51
|
Hahn C, Lee CU. A Brief Review of Paradigm Shifts in Prevention of Alzheimer's Disease: From Cognitive Reserve to Precision Medicine. Front Psychiatry 2019; 10:786. [PMID: 31736804 PMCID: PMC6837073 DOI: 10.3389/fpsyt.2019.00786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) and related dementias can be an enormous economic burden for taxpayers, patients, their families, medical systems, and society as a whole. Since disease-modifying treatments have failed, several studies have instead focused on a paradigm shift for preventing and treating AD. A higher cognitive reserve (e.g., greater education, occupational attainment, or more leisure activities) is associated with protection against disease-related cognitive decline. Precision medicine aims to optimize the effectiveness of disease prevention and treatment by considering specific biological components of individuals. We suggest that research into cognitive reserve and precision medicine could be a key to overcoming the limitations of traditional approaches to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Changtae Hahn
- Department of Psychiatry, Deajeon Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
52
|
Nikolac Perkovic M, Pivac N. Genetic Markers of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:27-52. [PMID: 31705489 DOI: 10.1007/978-981-32-9721-0_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is a complex and heterogeneous, severe neurodegenerative disorder and the predominant form of dementia, characterized by cognitive disturbances, behavioral and psychotic symptoms, progressive cognitive decline, disorientation, behavioral changes, and death. Genetic background of Alzheimer's disease differs between early-onset familial Alzheimer's disease, other cases of early-onset Alzheimer's disease, and late-onset Alzheimer's disease. Rare cases of early-onset familial Alzheimer's diseases are caused by high-penetrant mutations in genes coding for amyloid precursor protein, presenilin 1, and presenilin 2. Late-onset Alzheimer's disease is multifactorial and associated with many different genetic risk loci (>20), with the apolipoprotein E ε4 allele being a major genetic risk factor for late-onset Alzheimer's disease. Genetic and genomic studies offer insight into many additional genetic risk loci involved in the genetically complex nature of late-onset Alzheimer's disease. This review highlights the contributions of individual loci to the pathogenesis of Alzheimer's disease and suggests that their exact contribution is still not clear. Therefore, the use of genetic markers of Alzheimer's disease, for monitoring development, time course, treatment response, and prognosis of Alzheimer's disease, is still far away from the clinical application, because the contribution of genetic variations to the relative risk of developing Alzheimer's disease is limited. In the light of prediction and prevention of Alzheimer's disease, a novel approach could be found in the form of additive genetic risk scores, which combine additive effects of numerous susceptibility loci.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia.
| |
Collapse
|
53
|
Galvin JE. Advancing personalized treatment of Alzheimer's disease: a call for the N-of-1 trial design. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2018-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has not been a new treatment for Alzheimer's disease (AD) for over a decade, with a large number of Phase II/III randomized clinical trials failing. Randomized clinical trials examine group effects that may be difficult to extrapolate to the individual patient given the multifactorial pathogenic processes associated with AD, and are increasingly long in duration, expensive to run, requiring large sample sizes that are difficult to recruit. An alternative approach is to consider N-of-1 trial designs. The N-of-1 trial is ideal to evaluate effectiveness of interventions for chronic conditions combining the rigor of a randomized trial with the tailoring of therapy to an individual. This review examines the N-of-1 design, its benefits and limitations, and how it could be implemented to investigate new therapies for AD.
Collapse
Affiliation(s)
- James E Galvin
- Comprehensive Center for Brain Health, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road ME-104, Rm 102 Boca Raton, FL 33431, USA
| |
Collapse
|
54
|
Zhang S, Wang Y, Gu Y, Zhu J, Ci C, Guo Z, Chen C, Wei Y, Lv W, Liu H, Zhang D, Zhang Y. Specific breast cancer prognosis-subtype distinctions based on DNA methylation patterns. Mol Oncol 2018; 12:1047-1060. [PMID: 29675884 PMCID: PMC6026876 DOI: 10.1002/1878-0261.12309] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Tumour heterogeneity is an obstacle to effective breast cancer diagnosis and therapy. DNA methylation is an important regulator of gene expression, thus characterizing tumour heterogeneity by epigenetic features can be clinically informative. In this study, we explored specific prognosis-subtypes based on DNA methylation status using 669 breast cancers from the TCGA database. Nine subgroups were distinguished by consensus clustering using 3869 CpGs that significantly influenced survival. The specific DNA methylation patterns were reflected by different races, ages, tumour stages, receptor status, histological types, metastasis status and prognosis. Compared with the PAM50 subtypes, which use gene expression clustering, DNA methylation subtypes were more elaborate and classified the Basal-like subtype into two different prognosis-subgroups. Additionally, 1252 CpGs (corresponding to 888 genes) were identified as specific hyper/hypomethylation sites for each specific subgroup. Finally, a prognosis model based on Bayesian network classification was constructed and used to classify the test set into DNA methylation subgroups, which corresponded to the classification results of the train set. These specific classifications by DNA methylation can explain the heterogeneity of previous molecular subgroups in breast cancer and will help in the development of personalized treatments for the new specific subtypes.
