51
|
Moschetti G, Amodeo G, Maftei D, Lattanzi R, Procacci P, Sartori P, Balboni G, Onnis V, Conte V, Panerai A, Sacerdote P, Franchi S. Targeting prokineticin system counteracts hypersensitivity, neuroinflammation, and tissue damage in a mouse model of bortezomib-induced peripheral neuropathy. J Neuroinflammation 2019; 16:89. [PMID: 30995914 PMCID: PMC6471808 DOI: 10.1186/s12974-019-1461-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuropathy is a dose-limiting side effect of many chemotherapeutics, including bortezomib. The mechanisms underlying this condition are not fully elucidated even if a contribution of neuroinflammation was suggested. Here, we investigated the role of a chemokine family, the prokineticins (PKs), in the development of bortezomib-induced peripheral neuropathy (BIPN), and we used a PK receptor antagonist to counteract the development and progression of the pathology. METHODS Neuropathy was induced in male C57BL/6J mice by using a protocol capable to induce a detectable neuropathic phenotype limiting systemic side effects. The presence of allodynia (both mechanical and thermal) and thermal hyperalgesia was monitored over time. Mice were sacrificed at two different time points: 14 and 28 days after the first bortezomib (BTZ) injection. At these times, PK system activation (PK2 and PK-Rs), macrophage and glial activation markers, and cytokine production were evaluated in the main station involved in pain transmission (sciatic nerve, DRG, and spinal cord), and the effect of a PK receptors antagonist (PC1) on the same behavioral and biochemical parameters was assessed. Structural damage of DRG during BTZ treatment and an eventual protective effect of PC1 were also evaluated. RESULTS BTZ induces in mice a dose-related allodynia and hyperalgesia and a progressive structural damage to the DRG. We observed a precocious increase of macrophage activation markers and unbalance of pro- and anti-inflammatory cytokines in sciatic nerve and DRG together with an upregulation of GFAP in the spinal cord. At higher BTZ cumulative dose PK2 and PK receptors are upregulated in the PNS and in the spinal cord. The therapeutic treatment with the PK-R antagonist PC1 counteracts the development of allodynia and hyperalgesia, ameliorates the structural damage in the PNS, decreases the levels of activated macrophage markers, and prevents full neuroimmune activation in the spinal cord. CONCLUSIONS PK system may be a strategical pharmacological target to counteract BTZ-induced peripheral neuropathy. Blocking PK2 activity reduces progressive BTZ toxicity in the DRG, reducing neuroinflammation and structural damage to DRG, and it may prevent spinal cord sensitization.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Daniela Maftei
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Alberto Panerai
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy.
| |
Collapse
|
52
|
Wu VM, Huynh E, Tang S, Uskoković V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 2019; 88:422-447. [PMID: 30711662 DOI: 10.1016/j.actbio.2019.01.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Abstract
Despite the advances in molecularly targeted therapies, delivery across the blood-brain barrier (BBB) and the targeting of brain tumors remains a challenge. Like brain, bone is a common site of metastasis and requires therapies capable of discerning the tumor from its healthy cellular milieu. To tackle these challenges, we made a variation on the previously proposed concept of the earthicle and fabricated an aqueous, surfactant-free ferrofluid containing superparamagnetic iron oxide nanoparticles (SPIONs) coated with silicate mesolayers and carbon shells, having 13 nm in size on average. Nanoparticles were synthesized hydrothermally and characterized using a range of spectroscopic, diffractometric, hydrodynamic and electron microscopy techniques. The double coating on SPIONs affected a number of physicochemical and biological properties, including colloidal stability and cancer targeting efficacy. Nanoparticles decreased the viability of glioblastoma and osteosarcoma cells and tumors more than that of their primary and non-transformed analogues. They showed