeic acid exerted protective effects on experimental ulcerative colitis. Cell Immunol 2021; 365:104364. [PMID: 33932876 DOI: 10.1016/j.cellimm.2021.104364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) represents a relapsing and inflammatory bowel disease which is commonly linked with the communications between dysfunction of epithelium and mucosal immune responses. Though caffeic acid (CA) has numerous pharmacological capacities, whether CA demonstrates immunoregulation on the mucosal immune responses remains ill-defined. Herein, the present research demonstrated that CA could dramatically attenuate the mucosal inflammation, as evidenced by improving the disease severity, serum biochemical indexes, mucosal ulcerations, loss of epithelium and crypts, and secretion of inflammatory cytokines in the colonic homogenates and explants culture. Consistently, CA could interfere with the infiltration and function of mononuclear macrophages in the mucosa, MLNs, and spleens of UC. Furthermore, CA exerted direct suppressive effects on the activation of BMDMs upon the exposure of TLRs agonists in vitro. Taken together, CA could attenuate DSS-induced murine UC through interfering with the activation of macrophages, which might provide an alternative therapeutic option for UC.
Collapse
|
56
|
Mahmoud TN, El-Maadawy WH, Kandil ZA, Khalil H, El-Fiky NM, El Alfy TSMA. Canna x generalis L.H. Bailey rhizome extract ameliorates dextran sulfate sodium-induced colitis via modulating intestinal mucosal dysfunction, oxidative stress, inflammation, and TLR4/ NF-ҡB and NLRP3 inflammasome pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113670. [PMID: 33301917 DOI: 10.1016/j.jep.2020.113670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genus Canna is used in folk medicine as demulcent, diaphoretic, antipyretic, mild laxative and in gastrointestinal upsets therapy. Canna x generalis (CG) L.H. Bailey is traditionally used as anti-inflammatory, analgesic and antipyretic. Besides, CG is used in Ayurvedic medicines' preparations and in the treatment of boils, wounds, and abscess. Nevertheless, its anti-inflammatory effects against ulcerative colitis (UC) are not yet investigated. AIM This study aimed to investigate the phytoconstituents of CG rhizome ethanol extract (CGE). Additionally, we aimed to comparatively evaluate its therapeutic effects and underlying mechanisms against the reference drug "sulphasalazine (SAS)" in dextran sodium sulfate (DSS)-induced UC in mice. MATERIAL AND METHODS Metabolic profiling of CG rhizomes was performed via UHPLC/qTOF-HRMS; the total phenolic, flavonoid and steroid contents were determined, and the main phytoconstituents were isolated and identified. Next, DSS-induced (4%) acute UC was established in C57BL/6 mice. DSS-induced mice were administered either CGE (100 and 200 mg/kg) or SAS (200 mg/kg) for 7 days. Body weight, colon length, disease activity index (DAI) and histopathological alterations in colon tissues were examined. Colon levels of oxidative stress (GSH, MDA, SOD and catalase) and pro-inflammatory [Myeloperoxidase (MPO), nitric oxide (NO), IL-1β, IL-12, TNF-α, and INF-γ] markers were colourimetrically determined. Serum levels of lipopolysaccharide (LPS) and relative mRNA expressions of occludin, TLR4 and ASC (Apoptosis-Associated Speck-Like Protein Containing CARD) using RT-PCR were measured. Protein levels of NLRP3 inflammasome and cleaved caspase-1 were determined by Western blot. Furthermore, immunohistochemical examinations of caspase-3, NF-ҡB and claudin-1 were performed. RESULTS Major identified constituents of CGE were flavonoids, phenolic acids, phytosterols, beside five isolated phytoconstituents (β-sitosterol, triacontanol fatty alcohol, β-sitosterol-3-O-β-glucoside, rosmarinic acid, 6-O-p-coumaroyl-β-D-fructofuranosyl α-D-glucopyranoside). The percentage of the phenolic, flavonoid and steroid contents in CGE were 20.55, 6.74 and 98.09 μg of gallic acid, quercetin and β-sitosterol equivalents/mg extract, respectively. In DSS-induced mice, CGE treatment ameliorated DAI, body weight loss and colon shortening. CGE attenuated the DSS-induced colonic histopathological alternations, inflammatory cell infiltration and histological scores. CGE elevated GSH, SOD and catalase levels, and suppressed MDA, pro-inflammatory mediators (MPO and NO) as well as cytokines levels in colonic tissues. Moreover, CGE downregulated LPS/TLR4 signaling, caspase-3 and NF-ҡB expressions. CGE treatment inhibited NLRP3 signaling pathway as indicated by the suppression of the protein expression of NLRP3 and cleaved caspase-1, and the ASC mRNA expression in colonic tissues. Additionally, CGE restored tight junction proteins' (occludin and claudin-1) expressions. CONCLUSION Our findings provided evidence for the therapeutic potential of CGE against UC. CGE restored intestinal mucosal barrier's integrity, mitigated oxidative stress, inflammatory cascade, as well as NF-ҡB/TLR4 and NLRP3 pathways activation in colonic tissues. Notably, CGE in a dose of 200 mg/kg was more effective in ameliorating DSS-induced UC as compared to SAS at the same dose.
Collapse
Affiliation(s)
- Toka N Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr Al Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Walaa H El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt.
| | - Zeinab A Kandil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr Al Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Heba Khalil
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt
| | - Nabaweya M El-Fiky
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr Al Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Taha Shahat M A El Alfy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr Al Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
57
|
Gu Y, Zhang Y, Li M, Huang Z, Jiang J, Chen Y, Chen J, Jia Y, Zhang L, Zhou F. Ferulic Acid Ameliorates Atherosclerotic Injury by Modulating Gut Microbiota and Lipid Metabolism. Front Pharmacol 2021; 12:621339. [PMID: 33841148 PMCID: PMC8026864 DOI: 10.3389/fphar.2021.621339] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide. Recent studies have emphasized the significance of gut microbiota and lipid metabolism in the development of atherosclerosis. Herein, the effects and molecular mechanisms involving ferulic acid (FA) was examined in atherosclerosis using the ApoE-knockout (ApoE-∕-, c57BL/6 background) mouse model. Eighteen male ApoE-/- mice were fed a high-fat diet (HFD) for 12 weeks and then randomly divided into three groups: the model group, the FA (40 mg/kg/day) group and simvastatin (5 mg/kg/day) group. As results, FA could significantly alleviate atherosclerosis and regulate lipid levels in mice. Liver injury and hepatocyte steatosis induced by HFD were also mitigated by FA. FA improved lipid metabolism involving up-regulation of AMPKα phosphorylation and down-regulation of SREBP1 and ACC1 expression. Furthermore, FA induced marked structural changes in the gut microbiota and fecal metabolites and specifically reduced the relative abundance of Fimicutes, Erysipelotrichaceae and Ileibacterium, which were positively correlated with serum lipid levels in atherosclerosis mice. In conclusion, we demonstrate that FA could significantly ameliorate atherosclerotic injury, which may be partly by modulating gut microbiota and lipid metabolism via the AMPKα/SREBP1/ACC1 pathway.
Collapse
Affiliation(s)
- Yuyan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaxin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mei Li
- VIP Healthcare Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Huang
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yihao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqi Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Zhang
- Department of Gynaecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
58
|
Bioactive Compounds, Antioxidants, and Health Benefits of Sweet Potato Leaves. Molecules 2021; 26:molecules26071820. [PMID: 33804903 PMCID: PMC8038024 DOI: 10.3390/molecules26071820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Sweet potato (Ipomoea batatas) is one of the most important food crops worldwide and its leaves provide a dietary source of nutrients and various bioactive compounds. These constituents of sweet potato leaves (SPL) vary among varieties and play important roles in treating and preventing various diseases. Recently, more attentions in health-promoting benefits have led to several in vitro and in vivo investigations, as well as the identification and quantification of bioactive compounds in SPL. Among them, many new compounds have been reported as the first identified compounds from SPL with their dominant bioactivities. This review summarizes the current knowledge of the bioactive compositions of SPL and their health benefits. Since SPL serve as a potential source of micronutrients and functional compounds, they can be further developed as a sustainable crop for food and medicinal industries.