Collapse
Affiliation(s)
- Shumei Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yihan Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yue Gu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Jiang Zhu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Ce Ci
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Zhongfu Guo
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityChina
| | - Chuangeng Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yanjun Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Wenhua Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Hongbo Liu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Dongwei Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityChina
| | - Yan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| |
Collapse
|
55
|
Freudenberg-Hua Y, Li W, Davies P. The Role of Genetics in Advancing Precision Medicine for Alzheimer's Disease-A Narrative Review. Front Med (Lausanne) 2018; 5:108. [PMID: 29740579 PMCID: PMC5928202 DOI: 10.3389/fmed.2018.00108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which has a substantial genetic component. AD affects predominantly older people. Accordingly, the prevalence of dementia has been rising as the population ages. To date, there are no effective interventions that can cure or halt the progression of AD. The only available treatments are the management of certain symptoms and consequences of dementia. The current state-of-the-art medical care for AD comprises three simple principles: prevent the preventable, achieve early diagnosis, and manage the manageable symptoms. This review provides a summary of the current state of knowledge of risk factors for AD, biological diagnostic testing, and prospects for treatment. Special emphasis is given to recent advances in genetics of AD and the way genomic data may support prevention, early intervention, and development of effective pharmacological treatments. Mutations in the APP, PSEN1, and PSEN2 genes cause early onset Alzheimer's disease (EOAD) that follows a Mendelian inheritance pattern. For late onset Alzheimer's disease (LOAD), APOE4 was identified as a major risk allele more than two decades ago. Population-based genome-wide association studies of late onset AD have now additionally identified common variants at roughly 30 genetic loci. Furthermore, rare variants (allele frequency <1%) that influence the risk for LOAD have been identified in several genes. These genetic advances have broadened our insights into the biological underpinnings of AD. Moreover, the known genetic risk variants could be used to identify presymptomatic individuals at risk for AD and support diagnostic assessment of symptomatic subjects. Genetic knowledge may also facilitate precision medicine. The goal of precision medicine is to use biological knowledge and other health information to predict individual disease risk, understand disease etiology, identify disease subcategories, improve diagnosis, and provide personalized treatment strategies. We discuss the potential role of genetics in advancing precision medicine for AD along with its ethical challenges. We outline strategies to implement genomics into translational clinical research that will not only improve accuracy of dementia diagnosis, thus enabling more personalized treatment strategies, but may also speed up the discovery of novel drugs and interventions.
Collapse
Affiliation(s)
- Yun Freudenberg-Hua
- Litwin-Zucker Center for the study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
| | - Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter Davies
- Litwin-Zucker Center for the study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
56
|
Abstract
Alzheimer's disease (AD), the main form of dementia in the elderly, is the most common progressive neurodegenerative disease characterized by rapidly progressive cognitive dysfunction and behavior impairment. AD exhibits a considerable heritability and great advances have been made in approaches to searching the genetic etiology of AD. In AD genetic studies, methods have developed from classic linkage-based and candidate-gene-based association studies to genome-wide association studies (GWAS) and next generation sequencing (NGS). The identification of new susceptibility genes has provided deeper insights to understand the mechanisms underlying AD. In addition to searching novel genes associated with AD in large samples, the NGS technologies can also be used to shed light on the 'black matter' discovery even in smaller samples. The shift in AD genetics between traditional studies and individual sequencing will allow biomaterials of each patient as the central unit of genetic studies. This review will cover genetic findings in AD and consequences of AD genetic findings. Firstly, we will discuss the discovery of mutations in APP, PSEN1, PSEN2, APOE, and ADAM10. Then we will summarize and evaluate the information obtained from GWAS of AD. Finally, we will outline the efforts to identify rare variants associated with AD using NGS.
