51
|
Tumor-Targeted Erythrocyte Membrane Nanoparticles for Theranostics of Triple-Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15020350. [PMID: 36839675 PMCID: PMC9966336 DOI: 10.3390/pharmaceutics15020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) cells do not contain various receptors for targeted treatment, a reason behind the poor prognosis of this disease. In this study, biocompatible theranostic erythrocyte-derived nanoparticles (EDNs) were developed and evaluated for effective early diagnosis and treatment of TNBC. The anti-cancer drug, doxorubicin (DOX), was encapsulated into the EDNs and diagnostic quantum dots (QDs) were incorporated into the lipid bilayers of EDNs for tumor bio-imaging. Then, anti-epidermal growth factor receptor (EGFR) antibody molecules were conjugated to the surface of EDNs for TNBC targeting (iEDNs). According to the confocal microscopic analyses and biodistribution assay, iEDNs showed a higher accumulation in EGFR-positive MDA-MB-231 cancers in vitro as well as in vivo, compared to untargeted EDNs. iEDNs containing doxorubicin (iEDNs-DOX) showed a stronger inhibition of target tumor growth than untargeted ones. The resulting anti-EGFR iEDNs exhibited strong biocompatibility, prolonged blood circulation, and efficient targeting of TNBC in mice. Therefore, iEDNs may be used as potential TNBC-targeted co-delivery systems for therapeutics and diagnostics.
Collapse
|
52
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
53
|
Plant Exosome-like Nanoparticles as Biological Shuttles for Transdermal Drug Delivery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010104. [PMID: 36671676 PMCID: PMC9854743 DOI: 10.3390/bioengineering10010104] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Exosomes act as emerging transdermal drug delivery vehicles with high deformability and excellent permeability, which can be used to deliver various small-molecule drugs and macromolecular drugs and increase the transdermal and dermal retention of drugs, improving the local efficacy and drug delivery compliance. At present, there are many studies on the use of plant exosome-like nanoparticles (PELNVs) as drug carriers. In this review, the source, extraction, isolation, and chemical composition of plant exosomes are reviewed, and the research progress on PELNVs as drug delivery systems in transdermal drug delivery systems in recent years has elucidated the broad application prospect of PELNVs.
Collapse
|
54
|
Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020661. [PMID: 36677717 PMCID: PMC9865684 DOI: 10.3390/molecules28020661] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms. Resultantly, a broad-spectrum overview is presented which comprises the diverse applications of nanotechnology in modern industries. This study reveals that nanotechnology is not limited to research labs or small-scale manufacturing units of nanomedicine, but instead has taken a major share in different industries. Companies around the world are now trying to make their innovations more efficient in terms of structuring, working, and designing outlook and productivity by taking advantage of nanotechnology. From small-scale manufacturing and processing units such as those in agriculture, food, and medicine industries to larger-scale production units such as those operating in industries of automobiles, civil engineering, and environmental management, nanotechnology has manifested the modernization of almost every industrial domain on a global scale. With pronounced cooperation among researchers, industrialists, scientists, technologists, environmentalists, and educationists, the more sustainable development of nano-based industries can be predicted in the future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
- Correspondence: (K.M.); (Y.W.)
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
- Correspondence: (K.M.); (Y.W.)