Collapse
|
59
|
Li X, Wu D, Niu J, Sun Y, Wang Q, Yang B, Kuang H. Intestinal Flora: A Pivotal Role in Investigation of Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:237-268. [PMID: 33622213 DOI: 10.1142/s0192415x21500130] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Dan Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Jingjie Niu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| |
Collapse
|
60
|
Casani-Cubel J, Benlloch M, Sanchis-Sanchis CE, Marin R, Lajara-Romance JM, de la Rubia Orti JE. The Impact of Microbiota on the Pathogenesis of Amyotrophic Lateral Sclerosis and the Possible Benefits of Polyphenols. An Overview. Metabolites 2021; 11:120. [PMID: 33672485 PMCID: PMC7923408 DOI: 10.3390/metabo11020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between gut microbiota and neurodegenerative diseases is becoming clearer. Among said diseases amyotrophic lateral sclerosis (ALS) stands out due to its severity and, as with other chronic pathologies that cause neurodegeneration, gut microbiota could play a fundamental role in its pathogenesis. Therefore, polyphenols could be a therapeutic alternative due to their anti-inflammatory action and probiotic effect. Thus, the objective of our narrative review was to identify those bacteria that could have connection with the mentioned disease (ALS) and to analyze the benefits produced by administering polyphenols. Therefore, an extensive search was carried out selecting the most relevant articles published between 2005 and 2020 on the PubMed and EBSCO database on research carried out on cell, animal and human models of the disease. Thereby, after selecting, analyzing and debating the main articles on this topic, the bacteria related to the pathogenesis of ALS have been identified, among which we can positively highlight the presence mainly of Akkermansia muciniphila, but also Lactobacillus spp., Bifidobacterium spp. or Butyrivibrio fibrisolvens. Nevertheless, the presence of Escherichia coli or Ruminococcus torques stand out negatively for the disease. In addition, most of these bacteria are associated with molecular changes also linked to the pathogenesis of ALS. However, once the main polyphenols related to improvements in any of these three ALS models were assessed, many of them show positive results that could improve the prognosis of the disease. Nonetheless, epigallocatechin gallate (EGCG), curcumin and resveratrol are the polyphenols considered to show the most promising results as a therapeutic alternative for ALS through changes in microbiota.
Collapse
Affiliation(s)
- Julia Casani-Cubel
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Health Science, Catholic University San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Raquel Marin
- Laboratory of Cellular Neurobiology, School of Medicine, Faculty of Health Sciences, University of La Laguna, 38190 Tenerife, Spain;
| | | | | |
Collapse
|
61
|
Zhang ZJ, Qu HL, Zhao N, Wang J, Wang XY, Hai R, Li B. Assessment of Causal Direction Between Gut Microbiota and Inflammatory Bowel Disease: A Mendelian Randomization Analysis. Front Genet 2021; 12:631061. [PMID: 33679893 PMCID: PMC7931927 DOI: 10.3389/fgene.2021.631061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have shown that the gut microbiota is closely related to the pathogenesis of Inflammatory Bowel Disease (IBD), but the causal nature is largely unknown. The purpose of this study was to assess the causal relationship between intestinal bacteria and IBD and to identify specific pathogenic bacterial taxa via the Mendelian randomization (MR) analysis. Materials and Methods MR analysis was performed on genome-wide association study (GWAS) summary statistics of gut microbiota and IBD. Specifically, the TwinsUK microbiota GWAS (N = 1,126 twin pairs) was used as exposure. The UK inflammatory bowel disease (UKIBD) and the Understanding Social Program (USP) study GWAS (N = 48,328) was used as discovery outcome, and the British IBD study (N = 35,289) was used as replication outcome. SNPs associated with bacteria abundance at the suggestive significance level (α = 1.0 × 10-5) were used as instrumental variables. Bacteria were grouped into families and genera. Results In the discovery sample, a total of 30 features were available for analysis, including 15 families and 15 genera. Three features were nominally significant, including one family (Verrucomicrobiaceae, 2 IVs, beta = -0.04, p = 0.05) and two genera (Akkermansia, 2 IVs, beta = 0.04, p = 0.05; Dorea, 2 IVs, beta = -0.07, p = 0.04). All of them were successfully replicated in the replication sample (Verrucomicrobiaceae and Akkermansia P replication = 0.02, Dorea P replication = 0.01) with consistent effect direction. Conclusion We identified specific pathogenic bacteria features that were causally associated with the risk of IBD, thus offering new insights into the prevention and diagnosis of IBD.
Collapse
Affiliation(s)
- Zi-Jia Zhang
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China.,Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Hong-Lei Qu
- Suzhou Hospital of Anhui Medical University, Anhui, China
| | - Na Zhao
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Jing Wang
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Xiu-Yan Wang
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Rong Hai
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, China.,Inner Mongolia Autonomous Region Health Management Service Center, Hohhot, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| |
Collapse
|
62
|
Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021; 13:nu13020554. [PMID: 33567596 PMCID: PMC7914463 DOI: 10.3390/nu13020554] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid is one of the most abundant hydroxycinnamic acids in fruits, vegetables, and beverages. This phenolic compound reaches relevant concentrations in the colon (up to 126 µM) where it could come into contact with the intestinal cells and exert its anti-inflammatory effects. The aim of this investigation was to study the capacity of caffeic acid, at plausible concentrations from an in vivo point of view, to modulate mechanisms related to intestinal inflammation. Consequently, we tested the effects of caffeic acid (50–10 µM) on cyclooxygenase (COX)-2 expression and prostaglandin (PG)E2, cytokines, and chemokines (IL-8, monocyte chemoattractant protein-1 -MCP-1-, and IL-6) biosynthesis in IL-1β-treated human myofibroblasts of the colon, CCD-18Co. Furthermore, the capacity of caffeic acid to inhibit the angiotensin-converting enzyme (ACE) activity, to hinder advanced glycation end product (AGE) formation, as well as its antioxidant, reducing, and chelating activity were also investigated. Our results showed that (i) caffeic acid targets COX-2 and its product PGE2 as well as the biosynthesis of IL-8 in the IL-1β-treated cells and (ii) inhibits AGE formation, which could be related to (iii) the high chelating activity exerted. Low anti-ACE, antioxidant, and reducing capacity of caffeic acid was also observed. These effects of caffeic acid expands our knowledge on anti-inflammatory mechanisms against intestinal inflammation.
Collapse
|
63
|
Changes in serum inflammatory cytokine levels and intestinal flora in a self-healing dextran sodium sulfate-induced ulcerative colitis murine model. Life Sci 2020; 263:118587. [PMID: 33065145 DOI: 10.1016/j.lfs.2020.118587] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 01/14/2023]
Abstract
AIMS Whether dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) animal models undergo self-healing remains unclear. Therefore, the study aim was to determine if these models have self-healing ability. MAIN METHODS UC was induced using 4% DSS in male KM mice. Histopathological and inflammatory cytokine were evaluated. Fecal samples were analyzed by 16S rDNA gene sequencing. KEY FINDINGS Physiological and inflammatory cytokine changed obviously on days 4-14 of establishment and returned to normal levels by day 21. The degrees of inflammation and injury in pathological sections decreased within 14 days compared with those on day 7. Interleukin (IL)-17A, IL-6, and C-reactive protein (CRP) levels fluctuated daily and were highest at 10 AM, 11 AM, and 8 PM, respectively. Intestinal flora disturbance was most obvious on days 7 and 14. The abundances of Lactobacillus and Alistipes decreased, whereas those of Streptococcus, Escherichia-Shigella, and Oscillibacter increased and mostly recovered by day 21. Lactobacillus and serum CRP level were negatively correlated with inflammation, whereas Streptococcus and Escherichia-Shigella were positively correlated with serum IL-6 level. SIGNIFICANCE The DSS-induced UC murine model was shown to undergo self-healing. Intestinal flora disturbance in the model were obvious from days 4 to 14 and had mostly recovered by day 21.