a greater preference for cancer cells because of a higher rate of uptake by these cells and a pronounced adherence to cancer cell membrane. Even in an ultralow alternate magnetic field, nanoparticles generated sufficient heat to cause tumor death. Nanoparticles in MDCK-MDR1 BBB model caused mislocalization of claudin-1 at the tight junctions, underexpression of ZO-1 and no effect on occludin-1 and transepithelial resistance. Nanoparticles were detected in the basolateral compartments and examination of LAMP1 demonstrated that nanoparticles escaped the lysosome, traversed the BBB transcellularly and localized to the optic lobes of the third instar larval brains of Drosophila melanogaster. The passage was noninvasive and caused no adverse systemic effects to the animals. In conclusion, these nanoparticulate ferrofluids preferentially bind to cancer cells and, hence, exhibit a greater toxicity in these cells compared to the primary cells. They are also effective against solid tumors in vitro, can cross the BBB in Drosophila, and are nontoxic based on the developmental studies of flies raised in ferrofluid-infused media. STATEMENT OF SIGNIFICANCE: We demonstrate that a novel, hydrothermally synthesized composite nanoparticle-based ferrofluid is effective in reducing the viability of osteosarcoma and glioblastoma cells in vitro, while having minimal effects on primary cell lines. In 3D tumor spheroids, nanoparticles greatly reduced the metastatic migration of cancer cells, while the tumor viability was reduced compared to the control group by applying magnetic hyperthermia to nanoparticle-treated spheroids. Both in vitro and in vivo models of the blood-brain barrier evidence the ability of nanoparticles to cross the barrier and localize to the brain tissue. These composite nanoparticles show great promise as an anticancer biomaterial for the treatment of different types of cancer and may serve as an alternative or addendum to traditional chemotherapies.
Collapse
Affiliation(s)
- Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Eric Huynh
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA; Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA.
| |
Collapse
|
53
|
Kadiyala P, Li D, Nuñez FM, Altshuler D, Doherty R, Kuai R, Yu M, Kamran N, Edwards M, Moon JJ, Lowenstein PR, Castro MG, Schwendeman A. High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS NANO 2019; 13:1365-1384. [PMID: 30721028 PMCID: PMC6484828 DOI: 10.1021/acsnano.8b06842] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor, for which there is no cure. Treatment effectiveness for GBM has been limited due to tumor heterogeneity, an immunosuppressive tumor microenvironment (TME), and the presence of the blood-brain barrier, which hampers the transport of chemotherapeutic compounds to the central nervous system (CNS). High-density lipoprotein (HDL)-mimicking nanodiscs hold considerable promise to achieve delivery of bioactive compounds into tumors. Herein, we tested the ability of synthetic HDL nanodiscs to deliver chemotherapeutic agents to the GBM microenvironment and elicit tumor regression. To this end, we developed chemo-immunotherapy delivery vehicles based on sHDL nanodiscs loaded with CpG, a Toll-like receptor 9 (TLR9) agonist, together with docetaxel (DTX), a chemotherapeutic agent, for targeting GBM. Our data show that delivery of DTX-sHDL-CpG nanodiscs into the tumor mass elicited tumor regression and antitumor CD8+ T cell responses in the brain TME. We did not observe any overt off-target side effects. Furthermore, the combination of DTX-sHDL-CpG treatment with radiation (IR), which is the standard of care for GBM, resulted in tumor regression and long-term survival in 80% of GBM-bearing animals. Mice remained tumor-free upon tumor cell rechallenge in the contralateral hemisphere, indicating the development of anti-GBM immunological memory. Collectively, these data indicate that sHDL nanodiscs constitute an effective drug delivery platform for the treatment of GBM, resulting in tumor regression, long-term survival, and immunological memory when used in combination with IR. The proposed delivery platform has significant potential for clinical translation.