| |
Collapse
|
55
|
Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐Maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioeng Transl Med 2023; 8:e10325. [PMID: 36684100 PMCID: PMC9842052 DOI: 10.1002/btm2.10325] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Üniversite CaddesiTuzla, IstanbulTurkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials ‐ National Research Council (IPCB‐CNR)NaplesItaly
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials InterfacesPontedera, PisaItaly
| | - Navid Rabiee
- School of Engineering, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vijay Kumar Thakur
- School of EngineeringUniversity of Petroleum & Energy Studies (UPES)DehradunUttarakhandIndia
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC)EdinburghUK
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacky UniversityOlomoucCzech Republic
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Xsphera Biosciences Inc.BostonMassachusettsUSA
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and Environment, University of Electronic Science and Technology of ChinaChengduPR China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
| | - Nicolas H. Voelcker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoriaAustralia
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Gorka Orive
- NanoBioCel Research Group, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI(UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- Singapore Eye Research InstituteSingapore
| |
Collapse
|
56
|
Suthar JK, Vaidya A, Ravindran S. Toxic implications of silver nanoparticles on the central nervous system: A systematic literature review. J Appl Toxicol 2023; 43:4-21. [PMID: 35285037 DOI: 10.1002/jat.4317] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Silver nanoparticles have many medical and commercial applications, but their effects on human health are poorly understood. They are used extensively in products of daily use, but little is known about their potential neurotoxic effects. A xenobiotic metal, silver, has no known physiological significance in the human body as a trace metal. Biokinetics of silver nanoparticles indicates its elimination from the body via urine and feces route. However, a substantial amount of evidence from both in vitro and in vivo experimental research unequivocally establish the fact of easier penetration of smaller nanoparticles across the blood-brain barrier to enter in brain and thereby interaction with cellular components to induce neurotoxic effects. Toxicological effects of silver nanoparticles rely on the degree of exposure, particle size, surface coating, and agglomeration state as well as the type of cell or organism used to evaluate its toxicity. This review covers pertinent facts and the present state of knowledge about the neurotoxicity of silver nanoparticles reviewing the impacts on oxidative stress, neuroinflammation, mitochondrial function, neurodegeneration, apoptosis, and necrosis. The effect of silver nanoparticles on the central nervous system is a topic of growing interest and concern that requires immediate consideration.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Faculty of Health Sciences, Symbiosis International (Deemed) University, Pune, India.,Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed) University, Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Health Sciences, Symbiosis International (Deemed) University, Pune, India
| |
Collapse
|
57
|
Kumari P, Sharma S, Sharma PK, Alam A. Treatment Management of Diabetic Wounds Utilizing Herbalism: An Overview. Curr Diabetes Rev 2023; 19:92-108. [PMID: 35306989 DOI: 10.2174/1573399818666220318095320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Diabetes Mellitus, commonly known as DM, is a metabolic disorder which is characterized by high blood glucose level, i.e., chronic hyperglycemia. If it is not managed properly, DM can lead to many severe complexities with time and can cause significant damage to the kidneys, heart, eyes, nerves and blood vessels. Diabetic foot ulcers (DFU) are one of those major complexities which affect around 15-25% of the population diagnosed with diabetes. Due to diabetic conditions, the body's natural healing process slows down leading to longer duration for healing of wounds only when taken care of properly. Herbal therapies are one of the approaches for the management and care of diabetic foot ulcer, which utilizes the concept of synergism for better treatment options. With the recent advancement in the field of nanotechnology and natural drug therapy, a lot of opportunities can be seen in combining both technologies and moving towards a more advanced drug delivery system to overcome the limitations of polyherbal formulations. METHODS During the writing of this document, the data was derived from existing original research papers gathered from a variety of sources such as PubMed, ScienceDirect, Google Scholar. CONCLUSION Hence, this review includes evidence about the current practices and future possibilities of nano-herbal formulation in treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Priya Kumari
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| |
Collapse
|
58
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Gu N, Sheng J. Introduction to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
60
|
Pang Q, Li Y, Xie X, Tang J, Liu Q, Peng C, Li X, Han B. The emerging role of radical chemistry in the amination transformation of highly strained [1.1.1]propellane: Bicyclo[1.1.1]pentylamine as bioisosteres of anilines. Front Chem 2022; 10:997944. [PMID: 36339044 PMCID: PMC9634170 DOI: 10.3389/fchem.2022.997944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Bicyclo[1.1.1]pentylamines (BPCAs), emerging as sp3-rich surrogates for aniline and its derivatives, demonstrate unique structural features and physicochemical profiles in medicinal and synthetic chemistry. In recent years, compared with conventional synthetic approaches, the rapid development of radical chemistry enables the assembly of valuable bicyclo[1.1.1]pentylamines scaffold directly through the amination transformation of highly strained [1.1.1]propellane. In this review, we concisely summarize the emerging role of radical chemistry in the construction of BCPAs motif, highlighting two different and powerful radical-involved strategies including C-centered and N-centered radical pathways under appropriate conditions. The future direction concerning BCPAs is also discussed at the end of this review, which aims to provide some inspiration for the research of this promising project.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