Collapse
|
64
|
Li J, Zhang L, Li Y, Wu Y, Wu T, Feng H, Xu Z, Liu Y, Ruan Z, Zhou S. Puerarin improves intestinal barrier function through enhancing goblet cells and mucus barrier. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
65
|
Polyphenol Extract of Moringa Oleifera Leaves Alleviates Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6295402. [PMID: 33299453 PMCID: PMC7710425 DOI: 10.1155/2020/6295402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023]
Abstract
Moringa oleifera Lam. is an essential herb used for the treatment of inflammation, diabetes, high blood pressure, and other diseases. In this study, phenolic extracts of M. oleifera leaves were obtained and analyzed. The results showed that the main identifiable phenols were astragalin, chlorogenic acid, isoquercitrin, kaempferitrin, luteolin, quercetin, and rutin. The effects of M. oleifera polyphenol extract (MOPE) on experimental colitis induced by 3% dextran sulfate sodium (DSS) were investigated. The results showed that oral administration of MOPE significantly alleviated the symptoms of DSS-induced colitis. MOPE significantly reduced weight loss, the disease activity index, colon shortening, and mucosal damage. In addition, MOPE attenuated the infiltration of CD3+ T cells, CD177+ neutrophils, and F4/80+ macrophages and significantly inhibited the secretion of IL-6 and TNF-α. After the MOPE administration, the expression of proteins associated with the NF-κB signaling pathway changed. Specifically, compared with that of the DSS group, the protein expression of NF-κB p65 and p-IκBα was downregulated, and the expression of IκBα was upregulated. This study revealed the anti-inflammatory effects and mechanisms of MOPE in the colon, indicating its potential use in preventing inflammation-driven diseases.
Collapse
|
66
|
Gong L, Wen T, Wang J. Role of the Microbiome in Mediating Health Effects of Dietary Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12820-12835. [PMID: 32131598 DOI: 10.1021/acs.jafc.9b08231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous recent observation and intervention studies suggest that the microbiota in the gut and oral cavity play important roles in host physiology, including disease development and progression. Of the many environmental factors involved, dietary components play a pivotal role in shaping the microbiota community and function, thus eliciting beneficial or detrimental consequences on host health. The microbiota affect human physiology by altering the chemical structures of dietary components, thus creating new biological properties and modifying their lifetime and bioavailability. This review will describe the causal mechanisms between the microbiota and some specific bacterial species and diet components providing health benefits and how this knowledge could be incorporated in dietary strategies for improving human health.
Collapse
Affiliation(s)
- Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Tingting Wen
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| |
Collapse
|
67
|
Gu Z, Duan M, Sun Y, Leng T, Xu T, Gu Y, Gu Z, Lin Z, Yang L, Ji M. Effects of Vitamin D3 on Intestinal Flora in a Mouse Model of Inflammatory Bowel Disease Treated with Rifaximin. Med Sci Monit 2020; 26:e925068. [PMID: 33177483 PMCID: PMC7670830 DOI: 10.12659/msm.925068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rifaximin is an antimicrobial agent used to treat inflammatory bowel disease (IBD). Vitamin D3 can control IBD due to its effects on inflammatory cytokines. The purpose of this study was to assess the effect of vitamin D3 on the intestinal flora of a dextran sulfate sodium (DSS)-induced mouse model treated with rifaximin. MATERIAL AND METHODS The mouse model of IBD was developed using DSS (4%) administered via the drinking water. Twenty-four male C57BL6 mice were divided into the control group with a normal diet (N=6), the DSS group with a normal diet (N=6), the DSS group with a normal diet treated with rifaximin (N=6), and the DSS group with a normal diet treated with rifaximin and vitamin D3 (N=6). After 14 days, the colonic tissue was studied histologically. Serum levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1ß (IL-1ß) and enzyme-linked immunosorbent assay (ELISA) were used to measure the level of IL-6 and P65, and phospho-p65 was measured by western blot. 16S rRNA gene sequencing was used to analyze fecal samples. RESULTS In the DSS mouse model of IBD, rifaximin reduced the inflammation severity of the colon and reduced the expression of phospho-p65, p65, TNF-alpha, and IL-6. In the DSS+rifaximin+vitamin D3 group, the therapeutic influences of rifaximin, in terms of weight loss and colonic disease activity, were significantly reduced, and the gut microbiota of the mice were completely changed in composition and diversity. CONCLUSIONS In a mouse model of IBD, treatment with vitamin D3 significantly increased the metabolism of rifaximin and reduced its therapeutic effects.
Collapse
Affiliation(s)
- Zijun Gu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mingxiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yan Sun
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Tian Leng
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yang Gu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zejuan Gu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zheng Lin
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lu Yang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
68
|
Wu J, Xu Y, Su J, Zhu B, Wang S, Liu K, Wang H, Shi S, Zhang Q, Qin L, Wang S. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity. Carbohydr Polym 2020; 248:116780. [DOI: 10.1016/j.carbpol.2020.116780] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
|
69
|
Xu J, Ge J, He X, Sheng Y, Zheng S, Zhang C, Xu W, Huang K. Caffeic acid reduces body weight by regulating gut microbiota in diet-induced-obese mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
70
|
Leonard W, Zhang P, Ying D, Fang Z. Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 2020; 20:710-737. [DOI: 10.1111/1541-4337.12663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- William Leonard
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Pangzhen Zhang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Danyang Ying
- CSIRO Agriculture & Food Werribee Victoria Australia
| | - Zhongxiang Fang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
71
|
Long X, Kim YG, Pyo YK, Yi R, Zhao X, Park KY. Inhibitory effect of Jangkanghwan (Korean traditional food) on experimental ulcerative colitis in mice. J Food Biochem 2020; 44:e13488. [PMID: 33015841 DOI: 10.1111/jfbc.13488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Jangkanghwan (JKH) can delay weight loss in mice, promote weight gain during recovery, and reduce colonic shortening and colon weight. In addition, the murine disease activity index was controlled after treatment using JKH. It can reduce the content of pro-inflammatory factors in serum and expression in tissues, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α, interferon-γ, cyclooxygenase-2, and nuclear factor kappa-B; in contrast, the content and expression of IL-10 and the inhibitor of nuclear factor kappa-B kinase-α in the serum and tissues were increased. The mRNA expression of the colitis characteristic biomarker monocyte chemoattractant protein-1 and macrophage inflammatory protein-3α were reduced in colon tissues. Using next-generation sequencing technology, the Bacteroidetes phylum in the JKH group decreased, while the Firmicutes phylum increased, and the number of beneficial bacteria-Bifidobacteriaceae, Lactobacillaceae, and Akkermansiaceae-increased. PRACTICAL APPLICATIONS: JKH is a mixture of colonic healthy foods composed of Atractylodes macrocephala koidzumi, radish leaves, Viscum album var. coloratum, dried Zingiber officinale Roscoe, etc. According to UPLC-Q-TOF MS analysis, JKH consists mainly of 17 active substances, such as pheophorbide A, nabumetone alcohol, dehydrocostus lactone, plantamajoside, kaempferol 3, 7-dirhamnoside, quercetin 3-D-glucuronide, and viscumneoside III. We investigated the preventive effects of JKH on dextran sulfate sodium (DSS)-induced ulcerative colitis in a murine model and found that JKH can reduce the damage in mice caused by DSS treatment.