Collapse
Affiliation(s)
- Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fernando M. Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David Altshuler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marta Edwards
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Lead Contacts
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Lead Contacts
| |
Collapse
|
54
|
Rusiecka I, Ruczyński J, Kozłowska A, Backtrog E, Mucha P, Kocić I, Rekowski P. TP10-Dopamine Conjugate as a Potential Therapeutic Agent in the Treatment of Parkinson's Disease. Bioconjug Chem 2019; 30:760-774. [PMID: 30653302 DOI: 10.1021/acs.bioconjchem.8b00894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder for which the current treatment is not fully satisfactory. One of the major drawbacks of current PD therapy is poor penetration of drugs across the blood-brain barrier (BBB). In recent years, cell-penetrating peptides (CPPs) such as Tat, SynB, or TP10 have gained great interest due to their ability to penetrate cell membranes and to deliver different cargos to their targets including the central nervous system (CNS). However, there is no data with respect to the use of CPPs as drug carriers to the brain for the treatment of PD. In the presented research, the covalent TP10-dopamine conjugate was synthesized and its pharmacological properties were characterized in terms of its ability to penetrate the BBB and anti-parkinsonian activity. The results showed that dopamine (DA) in the form of a conjugate with TP10 evidently gained access to the brain tissue, exhibited low susceptibility to O-methylation reaction by catechol- O-methyltransferase (lower than that of DA), possessed a relatively high affinity to both dopamine D1 and D2 receptors (in the case of D1, a much higher than that of DA), and showed anti-parkinsonian activity (higher than that of l-DOPA) in the MPTP-induced preclinical animal model of PD. The presented results prove that the conjugation of TP10 with DA may be a good starting point for the development of a new strategy for the treatment of PD.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Jarosław Ruczyński
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ewelina Backtrog
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Piotr Mucha
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ivan Kocić
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Piotr Rekowski
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| |
Collapse
|
55
|
Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019; 48:2967-3014. [DOI: 10.1039/c8cs00805a] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advancements, perspectives, and challenges in blood–brain-barrier (BBB)-crossing nanotechnology for effective brain tumor delivery and highly efficient brain cancer theranostics.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Liming Deng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| |
Collapse
|
56
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
57
|
Zhang Y, Zhang L, Hu Y, Jiang K, Li Z, Lin YZ, Wei G, Lu W. Cell-permeable NF-κB inhibitor-conjugated liposomes for treatment of glioma. J Control Release 2018; 289:102-113. [DOI: 10.1016/j.jconrel.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
|
58
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
59
|
Toccaceli G, Delfini R, Colonnese C, Raco A, Peschillo S. Emerging Strategies and Future Perspective in Neuro-Oncology Using Transcranial Focused Ultrasonography Technology. World Neurosurg 2018; 117:84-91. [DOI: 10.1016/j.wneu.2018.05.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
|
60
|
Costa Nunes F, Silva LB, Winter E, Silva AH, de Melo LJ, Rode M, Martins MAP, Zanatta N, Feitosa SC, Bonacorso HG, Creczynski-Pasa TB. Tacrine derivatives stimulate human glioma SF295 cell death and alter important proteins related to disease development: An old drug for new targets. Biochim Biophys Acta Gen Subj 2018; 1862:1527-1536. [DOI: 10.1016/j.bbagen.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
|
61
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
62
|
Liu L, Yang J, Men K, He Z, Luo M, Qian Z, Wei X, Wei Y. Current Status of Nonviral Vectors for Gene Therapy in China. Hum Gene Ther 2018; 29:110-120. [PMID: 29320893 DOI: 10.1089/hum.2017.226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Li Liu
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jingyun Yang
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ke Men
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyao He
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Min Luo
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyong Qian
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Xiawei Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yuquan Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|
63
|
Umans RA, Sontheimer H. Combating malignant astrocytes: Strategies mitigating tumor invasion. Neurosci Res 2018; 126:22-30. [PMID: 29054465 PMCID: PMC6880651 DOI: 10.1016/j.neures.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Malignant gliomas are glial-derived, primary brain tumors that carry poor prognosis. Existing therapeutics are largely ineffective and dramatically affect quality of life. The standard of care details a taxing combination of surgical resection, radiation of the resection cavity, and temozolomide (TMZ) chemotherapy, with treatment extending life by only an average of months (Maher et al., 2001; Stupp et al., 2005). Despite scientific and technological advancement, surgery remains the most important treatment modality. Therapeutic obstacles include xenobiotic protection conveyed by the blood-brain barrier (Zhang et al., 2015), invasiveness and therapeutic resistance of tumor cell populations (Bao et al., 2006), and distinctive attributes of secondary glioma occurrence (Ohgaki and Kleihues, 2013). While these brain malignancies can be classified by grade or grouped by molecular subclass, each tumor presents itself as its own complication. Based on all of these obstacles, new therapeutic approaches are urgently needed. These will likely emerge from numerous exciting studies of glioma biology that are ongoing and reviewed here. These show unexpected roles for ion channels, amino-acid transporters, and connexin gap junctions in supporting the invasive growth of gliomas. These studies have identified a number of proteins that may be targeted for therapy in the future.