61
|
Lee KX, Shameli K, Nagao Y, Yew YP, Teow SY, Moeini H. Potential use of gold-silver core-shell nanoparticles derived from Garcinia mangostana peel for anticancer compound, protocatechuic acid delivery. Front Mol Biosci 2022; 9:997471. [PMID: 36304924 PMCID: PMC9593088 DOI: 10.3389/fmolb.2022.997471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer is one of the most killing cancers and this has become a global problem. Current treatment and anticancer drugs cannot specifically target the cancerous cells, thus causing toxicity towards surrounding non-cancer cells. Hence, there is an urgent need to discover a more target-specific therapeutic agent to overcome this problem. Core-shell nanoparticles have emerged as good candidate for anticancer treatment. This study aimed to synthesize core-shell nanoparticles via green method which utilised crude peels extract of Garcinia mangostana as reducing and stabilising agents for drug delivery. Gold-silver core-shell nanoparticles (Au-AgNPs) were synthesized through seed germination process in which gold nanoparticles acted as the seed. A complete coating was observed through transmission electron microscopy (TEM) when the ratio of AuNPs and AgNPs was 1:9. The size of Au-AgNPs was 38.22 ± 8.41 nm and was mostly spherical in shape. Plant-based drug, protocatechuic acid (PCA) was loaded on the Au-AgNPs to investigate their anticancer activity. In HCT116 colon cancer cells, PCA-loaded Au-AgNPs (IC50 = 10.78 μg/ml) showed higher inhibitory action than the free PCA (IC50= 148.09 μg/ml) and Au-AgNPs alone (IC50= 24.36 μg/ml). Up to 80% inhibition of HCT116 cells was observed after the treatment of PCA-loaded Au-AgNPs at 15.63 μg/ml. The PCA-loaded Au-AgNPs also showed a better selectivity towards HCT116 compared to CCD112 colon normal cells when tested at the same concentrations. These findings suggest that Au-AgNPs system can be used as a potent nanocarrier to combat cancerous cells by offering additional anticancer properties to the loaded drug.
Collapse
Affiliation(s)
- Kar Xin Lee
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Kamyar Shameli, ; Hassan Moeini,
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Yen Pin Yew
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Medical and Life Sciences (SMLS), Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hassan Moeini
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- *Correspondence: Kamyar Shameli, ; Hassan Moeini,
| |
Collapse
|
62
|
Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F. Role of Nanotechnology in Overcoming the Multidrug Resistance in Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196608. [PMID: 36235145 PMCID: PMC9571152 DOI: 10.3390/molecules27196608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the leading causes of morbidity and mortality around the globe and is likely to become the major cause of global death in the coming years. As per World Health Organization (WHO) report, every year there are over 10 and 9 million new cases and deaths from this disease. Chemotherapy, radiotherapy, and surgery are the three basic approaches to treating cancer. These approaches are aiming at eradicating all cancer cells with minimum off-target effects on other cell types. Most drugs have serious adverse effects due to the lack of target selectivity. On the other hand, resistance to already available drugs has emerged as a major obstacle in cancer chemotherapy, allowing cancer to proliferate irrespective of the chemotherapeutic agent. Consequently, it leads to multidrug resistance (MDR), a growing concern in the scientific community. To overcome this problem, in recent years, nanotechnology-based drug therapies have been explored and have shown great promise in overcoming resistance, with most nano-based drugs being explored at the clinical level. Through this review, we try to explain various mechanisms involved in multidrug resistance in cancer and the role nanotechnology has played in overcoming or reversing this resistance.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ambreen Shoaib
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.S.); (F.S.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (A.S.); (F.S.)
| |
Collapse
|
63
|
Mehta N, Pai R. Amalgamation of Nanoparticles within Drug Carriers: A Synergistic Approach or a Futile Attempt? Pharm Nanotechnol 2022; 10:PNT-EPUB-126127. [PMID: 36056844 DOI: 10.2174/2211738510666220902150449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
In recent years, nanotechnology has gained much attention from scientists and significant advances in therapeutic potential. Nano-delivery systems have emerged as an effective way in order to improve the therapeutic properties of drugs including solubility, stability, prolongation of half-life as well as promoting the accumulation of drug at the target site. The nanoparticles have also been incorporated into various conventional drug delivery systems. This review study aims to introduce the amalgamation of nanoparticles into drug carriers. To overcome the limitations of single nanoparticles such as toxicity, high instability, rapid drug release as well as limited drug loading capacity, a multi-component system is developed. Liposomes, microparticles, nanofibers, dendrimers etc., are promising drug carriers, having some limitations that can be minimized, and the compilation of nanoparticles synergizes the properties. The amalgamated nanocarriers are used for the diagnostic purpose as well as treatment of various chronic diseases. It also increases the solubility of hydrophobic drugs. However, each system has its advantages and disadvantages based on its physicochemical properties, efficacy, and other parameters. This review details the past and present state of development for the fusion of nanoparticles within drug carriers and from which we identify future research works needed for the same.