Collapse
Affiliation(s)
- Xingyao Long
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | | | | | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| |
Collapse
|
72
|
Hou D, Zhao Q, Yousaf L, Xue Y, Shen Q. Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. Eur J Nutr 2020; 60:2029-2045. [PMID: 33005980 DOI: 10.1007/s00394-020-02395-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Our recent study has reported that whole mung bean showed better beneficial effects on high-fat diet (HFD)-induced obesity and gut microbiota disorders when compared with the decorticated mung bean at the same intervention dose level, suggesting that the mung bean seed coat (MBC) may play a crucial role in its health benefits. This study aims to investigate whether MBC has beneficial benefits on the prevention of HFD-induced obesity and the modulation of gut microbiota in mice when it was supplemented in HFD. METHODS Herein, male C57BL/6 J mice were fed with normal control diet, HFD, and HFD supplemented with MBC (3-6%, w/w) for 12 weeks. The changes in physiological, histological, biochemical parameters, serum endotoxin, proinflammatory cytokines, and gut microbiota composition of mice were determined to assess the ability of MBC to alleviate HFD-induced obesity and modulate gut microbiota disorders in mice. RESULTS MBC supplementation exhibited significant reductions in the HFD-induced adiposity, fat accumulation, serum lipid levels, lipopolysaccharide, and proinflammatory cytokines concentrations (P < 0.05), which was accompanied by improvements in hepatic steatosis and adipocyte size. Especially, the elevated fasting blood glucose and insulin resistance were also significantly improved by MBC supplementation (P < 0.05). Furthermore, high-throughput sequencing of the 16S rRNA gene revealed that MBC could normalize HFD-induced gut microbiota dysbiosis. MBC not only could promote the bloom of Akkermansia, but also restore several HFD-dependent taxa (Blautia, Ruminiclostridium_9, Bilophila, and unclassified_f_Ruminococcaceae) back to normal status, co-occurring with the decreases in obesity-related indices. CONCLUSIONS This study provides evidence that MBC may be mainly responsible for the beneficial effects of whole mung bean on preventing the HFD-induced changes, thus enlarging the application value of MBC.
Collapse
Affiliation(s)
- Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Laraib Yousaf
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China. .,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China. .,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
73
|
Guo J, Yin M, Han X, You Y, Huang W, Zhan J. The influence of oxygen on the metabolites of phenolic blueberry extract and the mouse microflora during in vitro fermentation. Food Res Int 2020; 136:109610. [DOI: 10.1016/j.foodres.2020.109610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
74
|
Peng L, Gao X, Nie L, Xie J, Dai T, Shi C, Tao L, Wang Y, Tian Y, Sheng J. Astragalin Attenuates Dextran Sulfate Sodium (DSS)-Induced Acute Experimental Colitis by Alleviating Gut Microbiota Dysbiosis and Inhibiting NF-κB Activation in Mice. Front Immunol 2020; 11:2058. [PMID: 33042117 PMCID: PMC7523281 DOI: 10.3389/fimmu.2020.02058] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
With the ulcerative colitis (UC) incidence increasing worldwide, it is of great importance to prevent and treat UC. However, efficient treatment options for UC are relatively limited. Due to the potentially serious adverse effects of existing drugs, there is an increasing demand for alternative candidate resources derived from natural and functional foods. Astragalin (AG) is a type of anti-inflammatory flavonoid, with Moringa oleifera and Cassia alata being its main sources. In this study, we investigated the therapeutic effects of AG on mice with dextran sulfate sodium (DSS)-induced colitis. Our results suggested that AG treatment reduced weight loss and the disease activity index (DAI), prevented colon shortening and alleviated colonic tissue damage. AG treatment reduced the expression of pro-inflammatory cytokines and related mRNAs (such as TNF-α, IL-6, and IL-1β), inhibited colonic infiltration by macrophages and neutrophils, ameliorated metabolic endotoxemia, and improved intestinal mucosal barrier function (increased expression levels of mRNAs such as ZO-1, occludin, and Muc2). Western blot analysis revealed that AG downregulated the NF-κB signaling pathway. Moreover, AG treatment partially reversed the alterations in the gut microbiota in colitis mice, mainly by increasing the abundance of potentially beneficial bacteria (such as Ruminococcaceae) and decreasing the abundance of potentially harmful bacteria (such as Escherichia-Shigella). Ruminococcaceae and Enterobacteriaceae (Escherichia-Shigella) were thought to be the key groups affected by AG to improve UC. Therefore, AG might exert a good anti-UC effect through microbiota/LPS/TLR4/NF-kB-related pathways in mice. The results of this study reveal the anti-inflammatory effect and mechanism of AG and provide an important reference for studying the mechanisms of natural flavonoids involved in preventing inflammation-driven diseases.
Collapse
Affiliation(s)
- Lei Peng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Province Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China
| | - Xiaoyu Gao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Province Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China
| | - Long Nie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Tianyi Dai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yan Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Province Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China.,Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
75
|
Exercise Preconditioning Attenuates the Response to Experimental Colitis and Modifies Composition of Gut Microbiota in Wild-Type Mice. Life (Basel) 2020; 10:life10090200. [PMID: 32937846 PMCID: PMC7555193 DOI: 10.3390/life10090200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study investigated the suppressive effect of exercise preconditioning against colitis induced by high-fat diet (HF) plus dextran sulfate sodium (DSS) in wild-type mice. Male mice (C57BL/6) aged 6 weeks were assigned to standard chow (SC, n = 10) or HF (n = 10) or HF followed by DSS (HF+DSS, n = 10) or exercise preconditioning (EX) followed by HF+DSS (EX+HF+DSS, n = 10) for a total of 15 weeks. After 12 weeks of dietary treatments and/or exercise preconditioning, mice in the DSS groups were subjected to administration of 2 cycles of 5-day DSS (2% w/v) with a 7-day interval between cycles. HF resulted in colitis symptoms and histological changes, infiltration of immunity cells, decreased gut barrier proteins, increased pro-inflammatory and chemotactic cytokines and decreased anti-inflammatory cytokine such as adiponectin, which deteriorated after administration of DSS. Exercise preconditioning alleviated HF+DSS-induced colitis and caused significant modifications in gut microbiota: decreased Bacteroides vulgatus (p = 0.050) and increased Akkermansia muciniphila (p = 0.050). The current findings suggest that exercise preconditioning attenuates the severity of HF+DSS-induced colitis in C57BL/6 mice.
Collapse
|
76
|
Mohamed ME, Elsayed SA, Madkor HR, Eldien HMS, Mohafez OM. Yarrow oil ameliorates ulcerative colitis in mice model via regulating the NF-κB and PPAR-γ pathways. Intest Res 2020; 19:194-205. [PMID: 32819032 PMCID: PMC8100379 DOI: 10.5217/ir.2020.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background/Aims Ulcerative colitis (UC) is a chronic inflammatory disorder with indefinite etiology; however, environmental, genetic, immune factors and microbial agents could be implicated in its pathogenesis. UC treatment is lifelong, therefore; the potential side effects and cost of the therapy are significant. Yarrow is a promising medicinal plant with the ability to treat many disorders, owing to its bioactive compounds especially the essential oil. The main aim of this research was to investigate the therapeutic effect of the yarrow oil on colitis including the involved mechanism of action. Methods In 21-female C57BL/6 mice were divided into 3 groups; control group, colitis model group, and oil-treated group. Groups 2 and 3 received 5% dextran sulfate sodium (DSS) in drinking water for 9 days, and concomitantly, only group 3 was given 100 mg/kg yarrow oil. Mice were examined for their body weight, stool consistency and bleeding, and the disease activity indexes were calculated. Results Oral administration of yarrow oil markedly repressed the severity of UC via the reduction of the inflammatory signs and restoring colon length. The oil was able to down-regulate nuclear factor kappa light chain enhancer of activated B cells (NF-κB), up-regulate peroxisome proliferator-activated receptor gamma (PPAR-γ), and enhance transforming growth factor-β expression. The oil normalized the tumor necrosis factor-α expression, restored the normal serum level of interleukin-10 (IL-10) and reduced the serum level of IL-6. Conclusions Yarrow oil mitigated UC symptoms and regulated the inflammatory cytokines secretion via regulation of NF-κB and PPAR-γ pathways in the mice model, however, this recommendation requires further investigations using clinical studies to confirm the use of the oil on humans.