Collapse
Affiliation(s)
- Robyn A Umans
- Center for Glial Biology in Health and Disease, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Harald Sontheimer
- Center for Glial Biology in Health and Disease, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
64
|
Wang S, Zhao C, Liu P, Wang Z, Ding J, Zhou W. Facile construction of dual-targeting delivery system by using lipid capped polymer nanoparticles for anti-glioma therapy. RSC Adv 2018. [DOI: 10.1039/c7ra12376k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A facile and reliable platform to construct dual targeting nanoparticles for glioma treatment, and the targeting efficiency was demonstrated.
Collapse
Affiliation(s)
- Shengfeng Wang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
- Department of Pharmacy
| | - Chuantong Zhao
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Peng Liu
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Zhe Wang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
65
|
Sun C, Ding Y, Zhou L, Shi D, Sun L, Webster TJ, Shen Y. Noninvasive nanoparticle strategies for brain tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2605-2621. [DOI: 10.1016/j.nano.2017.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
|
66
|
Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. INTERNATIONAL NANO LETTERS 2017. [DOI: 10.1007/s40089-017-0208-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
67
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
68
|
Lapin DH, Tsoli M, Ziegler DS. Genomic Insights into Diffuse Intrinsic Pontine Glioma. Front Oncol 2017; 7:57. [PMID: 28401062 PMCID: PMC5368268 DOI: 10.3389/fonc.2017.00057] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor with a peak incidence in middle childhood and a median survival of less than 1 year. The dismal prognosis associated with DIPG has been exacerbated by the failure of over 250 clinical trials to meaningfully improve survival compared with radiotherapy, the current standard of care. The traditional practice to not biopsy DIPG led to a scarcity in available tissue samples for laboratory analysis that till recently hindered therapeutic advances. Over the past few years, the acquisition of patient derived tumor samples through biopsy and autopsy protocols has led to distinct breakthroughs in the identification of key oncogenic drivers implicated in DIPG development. Aberrations have been discovered in critical genetic drivers including histone H3, ACVR1, TP53, PDGFRA, and Myc. Mutations, previously not identified in other malignancies, highlight DIPG as a distinct biological entity. Identification of novel markers has already greatly influenced the direction of preclinical investigations and offers the exciting possibility of establishing biologically targeted therapies. This review will outline the current knowledge of the genomic landscape related to DIPG, overview preclinical investigations, and reflect how biological advances have influenced the focus of clinical trials toward targeted therapies.