Collapse
Affiliation(s)
- Nikhil Mehta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
64
|
Ramana EV, Naseem. Development and Characterization of Copper Nanoparticles Embedded Polymeric Microbeads for Drug Delivery and Antibacterial Applications. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222090221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
65
|
Torrik A, Zaerin S, Zarif M. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
67
|
Fabrication of Amphotericin-B-loaded Sodium Alginate Nanoparticles for Biomedical Applications. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
68
|
Raya I, Abdalkareem Jasim S, Hashim Abdulkadhim A, Hashem Abbud L, Sharma H. Zinc (II) complex immobilized on the surface of magnetic nanoparticles modified with phenanthroline: A novel and efficient nanomagnetic reusable catalyst for cross-coupling reaction of aryl iodides with terminal aromatic alkynes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2099288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Indah Raya
- Departement of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Adnan Hashim Abdulkadhim
- Department of Computer Engineering, Technical Engineering College, Al-Ayen University, Thi-Qar, Iraq
| | - Luay Hashem Abbud
- Department of Air Conditioning & Refrigeration Engineering Techniques, Al- Mustaqbal University College, Hillah, Iraq
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University Mathura, India
| |
Collapse
|
69
|
Mohammadi G, Korani M, Nemati H, Nikpoor AR, Rashidi K, Varmira K, Abbasifard M, Kesharwani P, Korani S, Sahebkar A. Crocin-loaded nanoliposomes: Preparation, characterization, and evaluation of anti-inflammatory effects in an experimental model of adjuvant-induced arthritis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
70
|
Ullah F, Ali Khan MF, Khan NH, Rehman MF, Shah SS, Mustaqeem M, Ullah S, Zhang Q, Shi H. Simvastatin-Loaded Lipid Emulsion Nanoparticles: Characterizations and Applications. ACS OMEGA 2022; 7:23643-23652. [PMID: 35847279 PMCID: PMC9280776 DOI: 10.1021/acsomega.2c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simvastatin (SIM) is a diet drug to treat high lipid levels in the blood. It has the drawback of being metabolized in humans' gastrointestinal tract (GIT) when taken in an oral dosage form. To enhance the role of SIM in treating hyperlipidemias and bypassing its metabolism in GIT, a biodegradable nanocarrier as a SIM-loaded lipid emulsion nanoparticle via the solvent injection method was designed. Cholesterol acts as a lipid core, and Tween 80 was utilized to stabilize the core. The optimized nanoformulation was characterized for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity, and molecular interaction. Furthermore, the transdermal hydrogel was characterized by physical appearance, rheology, pH, and spreadability. In vitro assays were executed to gauge the potential of LENPs and olive oil for transdermal delivery. The mean particle size and zeta potential of the optimized nanoparticles were 174 nm and -22.5 mV 0.127, respectively. Crystallinity studies and Fourier transform infrared analyses revealed no molecular interactions. Hydrogels showed a sustained release compared to SIM-loaded LENPs that can be proposed as a better delivery system for SIM. We encourage further investigations to explore the effect of reported formulations for transdermal delivery by in vivo experiments.
Collapse
Affiliation(s)
- Faiz Ullah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | | | - Nazeer Hussain Khan
- Henan
International Joint Laboratory for Nuclear Protein Regulation, School
of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School
of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | | | - Syed Sakhawat Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Muhammad Mustaqeem
- Department
of Chemistry, Thal University, Bhakkar Campus, Bhakkar 30000, Pakistan
| | - Sami Ullah
- Department
of Zoology, Government College University, Faisalabad 54000, Pakistan
| | - Qidi Zhang
- Department
of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong, University School of Medicine, Shanghai 200025, China
| | - Hongchao Shi
- Department
of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong, University School of Medicine, Shanghai 200025, China
| |
Collapse
|
71
|
Gupta J, Das K, Tanwar A, Rajamani P, Bhattacharya J. An electrochemical study of the binding interaction between chitosan and MPA-CdSe QDs for the development of biocompatible theranostic nanoprobe. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
72
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
73
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
74
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
75
|
Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113561. [PMID: 35684498 PMCID: PMC9182026 DOI: 10.3390/molecules27113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.