Collapse
Affiliation(s)
- Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia.,Department of Pharmacognosy, College of Pharmacy, University of Zagazig, Zagazig, Egypt
| | - Sahar A Elsayed
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Heba M Saad Eldien
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omar M Mohafez
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
77
|
Shinde T, Vemuri R, Shastri S, Perera AP, Gondalia SV, Beale DJ, Karpe AV, Eri R, Stanley R. Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD. Nutrients 2020; 12:E2380. [PMID: 32784883 PMCID: PMC7468978 DOI: 10.3390/nu12082380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022] Open
Abstract
A probiotic and prebiotic food ingredient combination was tested for synergistic functioning in modulation of the colonic microbiome and remediation of the gastrointestinal immune and inflammatory responses in a spontaneous colitic mouse model. Bacillus coagulans MTCC5856 spores with capability to metabolise complex plant polysaccharides were supplemented with complex whole-plant prebiotic sugarcane fibre (PSCF). The combined and individual efficacies were tested for their influence on the outcomes of chronic inflammation in Muc2 mutant colitic Winnie mice. The mice were fed normal chow diet supplemented with either ingredient or a combination for 21 days. Synbiotic combined supplementation ameliorated clinical symptoms and histological colonic damage scores more effectively than either B. coagulans or PSCF alone. PSCF and B. coagulans alone also induced considerable immunomodulatory effects. Synbiotic supplementation however was the most efficacious in modulating the overall immune profile compared to the unsupplemented Winnie-control. The augmented synbiotic effect could potentially be due to a combination of increased levels of fermentation products, direct immune-modulating abilities of the components, their capability to reduce colonic epithelial damage and/or modulation of the microbiota. The beneficial effects of the supplementation with a complex plant fibre and a fibre-degrading probiotic parallel the effects seen in human microbiota with high plant fibre diets.
Collapse
Affiliation(s)
- Tanvi Shinde
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania 7250, Australia
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Ravichandra Vemuri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Sonia Shastri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Agampodi Promoda Perera
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia;
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization (CSIRO), Gate 13 Kintore Avenue, South Australia 5000, Australia
| | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland 4102, Australia; (D.J.B.); (A.V.K.)
| | - Avinash V. Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland 4102, Australia; (D.J.B.); (A.V.K.)
| | - Rajaraman Eri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Roger Stanley
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
78
|
Bertsch A, Roy D, LaPointe G. Fermentation of Wheat Bran and Whey Permeate by Mono-Cultures of Lacticaseibacillus rhamnosus Strains and Co-culture With Yeast Enhances Bioactive Properties. Front Bioeng Biotechnol 2020; 8:956. [PMID: 32850769 PMCID: PMC7427622 DOI: 10.3389/fbioe.2020.00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this work was to obtain a bioingredient (BI) with bioactive properties through the solid fermentation of a wheat bran-whey permeate (WB/WP) mixture with three strains of Lacticaseibacillus rhamnosus (R0011, ATCC 9595, and RW-9595M) in mono or co-culture with Saccharomyces cerevisiae. The choice of these strains was based on their capacity to produce the same exopolysaccharide (EPS), but at different yields. The solid fermentation of WB/WP revealed a similar growth pattern, sugar utilization and metabolite production between strains and types of culture. Lactic acid, soluble protein, free amino acid and phenolic compound content in BI were compared to NFWB. Water soluble polysaccharides (including EPS) were significantly increased in co-culture for (44%) ATCC 9595, (40%) R0011 and (27%) RW-9595M. The amount of bound Total Phenolic Content (TPC) as well as the antioxidant activity in BI were higher after fermentation. The free phenolic acid content was higher after fermentation with ATCC 9595 (53-59%), RW-9595M (45-46%), and R0011 (29-39%) compared to non-fermented NFWB. Fermentation by these strains increased the amounts of free caffeic acid and 4-hydroxybenzoic acid in both types of culture. The bound phenolic acid content was enhanced in co-culture for the BI obtained from the highest EPS producer strain RW-9595M which was 30% higher than NFWB. After in vitro digestion, bioaccessibility of free total phenolic acids was improved by more than 40% in BI compared to NFWB. The co-culture increased recovery of TPC (%) and antioxidant activity compared to monoculture for the strains in digested product. In contrast, the recovery of bound total phenolic acids in co-culture was 33 and 38% lower when compared to monoculture for R0011 and RW-9595M. Our findings provide new insights into the impact of LAB/yeast co-culture on the bioactive properties of fermented wheat bran.
Collapse
Affiliation(s)
- Annalisse Bertsch
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Denis Roy
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
79
|
K-da S, Peerakietkhajorn S, Siringoringo B, Muangnil P, Wichienchot S, Khuituan P. Oligosaccharides from Gracilaria fisheri ameliorate gastrointestinal dysmotility and gut dysbiosis in colitis mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
80
|
Farràs M, Martinez-Gili L, Portune K, Arranz S, Frost G, Tondo M, Blanco-Vaca F. Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients 2020; 12:nu12082200. [PMID: 32718098 PMCID: PMC7468985 DOI: 10.3390/nu12082200] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.
Collapse
Affiliation(s)
- Marta Farràs
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Correspondence: ; Tel.: +34-935537595
| | - Laura Martinez-Gili
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Gary Frost
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
81
|
Lin H, Wang Q, Liu L, Chen Z, Das R, Zhao Y, Mao D, Luo Y. Colonization of Mice With Amoxicillin-Associated Klebsiella variicola Drives Inflammation via Th1 Induction and Treg Inhibition. Front Microbiol 2020; 11:1256. [PMID: 32670220 PMCID: PMC7326774 DOI: 10.3389/fmicb.2020.01256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
β-Lactam antibiotics can increase the resistance and virulence of individual intestinal microorganisms, which may affect host physiology and health. Klebsiella, a crucial gut inhabitant, has been confirmed to be resistant to most β-lactam antibiotics and contributes to the etiology of inflammatory bowel disease (IBD). In this study, the influence of amoxicillin (AMO) on Klebsiella and its role in colitis was investigated in an antibiotic cocktail (ABx) murine model. The results suggested that a 7-day AMO treatment significantly enriched the abundance of Klebsiella and enhanced serum resistance, antibiotic resistance, and biofilm formation ability of Klebsiella variicola (K. variicola) compared to the wild-type strain in the control group mice. Colonization of mice with the AMO-associated K. variicola could induce Th1 cells and inhibit Treg differentiation to promote inflammation in ABx murine model. In addition, inoculation of AMO-associated K. variicola in dextran sodium sulfate (DSS)-induced colitis murine model mice also confirmed that K. variicola colonization exacerbated inflammation as assessed by increased TNF-α, IFN-γ, IL-17a, and disease activity (DAI) levels; decreased colon length and bodyweight; and a disrupted Th1/Treg balance. The results of our study demonstrate that AMO enhances Klebsiella virulence in mice by disrupting the T cell equilibrium to exacerbate colitis, thereby providing a reference for proper antibiotic prescription.
Collapse
Affiliation(s)
- Huai Lin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China.,Hebei Key Laboratory of Air Pollution Cause and Impact (preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| | - Lei Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Ranjit Das
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Yanhui Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
82
|
The High-Fat Diet Based on Extra-Virgin Olive Oil Causes Dysbiosis Linked to Colorectal Cancer Prevention. Nutrients 2020; 12:nu12061705. [PMID: 32517306 PMCID: PMC7352482 DOI: 10.3390/nu12061705] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
The present study aims to examine the effects of three different high-fat diet (HFD) on mice gut microbiota in order to analyse whether they create the microenvironmental conditions that either promote or prevent colorectal cancer (CRC). We evaluated colonic mucosa-associated microbiota in CD1 mice fed with HFD, based on 60% kcal from fat-containing coconut, sunflower or extra-virgin olive oil as the only source of fat. The main findings were as follows: (a) All HFD produced a decrease in the richness and diversity of the intestinal microbiota that was independent of mouse weight, (b) HFD switched Lactobacillus to Lactococcus. In general, the results showed that both sunflower- and coconut-HFD generated a pro-inflammatory intestinal microenvironment. In brief, coconut-HFD decreased Akkermansia and increased Staphylococcus, Prevotella and Bacteroides spp. abundance. Sunflower-HFD reduced Akkermansia and Bifidobacterium, while enhancing Sphingomonas and Neisseria spp. abundance. In contrast, EVOO-HFD produced an anti-inflammatory microenvironment characterised by a decreased Enterococcus, Staphylococcus, Neisseria and Pseudomonas spp. abundance. At the same time, it increased the Firmicutes/Bacteroidetes ratio and maintained the Akkermansia population. To conclude, EVOO-HFD produced changes in the gut microbiota that are associated with the prevention of CRC, while coconut and sunflower-HFD caused changes associated with an increased risk of CRC.