Collapse
Affiliation(s)
- Danielle H Lapin
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales , Randwick, NSW , Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales , Randwick, NSW , Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
69
|
Chen C, Duan Z, Yuan Y, Li R, Pang L, Liang J, Xu X, Wang J. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5864-5873. [PMID: 28128553 DOI: 10.1021/acsami.6b15831] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemotherapy outcomes for the treatment of glioma remain unsatisfied due to the inefficient drug transport across BBB/BBTB and poor drug accumulation in the tumor site. Nanocarriers functionalized with different targeting ligands are considered as one of the most promising alternatives. However, few studies were reported to compare the targeting efficiency of the ligands and develop nanoparticles to realize BBB/BBTB crossing and brain tumor targeting simultaneously. In this study, six peptide-based ligands (Angiopep-2, T7, Peptide-22, c(RGDfK), D-SP5 and Pep-1), widely used for brain delivery, were selected to decorate liposomes, respectively, so as to compare their targeting ability to BBB or BBTB. Based on the in vitro cellular uptake results on BCECs and HUVECs, Peptide-22 and c(RGDfK) were picked to construct a BBB/BBTB dual-crossing, glioma-targeting liposomal drug delivery system c(RGDfK)/Pep-22-DOX-LP. In vitro cellular uptake demonstrated that the synergetic effect of c(RGDfK) and Peptide-22 could significantly increase the internalization of liposomes on U87 cells. In vivo imaging further verified that c(RGDfK)/Pep-22-LP exhibited higher brain tumor distribution than single ligand modified liposomes. The median survival time of glioma-bearing mice treated with c(RGDfK)/Pep-22-DOX-LP (39.5 days) was significantly prolonged than those treated with free doxorubicin or other controls. In conclusion, the c(RGDfK) and Peptide-22 dual-modified liposome was constructed based on the targeting ability screening of various ligands. The system could effectively overcome BBB/BBTB barriers, target to tumor cells and inhibit the growth of glioma, which proved its potential for improving the efficacy of chemotherapeutics for glioma therapy.
Collapse
Affiliation(s)
- Cuitian Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| | - Ziqing Duan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| | - Yan Yuan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| | - Ruixiang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| | - Liang Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| | - Xinchun Xu
- Shanghai Xuhui Central Hospital , Shanghai 200031, People's Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203, People's Republic of China
| |
Collapse
|
70
|
Agrahari V. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches. Neural Regen Res 2017; 12:197-200. [PMID: 28400793 PMCID: PMC5361495 DOI: 10.4103/1673-5374.200796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.
Collapse
Affiliation(s)
- Vivek Agrahari
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
71
|
Lelu S, Afadzi M, Berg S, Aslund AKO, Torp SH, Sattler W, de L Davies C. Primary Porcine Brain Endothelial Cells as In Vitro Model to Study Effects of Ultrasound and Microbubbles on Blood-Brain Barrier Function. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:281-290. [PMID: 27529871 DOI: 10.1109/tuffc.2016.2597004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Focused ultrasound (FUS) in the presence of microbubbles transiently and reversibly opens the blood-brain barrier (BBB) in rodents and humans, thereby providing a time window for increased drug delivery into brain tissue. To get insight into the underlying mechanisms that govern ultrasound (US)-mediated opening of the BBB, in vitro models are a useful alternative. In this paper, we have utilized an in vitro BBB model that consists of primary porcine brain endothelial cells (PBECs). PBEC monolayers are grown on permeable membranes, which allow assessment of key features of BBB function as well as US treatment. This experimental model is characterized by low permeability for both small molecules and proteins, has a high transendothelial electrical resistance, and expresses tight junctions and efflux pumps. Here, we compare the effects of inertial and stable cavitation in the presence of SonoVue microbubbles on PBEC monolayers' electrical resistance and permeability properties. Our results point out the fragility of PBEC monolayers, which enhances results variability. In particular, we show that handling of the inserts, such as medium change and transfer to the US setup, modifies the cellular response, and immunostaining of the monolayers introduces damage and cell detachment within the US-exposed monolayers. Our results indicate that stable cavitation might have a more pronounced impact on cell permeability as compared with inertial cavitation in vitro. This paper might contribute to further development of experimental setups that are suitable to characterize the impact of FUS and microbubbles on BBB properties in vitro.