Collapse
|
76
|
Ullah A, Lim SI. Plant Extract-Based Synthesis of Metallic Nanomaterials, Their Applications, and Safety Concerns. Biotechnol Bioeng 2022; 119:2273-2304. [PMID: 35635495 DOI: 10.1002/bit.28148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Nanotechnology has attracted the attention of researchers from different scientific fields because of the escalated properties of nanomaterials compared with the properties of macromolecules. Nanomaterials can be prepared through different approaches involving physical and chemical methods. The development of nanomaterials through plant-based green chemistry approaches is more advantageous than other methods from the perspectives of environmental safety, animal, and human health. The biomolecules and metabolites of plants act as reducing and capping agents for the synthesis of metallic green nanomaterials. Plant-based synthesis is a preferred approach as it is not only cost-effective, easy, safe, clean, and eco-friendly but also provides pure nanomaterials in high yield. Since nanomaterials have antimicrobial and antioxidant potential, green nanomaterials synthesized from plants can be used for a variety of biomedical and environmental remediation applications. Past studies have focused mainly on the overall biogenic synthesis of individual or combinations of metallic nanomaterials and their oxides from different biological sources, including microorganisms and biomolecules. Moreover, from the viewpoint of biomedical applications, the literature is mainly focusing on synthetic nanomaterials. Herein, we discuss the extraction of green molecules and recent developments in the synthesis of different plant-based metallic nanomaterials, including silver, gold, platinum, palladium, copper, zinc, iron, and carbon. Apart from the biomedical applications of metallic nanomaterials, including antimicrobial, anticancer, diagnostic, drug delivery, tissue engineering, and regenerative medicine applications, their environmental remediation potential is also discussed. Furthermore, safety concerns and safety regulations pertaining to green nanomaterials are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
77
|
Anadozie SO, Adewale OB, Fadaka AO, Afolabi OB, Roux S. Synthesis of gold nanoparticles using extract of Carica papaya fruit: Evaluation of its antioxidant properties and effect on colorectal and breast cancer cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
78
|
Molaei Yielzoleh F, Nikoofar K. Metal-bio functionalized bismuthmagnetite [Fe 3-x Bi x O 4/SiO 2@l-ArgEt 3 +I -/Zn(ii)]: a novel bionanocomposite for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[ b][1,4]diazepine malononitriles and malonamides at room temperature and under sonication. RSC Adv 2022; 12:10219-10236. [PMID: 35425005 PMCID: PMC8972908 DOI: 10.1039/d2ra00212d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/13/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, a new magnetized composite of bismuth (Fe3-x Bi x O4) was prepared and functionalized stepwise with silica, triethylargininium iodide ionic liquid, and Zn(ii) to prepare a multi-layered core-shell bio-nanostructure, [Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii)]. The modified bismuth magnetic amino acid-containing nanocomposite was characterized using several techniques including Fourier-transform infrared (FT-IR), X-ray fluorescence (XRF), vibrating sample magnetometer (VSM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), thermogravimetric/differential scanning calorimetric (TGA/DSC) analysis, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The magnetized bionanocomposite exhibited high catalytic activity for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1,4]diazepine malononitriles via five-component reactions between 1,2-phenylenediamines, Meldrum's acid, malononitrile, aldehydes, and isocyanides at room temperature in ethanol. The efficacy of this protocol was also examined to obtain malonamide derivatives via pseudo six-component reactions of 1,4-phenylenediamine, Meldrum's acid, malononitrile, aldehydes, and isocyanides. When the above-mentioned MCRs were repeated under the same conditions with the application of sonication, a notable decrease in the reaction time was observed. The recovery and reusability of the metal-bio functionalized bismuthmagnetite were examined successfully in 3 runs. Furthermore, the characteristics of the recovered Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii) were investigated though FESEM and EDAX analysis.