Collapse
|
83
|
Cheung MK, Yue GGL, Chiu PWY, Lau CBS. A Review of the Effects of Natural Compounds, Medicinal Plants, and Mushrooms on the Gut Microbiota in Colitis and Cancer. Front Pharmacol 2020; 11:744. [PMID: 32499711 PMCID: PMC7243258 DOI: 10.3389/fphar.2020.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
The human gastrointestinal tract harbors a diverse array of microorganisms that play fundamental roles in health and disease. Imbalance in the gut microbiota, namely dysbiosis, can lead to various diseases, including cancer and gastrointestinal tract disorders. Approaches to improve gut dysbiosis, such as dietary intervention, intake of probiotics, and fecal microbiota transplantation are emerging strategies to treat these diseases. Various medicinal botanicals have reported anti-cancer and/or anti-inflammatory properties. Preclinical studies have illustrated that some of these natural products are also capable to modulate the gut microbiota, suggesting their use as possible alternative approach to improve gut dysbiosis and thereby assist diseases treatment. In this review article, we have summarized the current knowledge on the effects of natural compounds, medicinal plants, and mushrooms on the gut microbiota in various cancers and colitis in preclinical animal models. Challenges towards the clinical use of these medicinal botanicals as modulators of the gut microbiota in cancer and colitis treatment are also discussed.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Philip Wai Yan Chiu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
84
|
Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:483-499. [PMID: 31472019 DOI: 10.1002/jsfa.10010] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
There is an urgent need to improve human diet globally. Compelling evidence gathered over the past several decades suggests that a suboptimal diet is associated with many chronic diseases and may be responsible for more deaths than any other risks worldwide. The main components in our diet that need higher intake are whole grains, fruit and vegetables, and nuts and seeds; all of these are important sources of dietary fiber and polyphenols. The health benefits of dietary fiber and polyphenols are also supported by several decades of valuable research. However, the conclusions drawn from interventional human trials are not straightforward and the action mechanisms in improving human health are not fully understood. Moreover, there is a great inter-individual variation caused by different individual capabilities of processing, absorbing and using these compounds effectively. Data on the bioavailability and bioefficacy of hydroxycinnamic acids (HCAs) are limited when compared to other classes of polyphenols (e.g. anthocyanins). This review aims to summarize the latest research advances related to HCA bioavailability and their biological effects revealed by epidemiological data, pre-clinical and clinical studies. Moreover, we aim to review the effects of HCAs on gut microbiota diversity and function and its respective influence on host health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
85
|
Wang R, Deng Y, Deng Q, Sun D, Fang Z, Sun L, Wang Y, Gooneratne R. Vibrio parahaemolyticus Infection in Mice Reduces Protective Gut Microbiota, Augmenting Disease Pathways. Front Microbiol 2020; 11:73. [PMID: 32082289 PMCID: PMC7002474 DOI: 10.3389/fmicb.2020.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Vibrio parahaemolyticus (Vp), a major food-borne pathogen, is responsible for severe infections such as gastroenteritis and septicemia, which may be accompanied by life-threatening complications. While studies have evaluated factors that affect the virulence of the pathogen, none have investigated the interaction of Vp with gut microbiota. To address this knowledge gap, we compared the effect of Vp on gut bacterial community structure, immunity, liver and kidney function, in pseudo germ-free (PGF) mice and normal (control) mice. Significant damage to the ileum was observed in normal mice compared with the PGF mice. The inflammatory factors IL-1β, IL-6, and TNF-α in normal mice were ∼2.5-fold higher than in the PGF mice, and liver (ALT, AST, ALP) and kidney (BUN) function indices were ∼1.6-fold higher. The Vp infection substantially reduced species composition and richness of the gut microbial communities. In particular, there was a shift in keystone taxa, from protective species of genera Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia in the gut of control mice to opportunistic pathogens Enterobacteriaceae, Proteus, Prevotella, and Sutterella in Vp-infected mice, thus affecting microbiota-related biological functions in the mice. Specifically, pathways involved in infectious diseases and ion channels were significantly augmented in infected mice, while the pathways involved in metabolism, digestion and cell growth declined. We propose that the normal mice are more prone to Vp infection because of the alteration in gut-microbe-mediated functions. All these effects reduce intestinal resistance, with marked damage to the gut lining and pathogen leakage into the blood culminating in liver and kidney damage. These findings greatly advance our understanding of the mechanisms underlying interactions between Vp, the gut microbiota and the infected host.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China.,School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, China
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Dongfang Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
86
|
Liu J, He Z, Ma N, Chen ZY. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:33-47. [PMID: 31829012 DOI: 10.1021/acs.jafc.9b06817] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance of energy intake and expenditure. It is characterized by a higher accumulation of body fat with a chronic low-grade inflammation. Many reports have shown that gut microbiota in the host plays a pivotal role in mediating the interaction between consumption of a high-fat diet (HFD) and onset of obesity. Accumulative evidence has suggested that the changes in the composition of gut microbiota may affect the host's energy homeostasis, systemic inflammation, lipid metabolism, and insulin sensitivity. As one of the major components in human diet, polyphenols have demonstrated to be capable of modulating the composition of gut microbiota and reducing the HFD-induced obesity. The present review summarizes the findings of recent studies on dietary polyphenols regarding their metabolism and interaction with bacteria in the intestine as well as the underlying mechanisms by which they modulate the gut microbiota and alleviate the HFD-induced obesity.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Ning Ma
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| |
Collapse
|
87
|
Li Y, Pan H, Liu JX, Li T, Liu S, Shi W, Sun C, Fan M, Xue L, Wang Y, Nie C, Zhang H, Qian H, Ying H, Wang L. l-Arabinose Inhibits Colitis by Modulating Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13299-13306. [PMID: 31674784 DOI: 10.1021/acs.jafc.9b05829] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
l-Arabinose is a monosaccharide extracted from plants or fibers, which is known to have a variety of functional properties. In this study, we aim to investigate whether l-arabinose could inhibit colitis by modulating gut microbiota. l-Arabinose was administered in mice daily in a dextran sodium sulfate (DSS)-induced colitis model. The histological analysis, disease index, and the expression of inflammatory genes were measured. 16S-rRNA sequence analysis was performed to investigate gut microbiota. Intriguingly, we found that l-arabinose could repress DSS-induced colitis and inhibit p38-/p65-dependent inflammation activation. Besides that, our data revealed that l-arabinose-modulated DSS-induced gut microbiota were disturbed. Additionally, the perturbed gut microbiota was responsible for the suppressive effects of l-arabinose on DSS-induced colitis treated with antibiotics. Lastly, Caco-2 cells were used to confirm the protective effects of l-arabinose in colitis or inflammatory bowel disease. As expected, the protein expression levels in Caco-2 cells of pro-inflammatory genes, which were treated with l-arabinose and incubated with or without tumor necrosis factor alpha. Our work suggested that l-arabinose exerts anti-inflammation effects in DSS-induced colitis. These beneficial effects have correlations with the composition, diversity, and abundance of the gut microbiota regulated by l-arabinose. l-Arabinose could be a remarkable candidate as a functional food or novel therapeutic strategy for intestinal health.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Haiou Pan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Jin-Xin Liu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , Jiangsu , China
| | - Shengnan Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Wenli Shi
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Chao Sun
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Mingcong Fan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Lamei Xue
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Yu Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Chenzhipeng Nie
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Hui Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Haifeng Qian
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Li Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| |
Collapse
|
88
|
de Assis POA, Guerra GCB, Araújo DFDS, de Andrade LDFLI, de Araújo AA, de Araújo RF, de Carvalho TG, de Souza MDFV, Borges GDSC, Lima MDS, Rolim FRL, Rodrigues RAV, Queiroga RDCRDE. Intestinal anti-inflammatory activity of xique-xique (Pilosocereus gounellei A. Weber ex K. Schum. Bly. Ex Rowl) juice on acetic acid-induced colitis in rats. Food Funct 2019; 10:7275-7290. [PMID: 31621721 DOI: 10.1039/c9fo00920e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by severe mucosal damage in the intestine and a deregulated immune response. Natural products derived from plants that are rich in bioactive compounds are used by many patients with IBD. Xique-xique (Pilosocereus gounellei) is a cactus of the Caatinga family that has been used by the local population for food and medicinal purposes. The intestinal anti-inflammatory effect of xique-xique cladode juice was evaluated in the present study. A dose of 5 mL kg-1 had a protective effect on intestinal inflammation, with an improvement in macroscopic damage, and a decrease in pro-inflammatory markers and oxidative stress, in addition to preserving the colonic tissue. Immunohistochemical analysis revealed the downregulation of IL-17, NF-κB, and iNOS, and upregulation of SOCs-1, ZO-1, and MUC-2. These protective effects could be attributed to the phenolic compounds as well as the fibers present in xique-xique juice. Further studies are needed before suggesting the use of xique-xique juice as a new alternative for treating IBD.