Collapse
|
57
|
Alzheimer's disease biomarker-guided diagnostic workflow using the added value of six combined cerebrospinal fluid candidates: Aβ 1-42, total-tau, phosphorylated-tau, NFL, neurogranin, and YKL-40. Alzheimers Dement 2018; 14:492-501. [PMID: 29328927 DOI: 10.1016/j.jalz.2017.11.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/29/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The diagnostic and classificatory performances of all combinations of three core (amyloid β peptide [i.e., Aβ1-42], total tau [t-tau], and phosphorylated tau) and three novel (neurofilament light chain protein, neurogranin, and YKL-40) cerebrospinal fluid biomarkers of neurodegeneration were compared among individuals with mild cognitive impairment (n = 41), Alzheimer's disease dementia (ADD; n = 35), frontotemporal dementia (FTD; n = 9), and cognitively healthy controls (HC; n = 21), using 10-fold cross-validation. METHODS The combinations ranking in the top 10 according to diagnostic accuracy in differentiating between distinct diagnostic categories were identified. RESULTS The single biomarkers or biomarker combinations generating the best area under the receiver operating characteristics (AUROCs) were the following: the combination [amyloid β peptide + phosphorylated tau + neurofilament light chain] for distinguishing between ADD patients and HC (AUROC = 0.86), t-tau for distinguishing between ADD and FTD patients (AUROC = 0.82), and t-tau for distinguishing between FTD patients and HC (AUROC = 0.78). CONCLUSIONS Novel and established cerebrospinal fluid markers perform with at least fair accuracy in the discrimination between ADD and FTD. The classification of mild cognitive impairment individuals was poor.
Collapse
|
58
|
Castrillo JI, Lista S, Hampel H, Ritchie CW. Systems Biology Methods for Alzheimer’s Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods Mol Biol 2018; 1750:31-66. [PMID: 29512064 DOI: 10.1007/978-1-4939-7704-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
59
|
Baldacci F, Lista S, O'Bryant SE, Ceravolo R, Toschi N, Hampel H. Blood-Based Biomarker Screening with Agnostic Biological Definitions for an Accurate Diagnosis Within the Dimensional Spectrum of Neurodegenerative Diseases. Methods Mol Biol 2018; 1750:139-155. [PMID: 29512070 DOI: 10.1007/978-1-4939-7704-8_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery, development, and validation of novel candidate biomarkers in Alzheimer's disease (AD) and other neurodegenerative diseases (NDs) are increasingly gaining momentum. As a result, evolving diagnostic research criteria of NDs are beginning to integrate biofluid and neuroimaging indicators of pathophysiological mechanisms. More than 10% of people aged over 65 suffer from NDs. There is an urgent need for a refined two-stage diagnostic model to first initiate an early, sensitive, and noninvasive process in primary care settings. Individuals that meet detection criteria will then be channeled to more specific, costly (positron-emission tomography), and invasive (cerebrospinal fluid) assessment methods for confirmatory biological characterization and diagnosis.A reliable and sensitive blood test for AD and other NDs is not yet established; however, it would provide the golden screening gate for an efficient primary care management. A limitation to the development of a large-scale blood-screening biomarker-based test is the traditional application of clinically descriptive criteria for the categorization of single late-stage ND constructs. These are genetically and biologically heterogeneous, reflected in multiple pathophysiological mechanisms and subsequent pathologies throughout a dimensional continuum. Evidence suggests that a shared, "open-source" integrated multilevel categorization of NDs that clusters individuals based on descriptive clinical phenotypes and pathophysiological biomarker signatures will provide the next incremental step toward an improved diagnostic process of NDs. This intermediate objective toward unbiased biomarker-guided early detection of individuals at risk for NDs is currently carried out by the international pilot Alzheimer Precision Medicine Initiative Cohort Program (APMI-CP).
Collapse
Affiliation(s)
- Filippo Baldacci
- AXA Research Fund & UPMC Chair, F-75013, Paris, France.,Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France.,Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France. .,Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France. .,Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France. .,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France.