Collapse
|
72
|
Gao S, Tian H, Xing Z, Zhang D, Guo Y, Guo Z, Zhu X, Chen X. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. J Control Release 2016; 243:357-369. [PMID: 27794494 DOI: 10.1016/j.jconrel.2016.10.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
Abstract
Herpes simplex virus type I thymidine kinase gene (HSV-TK) in viral vector is a promising strategy against glioblastoma multiforme (GBM). However, the biosafety risk restricts its application in clinic. In this work, poly (l-lysine)-grafted polyethylenimine (PEI-PLL), which combines the high transfection efficiency of polyethylenimine and the good biodegradability of poly (l-lysine), was adopted as the non-viral vector backbone. Angiopep-2, a blood brain barrier (BBB) crossing and glioma targeting bifunctional peptide was conjugated on PEI-PLL via polyethyleneglycol (PEG) and designated as PPA. The optimal transfection ratio of PPA/DNA complexes nanoparticles (PPA NPs) was firstly characterized. Next, the glioma targeting of the PPA NPs was confirmed through cellular uptake and transfection analysis. The in vivo imaging studies demonstrated that the PPA NPs could not only penetrate BBB but also accumulate in striatum and cortex via systemic administration. Moreover, the PPA/HSV-TK NPs showed remarkably anti-glioma effect and survival benefit in an invasive orthotopic human GBM mouse model through inhibiting proliferation and inducing apoptosis (p<0.05 vs control). This study firstly illustrated that the cationic polymer PPA could be exploited as an efficient gene vector to cross the BBB, and innovatively provided a potential non-viral nanomedicine for noninvasive suicide gene therapy in the glioma treatment.
Collapse
Affiliation(s)
- Shiqian Gao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenkai Xing
- School of Life Science, Northeast Normal University, Changchun 130024, PR China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ye Guo
- School of Life Science, Northeast Normal University, Changchun 130024, PR China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaojuan Zhu
- School of Life Science, Northeast Normal University, Changchun 130024, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
73
|
Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release 2016; 240:443-453. [DOI: 10.1016/j.jconrel.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
74
|
Kim EM, Jeong HJ. Current Status and Future Direction of Nanomedicine: Focus on Advanced Biological and Medical Applications. Nucl Med Mol Imaging 2016; 51:106-117. [PMID: 28559935 DOI: 10.1007/s13139-016-0435-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the engineering and manipulation of materials and devices with sizes in the nanometer range. Colloidal gold, iron oxide nanoparticles and quantum dot semiconductor nanocrystals are examples of nanoparticles, with sizes generally ranging from 1 to 20 nm. These nanotechnologies have been researched tremendously in the last decade and this has led to a new area of "nanomedicine" which is the application of nanotechnology to human health-care for diagnosis, monitoring, treatment, prediction and prevention of diseases. Recently progress has been made in overcoming some of the difficulties in the human use of nanomedicines. In the mid-1990s, Doxil was approved by the FDA, and now various nanoconstructs are on the market and in clinical trials. However, there are many obstacles in the human application of nanomaterials. For translation to clinical use, a detailed understanding is needed of the chemical and physical properties of particles and their pharmacokinetic behavior in the body, including their biodistribution, toxicity, and biocompatibility. In this review, we provide a broad introduction to nanomedicines and discuss the preclinical and clinical trials in which they have been evaluated.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Chonbuk National University Medical School and Hospital, Jeonju-si, Jellaabuk-Do Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Chonbuk National University Medical School and Hospital, Jeonju-si, Jellaabuk-Do Republic of Korea
| |
Collapse
|
75
|
Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, Chang SD, Tillement O. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro Oncol 2016; 18:1601-1609. [PMID: 27407134 DOI: 10.1093/neuonc/now137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
Drug delivery in the CNS is limited by endothelial tight junctions forming the impermeable blood-brain barrier. The development of new treatment paradigms has previously been hampered by the restrictiveness of the blood-brain barrier to systemically administered therapeutics. With recent advances in stereotactic localization and noninvasive imaging, we have honed the ability to modulate, ablate, and rewire millimetric brain structures to precisely permeate the impregnable barrier. The wide range of focused radiations offers endless possibilities to disrupt endothelial permeability with different patterns and intensity following 3-dimensional coordinates offering a new world of possibilities to access the CNS, as well as to target therapies. We propose a review of the current state of knowledge in targeted drug delivery using noninvasive image-guided approaches. To this end, we focus on strategies currently used in clinics or in clinical trials such as targeted radiotherapy and magnetic resonance guided focused ultrasound, but also on more experimental approaches such as magnetically heated nanoparticles, electric fields, and lasers, techniques which demonstrated remarkable results both in vitro and in vivo. We envision that biodistribution and efficacy of systemically administered drugs will be enhanced with further developments of these promising strategies. Besides therapeutic applications, stereotactic platforms can be highly valuable in clinical applications for interventional strategies that can improve the targetability and efficacy of drugs and macromolecules. It is our hope that by showcasing and reviewing the current state of this field, we can lay the groundwork to guide future research in this realm.