Collapse
Affiliation(s)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | | | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Raimundo Fernandes de Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Graciele da Silva Campelo Borges
- Department of Food Technology, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Institute Federal of Sertão Pernambucano, Petrolina, Brazil
| | | | | | | |
Collapse
|
89
|
Yue SJ, Wang WX, Yu JG, Chen YY, Shi XQ, Yan D, Zhou GS, Zhang L, Wang CY, Duan JA, Tang YP. Gut microbiota modulation with traditional Chinese medicine: A system biology-driven approach. Pharmacol Res 2019; 148:104453. [PMID: 31541688 DOI: 10.1016/j.phrs.2019.104453] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023]
Abstract
With the development of system biology, traditional Chinese medicine (TCM) is drawing more and more attention nowadays. However, there are still many enigmas behind this ancient medical system because of the arcane theory and complex mechanism of actions. In recent decades, advancements in genome sequencing technologies, bioinformatics and culturomics have led to the groundbreaking characterization of the gut microbiota, a 'forgotten organ', and its role in host health and disease. Notably, gut microbiota has been emerging as a new avenue to understanding TCM. In this review, we will focus on the structure, composition, functionality and metabolites of gut microbiota affected by TCM so as to conversely understand its theory and mechanisms. We will also discuss the potential areas of gut microbiota for exploring Chinese material medica waste, Chinese marine material medica, add-on therapy and personalized precise medication of TCM. The review will conclude with future perspectives and challenges of gut microbiota in TCM intervention.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266000, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jin-Gao Yu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Yan
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266000, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
90
|
Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy. Microorganisms 2019; 7:microorganisms7040097. [PMID: 30987157 PMCID: PMC6518429 DOI: 10.3390/microorganisms7040097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action.
Collapse
|
91
|
Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, Yanping C, Hongqing W, Zhipeng G, Kaiqi Z, Fang Y, Junsong X. Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr 2019; 60:1321-1345. [PMID: 30729797 DOI: 10.1080/10408398.2019.1570913] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal tract is the second largest organ in the body that mainly functions in nutrients and minerals intake through the intestinal barrier. Intestinal permeability maintains the circulation of minerals and nutrients from digested foods. Life and all the metabolic processes depend either directly or indirectly on proper functioning of GI tract. Compromised intestinal permeability and related disorders are common among all the patients with inflammatory bowel disease (IBD), which is a collective term of inflammatory diseases including Crohn's disease and ulcerative colitis. Many synthetic drugs are currently in use to treat IBD such as 5-aminosalicylic acid corticosteroids. However, they all have some drawbacks as long-term use result in many complications. These problems encourage us to look out for alternative medicine. Numerous in vitro and in vivo experiments showed that the plant-derived secondary metabolites including phenolic compounds, glucosinolates, alkaloids, terpenoids, oligosaccharides, and quinones could reduce permeability, ameliorate-related dysfunctions with promising results. In addition, many of them could modulate enzymatic activity, suppress the inflammatory transcriptional factors, ease oxidative stress, and reduce pro-inflammatory cytokines secretion. In this review, we summarized the phytochemicals, which were proven potent in treating increased intestinal permeability and related complication along with their mechanism of action.
Collapse
Affiliation(s)
- Imam Hossen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wu Hua
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Luo Ting
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Arshad Mehmood
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Song Jingyi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xu Duoxia
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Cao Yanping
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wu Hongqing
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Gao Zhipeng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Zhang Kaiqi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Yang Fang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xiao Junsong
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
92
|
Wang R, Wang L, Luo Y, Wang D, Du R, Du J, Wang Y. Maggot protein ameliorates dextran sulphate sodium-induced ulcerative colitis in mice. Biosci Rep 2018; 38:BSR20181799. [PMID: 30393231 PMCID: PMC6259012 DOI: 10.1042/bsr20181799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Maggots are known as a traditional Chinese medicine named as 'wu gu chong'. The aim of the present study was to investigate the therapeutic effect of the maggot protein on dextran sulphate sodium (DSS)-induced colitis in C57BL/6 mice. In the present study, female C57BL/6 mice were given sterile water containing 3% DSS to establish the model of UC. Mice were randomly divided into five groups: control group (sterile water), model group (DSS), treatment group (DSS + maggot protein), mesalazine group (DSS + mesalazine), and maggot protein group (sterile water + maggot protein). The mental state, defecate traits, and changes in body weights were recorded daily. The disease activity index (DAI) as a disease severity criterion was calculated based on body weights and stool consistency and bleeding. All the mice were killed on the 12th day. Colon length, colon histological changes, and other inflammatory factors were analyzed and evaluated. The results showed that colitis models of mice were established successfully. Administration of maggot protein markedly suppressed the severity of UC compared with the DSS model group. Furthermore, maggot protein potently ameliorated DSS-induced weight loss, colon shortening, and colon histological injury. Moreover, the maggot protein exerted anti-inflammatory effects via inhibition of the activation of the nuclear factor κB (NFκB) signaling pathway. In summary, treatment by maggot protein was able to improve not only the symptoms of colitis, but also the microscopic inflammation in mice with DSS-induced colitis. The present study may have implications for developing an effective therapeutic strategy for inflammatory bowel diseases (IBDs).
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yongzheng Luo
- School of Chemistry and Life Sciences, Nanjing University Jinling College, Nanjing, 210089, China
| | - Daojuan Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Ronghui Du
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiancheng Du
- Jiangsu Yicheng Bio Technology Co., Ltd., Nantong 226000, China
| | - Yong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
93
|
Salvianolic acid B alters the gut microbiota and mitigates colitis severity and associated inflammation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
94
|
Xu CC, Wang B, Pu YQ, Tao JS, Zhang T. Advances in extraction and analysis of phenolic compounds from plant materials. Chin J Nat Med 2018; 15:721-731. [PMID: 29103457 DOI: 10.1016/s1875-5364(17)30103-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Phenolic compounds, the most abundant secondary metabolites in plants, have received more and more attention in recent years because of their distinct bioactivities. This review summarizes different types of phenolic compounds and their extraction and analytical methods used in the recent reports, involving 59 phenolic compounds from 52 kinds of plants. The extraction methods include solid-liquid extraction, ultrasound-assisted extractions, microwave-assisted extractions, supercritical fluid extraction, and other methods. The analysis methods include spectrophotometry, gas chromatography, liquid chromatography, thin-layer chromatography, capillary electrophoresis, and near-infrared spectroscopy. After illustrating the specific conditions of the analytical methods, the advantages and disadvantages of each method are also summarized, pointing out their respective suitability. This review provides valuable reference for identification and/or quantification of phenolic compounds from natural products.