| | - Sid E O'Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology"Athinoula A. Martinos", Center for Biomedical Imaging, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France.,Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France.,Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | | |
Collapse
|
60
|
Ramanan VK, Przybelski SA, Graff-Radford J, Castillo AM, Lowe VJ, Mielke MM, Roberts RO, Reid RI, Knopman DS, Jack CR, Petersen RC, Vemuri P. Statins and Brain Health: Alzheimer's Disease and Cerebrovascular Disease Biomarkers in Older Adults. J Alzheimers Dis 2018; 65:1345-1352. [PMID: 30149450 PMCID: PMC6260813 DOI: 10.3233/jad-180446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Statins have been proposed to reduce the risk of Alzheimer's disease (AD). OBJECTIVE Assess whether long-term statin use was associated with neuroimaging biomarkers of aging and dementia. METHODS Methods: We analyzed neuroimaging biomarkers in 1,160 individuals aged 65+ from the Mayo Clinic Study of Aging, a population-based prospective longitudinal study of cognitive aging. RESULTS Statin-treated (5+ years of therapy) individuals had greater burden of mid-and late-life cardiovascular disease (p < 0.001) than statin-untreated (≤3 months) individuals. Lower fractional anisotropy in the genu of the corpus callosum, an early marker of cerebrovascular disease, was associated with long-term statin exposure (p < 0.035). No significant associations were identified between long-term statin exposure and cerebral amyloid or tau burden, AD pattern neurodegeneration, or white matter hyperintensity burden. CONCLUSIONS Long-term statin therapy was not associated with differences in AD biomarkers. Individuals with long-term statin exposure had worse white matter integrity in the genu of the corpus callosum, consistent with the coexistence of higher cerebrovascular risk factor burden in this group.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Scott A. Przybelski
- Department of Health Sciences Research, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | | | - Anna M. Castillo
- Department of Health Sciences Research, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Rosebud O. Roberts
- Department of Neurology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Robert I. Reid
- Department of Information Technology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - David S. Knopman
- Department of Neurology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Rochester, Rochester, Minnesota, 55905, USA
| |
Collapse
|
61
|
Alexopoulos P, Roesler J, Werle L, Thierjung N, Lentzari I, Ortner M, Grimmer T, Laskaris N, Politis A, Gourzis P, Kurz A, Perneczky R. Fluid biomarker agreement and interrelation in dementia due to Alzheimer’s disease. J Neural Transm (Vienna) 2017; 125:193-201. [DOI: 10.1007/s00702-017-1810-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
|
62
|
Abstract
Alzheimer's disease (AD) affects more than 5 million Americans, with substantial consequences for individuals with AD, families, and society in terms of morbidity, mortality, and healthcare costs. With disease-modifying treatment trials unsuccessful at the present time and only medications to treat symptoms available, an emerging approach is prevention. Advances in diagnostic criteria, biomarker development, and greater understanding of the biophysiological basis of AD make these initiatives feasible. Ongoing pharmacological trials using anti-amyloid therapies are underway in sporadic and genetic forms of AD, although a large number of modifiable risk factors for AD have been identified in observational studies, many of which do not appear to exert effects through amyloid or tau. This suggests that prevention studies focusing on risk reduction and lifestyle modification may offer additional benefits. Rather than relying solely on large-sample, long-duration, randomized clinical trial designs, a precision medicine approach using N-of-1 trials may provide more-rapid information on whether personalized prevention plans can improve person-centered outcomes. Because there appear to be multiple pathways to developing AD, there may also be multiple ways to prevent or delay the onset of AD. Even if these precision approaches alone are not successful in preventing AD, they may greatly improve the likelihood of amyloid- or tau-specific therapies to reach their endpoints by reducing comorbidities. Keeping this in mind, dementia may be a disorder that develops over a lifetime, with individualized ways to build a better brain as we age.
Collapse
Affiliation(s)
- James E Galvin
- Comprehensive Center for Brain Health, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
63
|
Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteomics 2017; 14:285-299. [DOI: 10.1080/14789450.2017.1304217] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Simone Lista
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| |
Collapse
|
64
|
Baldacci F, Lista S, Garaci F, Bonuccelli U, Toschi N, Hampel H. Biomarker-guided classification scheme of neurodegenerative diseases. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:383-387. [PMID: 30356557 PMCID: PMC6188916 DOI: 10.1016/j.jshs.2016.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 06/07/2023]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
- Institute of Memory and Alzheimer's Disease (IM2A), Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière Hospital, Paris 75651, France
- Sorbonne Universities, Pierre and Marie Curie University, Paris VI, Paris 75005, France
| | - Simone Lista
- AXA Research Fund and Pierre and Marie Curie University Chair, Paris 75005, France
- IHU-A-ICM—Paris Institute of Translational Neuroscience, Pitié-Salpêtrière Hospital, Paris 75651, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome 00173, Italy
- San Raffaele Cassino Nursing Home, Cassino (FR) 03043, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome 00173, Italy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129 MA, USA
| | - Harald Hampel
- Institute of Memory and Alzheimer's Disease (IM2A), Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière Hospital, Paris 75651, France
- Sorbonne Universities, Pierre and Marie Curie University, Paris VI, Paris 75005, France