Collapse
Affiliation(s)
| | - Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran
| |
Collapse
|
79
|
Maleki Dizaj S, Salatin S, Khezri K, Lee JY, Lotfipour F. Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Front Microbiol 2022; 13:831655. [PMID: 35432230 PMCID: PMC9009044 DOI: 10.3389/fmicb.2022.831655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023] Open
Abstract
As a category of small peptides frequently found in nature, antimicrobial peptides (AMPs) constitute a major part of the innate immune system of various organisms. Antimicrobial peptides feature various inhibitory effects against fungi, bacteria, viruses, and parasites. Due to the increasing concerns of antibiotic resistance among microorganisms, development of antimicrobial peptides is an emerging tool as a favorable applicability prospect in food, medicine, aquaculture, animal husbandry, and agriculture. This review presents the latest research progress made in the field of antimicrobial peptides, such as their mechanism of action, classification, application status, design techniques, and a review on decoration of nanoparticles and polymers with AMPs that are used in treating multidrug resistance. Lastly, we will highlight recent progress in antiviral peptides to treat emerging viral diseases (e.g., anti-coronavirus peptides) and discuss the outlook of AMP applications.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Farzaneh Lotfipour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Food and Drug Safety Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
80
|
Kazemzadeh P, Sayadi K, Toolabi A, Sayadi J, Zeraati M, Chauhan NPS, Sargazi G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front Chem 2022; 10:823785. [PMID: 35372272 PMCID: PMC8964429 DOI: 10.3389/fchem.2022.823785] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used as a promising candidate for drug delivery applications due to silica’s favorable biocompatibility, thermal stability, and chemical properties. Silica’s unique mesoporous structure allows for effective drug loading and controlled release at the target site. In this review, we have discussed various methods of MSNs’ mechanism, properties, and its drug delivery applications. As a result, we came to the conclusion that more in vivo biocompatibility studies, toxicity studies, bio-distribution studies and clinical research are essential for MSN advancement.
Collapse
Affiliation(s)
| | - Khalil Sayadi
- Department of Chemistry, Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Jalil Sayadi
- Department Environmental Engineering, University of Zabol, Zabol, Iran
| | - Malihe Zeraati
- Department of Materials Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’ University, Udaipur, India
- *Correspondence: Ghasem Sargazi, ; Narendra Pal Singh Chauhan,
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Ghasem Sargazi, ; Narendra Pal Singh Chauhan,
| |
Collapse
|
81
|
Biswas S, Karim S, Zangrando E, Chandra A. An effortless approach to synthesize two structurally diverse nano copper (II) materials and assessment of their apoptosis inducing ability on lung cancer cell line. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sneha Biswas
- Department of Chemistry University of Calcutta Kolkata India
| | - Suhana Karim
- Department of Chemistry University of Calcutta Kolkata India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste Trieste Italy
| | - Arpita Chandra
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy Chittaranjan National Cancer Institute Kolkata West Bengal India
| |
Collapse
|
82
|
Tan T, Huang Q, Chu W, Li B, Wu J, Xia Q, Cao X. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Deliv 2022; 29:692-701. [PMID: 35225122 PMCID: PMC8890522 DOI: 10.1080/10717544.2022.2044936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages can transform into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes, which mediate the immune/inflammatory response in rheumatoid arthritis (RA). Activated M1 phenotype macrophages and overexpression of folate (FA) receptors are abundant in inflammatory synovium and joints and promote the progression of RA. Germacrone (GER) can regulate the T helper 1 cell (Th1)/the T helper 2 cell (Th2) balance to delay the progression of arthritis. To deliver GER to inflammatory tissue cells to reverse M1-type proinflammatory cells and reduce inflammation, FA receptor-targeting nanocarriers loaded with GER were developed. In activated macrophages, FA-NPs/DiD showed significantly higher uptake efficiency than NPs/DiD. In vitro experiments confirmed that FA-NPs/GER could promote the transformation of M1 macrophages into M2 macrophages. In adjuvant-induced arthritis (AIA) rats, the biodistribution profiles showed selective accumulation at the inflammatory site of FA-NPs/GER, and significantly reduced the swelling and inflammation infiltration of the rat's foot. The levels of pro-inflammatory cytokines (TNF-α, IL-1β) in the rat's inflammatory tissue were significantly lower than other treatment groups, which indicated a significant therapeutic effect in AIA rats. Taken together, macrophage-targeting nanocarriers loaded with GER are a safe and effective method for the treatment of RA.