Collapse
Affiliation(s)
- Geoff Appelboom
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Alexandre Detappe
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Melissa LoPresti
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Sijumon Kunjachan
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Stefan Mitrasinovic
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Serge Goldman
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Steve D Chang
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Olivier Tillement
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| |
Collapse
|
76
|
Dréan A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, Delattre JY, Carpentier A, Idbaih A. Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Expert Rev Neurother 2016; 16:1285-1300. [PMID: 27310463 DOI: 10.1080/14737175.2016.1202761] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Glioblastomas (GBM) are the most common and aggressive primary malignant brain tumors in adults. The blood brain barrier (BBB) is a major limitation reducing efficacy of anti-cancer drugs in the treatment of GBM patients. Areas covered: Virtually all GBM recur after the first-line treatment, at least partly, due to invasive tumor cells protected from chemotherapeutic agents by the intact BBB in the brain adjacent to tumor. The passage through the BBB, taken by antitumor drugs, is poorly and heterogeneously documented in the literature. In this review, we have focused our attention on: (i) the BBB, (ii) the passage of chemotherapeutic agents across the BBB and (iii) the strategies investigated to overcome this barrier. Expert commentary: A better preclinical knowledge of the crossing of the BBB by antitumor drugs will allow optimizing their clinical development, alone or combined with BBB bypassing strategies, towards an increased success rate of clinical trials.
Collapse
Affiliation(s)
- Antonin Dréan
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Lauriane Goldwirt
- c AP-HP , Hôpital Universitaire Saint Louis, Service de Pharmacologie , Paris , France
| | - Maïté Verreault
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Michael Canney
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Charlotte Schmitt
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jeremy Guehennec
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jean-Yves Delattre
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| | - Alexandre Carpentier
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,e AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurochirurgie , Paris , France
| | - Ahmed Idbaih
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| |
Collapse
|
77
|
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016; 6:268-86. [PMID: 27471668 PMCID: PMC4951594 DOI: 10.1016/j.apsb.2016.05.013] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Due to the ability of the blood-brain barrier (BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood-brain tumor barrier (BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.