- AXA Research Fund and Pierre and Marie Curie University Chair, Paris 75005, France
| |
Collapse
|
65
|
Hampel H, O'Bryant SE, Castrillo JI, Ritchie C, Rojkova K, Broich K, Benda N, Nisticò R, Frank RA, Dubois B, Escott-Price V, Lista S. PRECISION MEDICINE - The Golden Gate for Detection, Treatment and Prevention of Alzheimer's Disease. J Prev Alzheimers Dis 2016; 3:243-259. [PMID: 28344933 PMCID: PMC5363725 DOI: 10.14283/jpad.2016.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During this decade, breakthrough conceptual shifts have commenced to emerge in the field of Alzheimer's disease (AD) recognizing risk factors and the non-linear dynamic continuum of complex pathophysiologies amongst a wide dimensional spectrum of multi-factorial brain proteinopathies/neurodegenerative diseases. As is the case in most fields of medicine, substantial advancements in detecting, treating and preventing AD will likely evolve from the generation and implementation of a systematic precision medicine strategy. This approach will likely be based on the success found from more advanced research fields, such as oncology. Precision medicine will require integration and transfertilization across fragmented specialities of medicine and direct reintegration of Neuroscience, Neurology and Psychiatry into a continuum of medical sciences away from the silo approach. Precision medicine is biomarker-guided medicine on systems-levels that takes into account methodological advancements and discoveries of the comprehensive pathophysiological profiles of complex multi-factorial neurodegenerative diseases, such as late-onset sporadic AD. This will allow identifying and characterizing the disease processes at the asymptomatic preclinical stage, where pathophysiological and topographical abnormalities precede overt clinical symptoms by many years to decades. In this respect, the uncharted territory of the AD preclinical stage has become a major research challenge as the field postulates that early biomarker guided customized interventions may offer the best chance of therapeutic success. Clarification and practical operationalization is needed for comprehensive dissection and classification of interacting and converging disease mechanisms, description of genomic and epigenetic drivers, natural history trajectories through space and time, surrogate biomarkers and indicators of risk and progression, as well as considerations about the regulatory, ethical, political and societal consequences of early detection at asymptomatic stages. In this scenario, the integrated roles of genome sequencing, investigations of comprehensive fluid-based biomarkers and multimodal neuroimaging will be of key importance for the identification of distinct molecular mechanisms and signaling pathways in subsets of asymptomatic people at greatest risk for progression to clinical milestones due to those specific pathways. The precision medicine strategy facilitates a paradigm shift in Neuroscience and AD research and development away from the classical "one-size-fits-all" approach in drug discovery towards biomarker guided "molecularly" tailored therapy for truly effective treatment and prevention options. After the long and winding decade of failed therapy trials progress towards the holistic systems-based strategy of precision medicine may finally turn into the new age of scientific and medical success curbing the global AD epidemic.
Collapse
Affiliation(s)
- H Hampel
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - S E O'Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX USA
| | - J I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain
| | - C Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Rojkova
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - K Broich
- President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - N Benda
- Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - R Nisticò
- Department of Biology, University of Rome "Tor Vergata" & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - R A Frank
- Siemens Healthineers North America, Siemens Medical Solutions USA, Inc, Malvern, PA, USA
| | - B Dubois
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - V Escott-Price
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - S Lista
- AXA Research Fund & UPMC Chair, Paris, France; IHU-A-ICM - Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
66
|
Leyhe T, Reynolds CF, Melcher T, Linnemann C, Klöppel S, Blennow K, Zetterberg H, Dubois B, Lista S, Hampel H. A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimers Dement 2016; 13:59-71. [PMID: 27693188 DOI: 10.1016/j.jalz.2016.08.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Thomas Leyhe
- Center of Old Age Psychiatry Psychiatric University Hospital Basel Switzerland
| | - Charles F. Reynolds
- Western Psychiatric Institute and Clinic, Department of Psychiatry University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Tobias Melcher
- Center of Old Age Psychiatry Psychiatric University Hospital Basel Switzerland
| | - Christoph Linnemann
- Center of Old Age Psychiatry Psychiatric University Hospital Basel Switzerland
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Center for Geriatric Medicine and Gerontology, Department of Neurology University Medical Center Freiburg Freiburg Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- University College London Institute of Neurology London UK
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié‐Salpêtrière Paris France
| | - Simone Lista
- IHU‐A‐ICM—Paris Institute of Translational Neurosciences Pitié‐Salpêtrière University Hospital Paris France
- AXA Research Fund & UPMC Chair Paris France
| | - Harald Hampel
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié‐Salpêtrière Paris France
- AXA Research Fund & UPMC Chair Paris France
| |
Collapse
|
67
|
Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother 2016; 17:47-57. [DOI: 10.1080/14737175.2016.1204234] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France
- IHU-A-ICM – Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France
- Department of Neurology, Sorbonne Universities, Institute of Memory and Alzheimer’s Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Pitié-Salpêtrière University Hospital, Pierre and Marie Curie University, Paris 06, Paris, France
| |
Collapse
|