Collapse
Affiliation(s)
- Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Jingjing Wu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| |
Collapse
|
83
|
Henson JC, Brickell A, Kim JW, Jensen H, Mehta JL, Jensen M. PEGylated Gold Nanoparticle Toxicity in Cardiomyocytes: Assessment of Size, Concentration, and Time Dependency. IEEE Trans Nanobioscience 2022; 21:387-394. [PMID: 35201990 DOI: 10.1109/tnb.2022.3154438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gold Nanoparticles (GNPs) have shown promising capabilities for use in many in-vivo applications such as gene and drug delivery, photothermal ablation of tumors, and tracking in many imaging modalities. Yet GNPs have thus far had limited use in cardiovascular medicine. Polyethylene glycol functionalized (PEGylated) GNPs have been extensively studied in a wide array of in vitro and in vivo models with results showing no apparent toxicity, but to our knowledge an investigation has never been performed to determine direct cardiomyocyte toxicity. In this study, we assessed if PEGylated GNPs exhibited direct toxicity to a primary culture of neonatal rat cardiomyocytes in order to establish PEGylated GNPs for potential future use in cardiovascular medicine applications. We present novel results that demonstrate both a particle size and concentration dependent relationship on cell viability. Cell viability was found to be significantly enhanced for many concentrations and sizes as compared to the control and increased linearly as a function of particle diameter. Additionally, viability increased in a parabolically dependent manner as a function of decreasing particle concentration. These new results could advance understanding of nanoparticle-cell interactions and lead to the development of new applications involving the use of gold nanoparticles in cardiovascular medicine.
Collapse
|
84
|
Baati T, Ben Brahim M, Salek A, Selmi M, Njim L, Umek P, Aouane A, Hammami M, Hosni K. Flumequine-loaded titanate nanotubes as antibacterial agents for aquaculture farms. RSC Adv 2022; 12:5953-5963. [PMID: 35424545 PMCID: PMC8981844 DOI: 10.1039/d1ra08533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms. However, its intensive use becomes worrisome because of its environmental risks and the emergence of FLUM-resistant bacteria. To overcome these problems we propose in this study the encapsulation and the delivery of FLUM by titanate nanotubes (TiNTs). Optimal FLUM loading was reached by suspending the dehydrated powder nanomaterials (FLUM : TiNTs ratio = 1 : 5) in ethanol. The drug entrapment efficiency was calculated to be 80% approximately with a sustained release in PBS at 37 °C up to 5 days. Then FLUM@TiNTs was evaluated for both its in vitro drug release and antimicrobial activity against Escherichia coli (E. coli). Spectacularly high antibacterial activity compared to those of free FLUM antibiotic was obtained confirming the efficiency of TiNTs to protect FLUM from rapid degradation and transformation within bacteria improving thereby its antibacterial effect. Indeed FLUM@TiNTs was efficient to decrease gradually the bacterial viability to reach ≈5% after 5 days versus ≈75% with free FLUM. Finally, the ex vivo permeation experiments on sea bass (Dicentrachus labrax) intestine shows that TiNTs act to increase the intestinal permeation of FLUM during the experiment. Indeed the encapsulated FLUM flux increased 12 fold (1.46 μg cm2 h−1) compared to the free antibiotic (0.18 μg cm2 h−1). Thanks to its physical properties (diameter 10 nm, tubular shape…) and its high stability in the simulated intestinal medium, TiNTs are easy internalized by enterocytes, thus involving an endocytosis mechanism, and then improve intestinal permeation of FLUM. Taken together, FLUM@TiNTs hold potential as an effective approach for enhancing the antimicrobial activity of FLUM and pave the way not only for future pharmacokinetic studies in the treatment and targeting of fish infections but also for instating of novel strategies that overcome the challenges associated with the abusive use of antibiotics in fish farming. Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms.![]()
Collapse
Affiliation(s)
- Tarek Baati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mounir Ben Brahim
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Abir Salek
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mouna Selmi
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Leila Njim
- Service d'Anatomie Pathologique, CHU de Monastir, Université de Monastir Tunisia
| | - Polona Umek
- Jožef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana Slovenia
| | - Aicha Aouane
- Centre de Microscopie Electronique, IBDML campus Luminy Marseille 13000 France
| | - Mohamed Hammami
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| |
Collapse
|
85
|
Envisaging marine diatom Thalassiosira weissflogii as a "SMART" drug delivery system for insoluble drugs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 2022; 203:379-388. [PMID: 35104473 DOI: 10.1016/j.ijbiomac.2022.01.162] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Chitosan is a natural alkaline polysaccharide, which widely exists in marine crustaceans such as shrimp and crab, has been shown to have various biological activities. It has attracted considerable attention in biomedicine and nanomaterials fields because of its excellent properties, such as biocompatibility, biodegradability, non-toxicity and easy access. In addition, because of active hydroxyl and amino groups in chitosan molecules, different functional groups can be introduced into chitosan molecules by molecular modification or chemical modification, which extends their applications. Nanoparticles with small size and large surface area can be used as diagnostic and therapeutic tools in the biomedical field, which make it easier to understand, detect and treat human diseases. The nanomaterials based on chitosan have important applications in biomedicine, industry, pharmacy, agriculture, and other fields. This review highlights the recent advances on chitosan-based nanoparticles for antibacterial property, drug and gene delivery, cancer and hyperthermia therapy, cell imaging, restorative dentistry, wound healing, tissue engineering and other biomedical fields. The nanotechnology fields involving biosensors, water treatment, food industry and agriculture are also briefly reviewed.