Collapse
Affiliation(s)
- Cong-Cong Xu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Qiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Sheng Tao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
95
|
Cornelis MC, Erlund I, Michelotti GA, Herder C, Westerhuis JA, Tuomilehto J. Metabolomic response to coffee consumption: application to a three-stage clinical trial. J Intern Med 2018; 283:544-557. [PMID: 29381822 DOI: 10.1111/joim.12737] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coffee is widely consumed and contains many bioactive compounds, any of which may impact pathways related to disease development. OBJECTIVE To identify individual metabolite changes in response to coffee. METHODS We profiled the metabolome of fasting serum samples collected from a previously reported single-blinded, three-stage clinical trial. Forty-seven habitual coffee consumers refrained from drinking coffee for 1 month, consumed four cups of coffee/day in the second month and eight cups/day in the third month. Samples collected after each coffee stage were subject to nontargeted metabolomic profiling using UPLC-ESI-MS/MS. A total of 733 metabolites were included for univariate and multivariate analyses. RESULTS A total of 115 metabolites were significantly associated with coffee intake (P < 0.05 and Q < 0.05). Eighty-two were of known identity and mapped to one of 33 predefined biological pathways. We observed a significant enrichment of metabolite members of five pathways (P < 0.05): (i) xanthine metabolism: includes caffeine metabolites, (ii) benzoate metabolism: reflects polyphenol metabolite products of gut microbiota metabolism, (iii) steroid: novel but may reflect phytosterol content of coffee, (iv) fatty acid metabolism (acylcholine): novel link to coffee and (v) endocannabinoid: novel link to coffee. CONCLUSIONS The novel metabolites and candidate pathways we have identified may provide new insight into the mechanisms by which coffee may be exerting its health effects.
Collapse
Affiliation(s)
- M C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - I Erlund
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | - C Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - J A Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University, Potchefstroom, South Africa
| | - J Tuomilehto
- Dasman Diabetes Institute, Dasman, Kuwait.,Department of Neuroscience and Preventive Medicine, Danube-University Krems, Krems, Austria.,Disease Risk Unit, National Institute for Health and Welfare, Helsinki, Finland.,Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
96
|
Thilakarathna WPDW, Langille MGI, Rupasinghe HPV. Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Lee JY. Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Arch Pharm Res 2018; 41:243-250. [DOI: 10.1007/s12272-018-1006-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
|
98
|
Chen Y, Xiao S, Gong Z, Zhu X, Yang Q, Li Y, Gao S, Dong Y, Shi Z, Wang Y, Weng X, Li Q, Cai W, Qiang W. Wuji Wan Formula Ameliorates Diarrhea and Disordered Colonic Motility in Post-inflammation Irritable Bowel Syndrome Rats by Modulating the Gut Microbiota. Front Microbiol 2017; 8:2307. [PMID: 29218037 PMCID: PMC5703868 DOI: 10.3389/fmicb.2017.02307] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/08/2017] [Indexed: 01/30/2023] Open
Abstract
Emerging evidence suggests that gut microbiota contribute to the treatment of post-inflammatory irritable bowel syndrome (PI-IBS). Our previous studies have demonstrated that a Chinese formula, Wuji Wan, has the ability to mitigate abdominal pain and diarrhea in PI-IBS rats. However, little is known about the underlying mechanism and whether the gut microbiota mediate the effect of Wuji Wan on PI-IBS. Thus, the aim of this study was to determine whether Wuji Wan mitigated PI-IBS by modifying the gut microbiota. PI-IBS was induced in Sprague-Dawley rats by enema using 4% acetic acid and restraint stress. Rats were fed water, Wuji Wan extract (630 mg/kg) or pinaverium bromide (13.5 mg/kg). Our data showed that Wuji Wan effectively ameliorated abdominal pain, colonic motility abnormality and visceral hypersensitivity. Analysis of the fecal microbiota showed that Wuji Wan could reverse the reduction in richness of the gut microbiota and significantly increase the relative abundances of Akkermansia, Bacteroides, and Parasutterella; however, Lactobacillus and Prevotella were markedly decreased in the PI-IBS rats. Moreover, Wuji Wan promoted goblet cell proliferation in the colonic mucosa by increasing the release of mucin, up-regulating the distribution of tight junction proteins Occludin and ZO-1 and down-regulating the expression of MLCK in colonic epithelial cells. These findings suggest that Wuji Wan may remit IBS by modulating the gut microbiota and stabilizing the gut mucosal barrier, indicating that the use of a classical formula of Traditional Chinese Medicine (TCM) that exhibits a prebiotic effect may be a promising strategy for PI-IBS treatment.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zipeng Gong
- Provincial Key Laboratory of Pharmaceutics in Guizhou Province, School of Pharmacy, Guiyang Medical University, Guiyang, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Dong
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhe Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijie Qiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
99
|
Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 2017; 7:10322. [PMID: 28871143 PMCID: PMC5583244 DOI: 10.1038/s41598-017-10835-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic constipation is a prevalent functional gastrointestinal disorder accompanied with intestinal dysbiosis. However, causal relationship between dysbiosis and constipation remains poorly understood. Serotonin transporter (SERT) is a transmembrane transport protein which re-uptakes excessive 5-hydroxytryptamine (5-HT) from effective location to terminate its physiological effects and involves in regulating gastrointestinal motility. In this study, fecal microbiota from patients with constipation and healthy controls were transplanted into the antibiotic depletion mice model. The mice which received fecal microbiota from patients with constipation presented a reducing in intestinal peristalsis and abnormal defecation parameters including the frequency of pellet expulsion, fecal weight and fecal water content. After fecal microbiota transplantation, the SERT expression in the colonic tissue was significantly upregulated, and the content of 5-HT was decreased which negatively correlated with the gastrointestinal transit time. Moverover, fecal microbiota from the mice which received fecal microbiota from patients with constipation also upregulated SERT in Caco-2 cells. Besides, this process accompanied with the decreased abundance of Clostridium, Lactobacillus, Desulfovibrio, and Methylobacterium and an increased tend of Bacteroides and Akkermansia, which also involved in the impairment of intestinal barrier after FMT. Taken together, intestinal dysbiosis may upregulate the SERT expression and contribute to the development of chronic constipation.
Collapse
|
100
|
Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicol Lett 2017; 279:87-95. [PMID: 28778519 DOI: 10.1016/j.toxlet.2017.07.904] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
Abstract
Carrageenan as a food additive has been used for years. However, controversy exists regarding to the safety of carrageenan and accumulating evidence indicates that it could induce colitis in experimental models. Here, to provide more information on this issue and solve the debate, we studied and compared in detail the toxic effects of different isomers of carrageenan (κ-, ι-, and λ-) on the colon of C57BL/6J mice. Interestingly, all isomers of carrageenan were found to induce colitis with a comparable activity. Given that carrageenan is unabsorbed after oral administration, and also in light of the fact that gut microbiota plays a pivotal role in the pathogenesis of colitis, we further investigated the effect of carrageenan on gut microbiota using high-throughput sequencing. Intriguingly, carrageenan-induced colitis was observed to be robustly correlated with changes in the composition of gut microbiota. Specifically, all carrageenans significantly decreased the abundance of a potent anti-inflammatory bacterium, Akkermansia muciniphila, in the gut, which is highly relevant for understanding the toxic effect of carrageenan. Altogether, our results corroborate previous studies demonstrating harmful gastrointestinal effect of carrageenan and, from a gut microbiota perspective, shed new light into the mechanism by which carrageenan induces colitis in experimental animals.
Collapse
|