Collapse
|
78
|
Maugeri R, Schiera G, Di Liegro CM, Fricano A, Iacopino DG, Di Liegro I. Aquaporins and Brain Tumors. Int J Mol Sci 2016; 17:ijms17071029. [PMID: 27367682 PMCID: PMC4964405 DOI: 10.3390/ijms17071029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/04/2023] Open
Abstract
Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Anna Fricano
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Domenico Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| |
Collapse
|
79
|
Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR, Howel CA, Mikhalovsky SV. Nano carriers for drug transport across the blood-brain barrier. J Drug Target 2016; 25:17-28. [PMID: 27126681 DOI: 10.1080/1061186x.2016.1184272] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
Collapse
Affiliation(s)
- Xinming Li
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China.,b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - John Tsibouklis
- b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Tingting Weng
- c Department of Chemical Engineering , Guangdong Petroleum and Chemical Technology Institute , Foshan , China
| | - Buning Zhang
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guoqiang Yin
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guangzhu Feng
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Yingde Cui
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Irina N Savina
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Lyuba I Mikhalovska
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Susan R Sandeman
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Carol A Howel
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Sergey V Mikhalovsky
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK.,e School of Engineering , Nazarbayev Uiversity , Astana , Kazakhstan
| |
Collapse
|
80
|
Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 2016; 9:2873-84. [PMID: 27274282 PMCID: PMC4876107 DOI: 10.2147/ott.s104691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ruju Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaohui Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
81
|
Wang X, Sun Q, Shen S, Xu Y, Huang L. Nanotrastuzumab in combination with radioimmunotherapy: Can it be a viable treatment option for patients with HER2-positive breast cancer with brain metastasis? Med Hypotheses 2016; 88:79-81. [DOI: 10.1016/j.mehy.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
82
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
83
|
Vijayakumar MR, Kumari L, Patel KK, Vuddanda PR, Vajanthri KY, Mahto SK, Singh S. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Adv 2016. [DOI: 10.1039/c6ra10777j] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
trans-Resveratrol (RSV), a natural molecule isolated from red wine, is widely known for several therapeutic potentials.
Collapse
Affiliation(s)
| | - Lakshmi Kumari
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221 005
- India
| | - Krishna Kumar Patel
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221 005
- India
| | | | - Kiran Yellappa Vajanthri
- School of Biomedical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221 005
- India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221 005
- India
| | - Sanjay Singh
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221 005
- India
| |
Collapse
|
84
|
Liu X, Kang J, Liu F, Wen S, Zeng X, Liu K, Luo Y, Ji X, Zhao S. Overexpression of iASPP-SV in glioma is associated with poor prognosis by promoting cell viability and antagonizing apoptosis. Tumour Biol 2015; 37:6323-30. [PMID: 26628298 DOI: 10.1007/s13277-015-4503-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 12/27/2022] Open
Abstract
Inhibitor of apoptosis-stimulating protein of p53 (iASPP), encoded by PPP1R13L gene, is often overexpressed in human cancers. From the PPP1R13L gene, at least two isoforms, iASPP-L and iASPP-SV, are produced through alternative splicing. However, the role of these isoforms in glioma is still elusive. In this study, we examined the expression of iASPP-SV in astrocytic glioma tissues with different grades and normal human cerebral tissues. The result showed a higher messenger RNA (mRNA) expression level of iASPP-SV in astrocytic glioma patients with World Health Organization (WHO) grade II to IV in comparison to the normal controls. Additionally, mRNA expression level of iASPP-SV was gradually increased with the raise of the grade in glioma. High mRNA expression level of iASPP-SV was significantly associated with malignant WHO grades (P < 0.001). The protein expression level of iASPP-SV was consistent with the mRNA expression level. The Kaplan-Meier analysis revealed that high iASPP-SV mRNA expression significantly affected overall survival and progression-free survival (both P < 0.001). Furthermore, multivariate analysis indicated that the mRNA expression of iASPP-SV was an independent prognostic marker in glioma (P < 0.001). To further explore the role of iASPP-SV in glioma, U87 cells were transfected with iASPP-SV by lentivirus and then treated with temozolomide (TMZ). Overexpression of iASPP-SV promoted the cell viability and downregulated the expression of pro-apoptosis genes (Bax, Puma, p21, and Noxa) to inhibit apoptosis induced by TMZ. Our study provides the first evidence that high iASPP-SV expression may be a novel prognostic factor and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiangrong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Jun Kang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Xiang, Beijing, 100730, People's Republic of China
| | - Fang Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Shaohong Wen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Xianwei Zeng
- Department of Neurosurgery, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, 261031, People's Republic of China
| | - Kuan Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, 100053, People's Republic of China
- Department of Neurosurgery, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, 261031, People's Republic of China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Xiang, Beijing, 100730, People's Republic of China.
| |
Collapse
|
85
|
Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:152926. [PMID: 26583089 PMCID: PMC4637152 DOI: 10.1155/2015/152926] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.
Collapse
|