Collapse
|
87
|
Hosseini SM, Taheri M, Nouri F, Farmani A, Moez NM, Arabestani MR. Nano drug delivery in intracellular bacterial infection treatments. Biomed Pharmacother 2022; 146:112609. [PMID: 35062073 DOI: 10.1016/j.biopha.2021.112609] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmani
- Department of Nanobiotechnology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narjes Morovati Moez
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
88
|
Nasir NN, Sekar M, Fuloria S, Gan SH, Rani NNIM, Ravi S, Begum MY, Chidambaram K, Sathasivam KV, Jeyabalan S, Dhiravidamani A, Thangavelu L, Lum PT, Subramaniyan V, Wu YS, Azad AK, Fuloria NK. Kirenol: A Potential Natural Lead Molecule for a New Drug Design, Development, and Therapy for Inflammation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030734. [PMID: 35163999 PMCID: PMC8839644 DOI: 10.3390/molecules27030734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022]
Abstract
Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.
Collapse
Affiliation(s)
- Naurah Nabihah Nasir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
- Correspondence: (M.S.); (S.F.); (N.K.F.); Tel.: +60-163346653 (M.S.); +60-143034057 (S.F.); +60-164037685 (N.K.F.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Correspondence: (M.S.); (S.F.); (N.K.F.); Tel.: +60-163346653 (M.S.); +60-143034057 (S.F.); +60-164037685 (N.K.F.)
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia;
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | | | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India; (S.J.); (A.D.)
| | - Arulmozhi Dhiravidamani
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India; (S.J.); (A.D.)
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia;
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Abul Kalam Azad
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India;
- Correspondence: (M.S.); (S.F.); (N.K.F.); Tel.: +60-163346653 (M.S.); +60-143034057 (S.F.); +60-164037685 (N.K.F.)
| |
Collapse
|
89
|
Pobłocki K, Jacewicz D, Walczak J, Gawdzik B, Kramkowski K, Drzeżdżon J, Kowalczyk P. Preparation of Allyl Alcohol Oligomers Using Dipicolinate Oxovanadium(IV) Coordination Compound. MATERIALS (BASEL, SWITZERLAND) 2022; 15:695. [PMID: 35160642 PMCID: PMC8836411 DOI: 10.3390/ma15030695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Currently, new precatalysts for olefin oligomerization are being sought in the group of vanadium(IV) complexes. Thus, the aim of our research was to examine the catalytic activity of the oxovanadium(IV) dipicolinate complex [VO(dipic)(H2O)2] 2 H2O (dipic = pyridine-2,6-dicarboxylate anion) in 2-propen-1-ol oligomerization as well as to characterize oligomerization products using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). The oligomerization process took place at room temperature, under atmospheric pressure and under nitrogen atmosphere to prevent oxidation of the activator MMAO-12-the modified methylaluminoxane (7 wt.%) aluminum in toluene. The last point was to determine the catalytic activity of the complex in the oligomerization reaction of 2-propen-1-ol. The aspect that enriches this work is the proposed mechanism of oligomerization of allyl alcohol based on the literature.
Collapse
Affiliation(s)
- Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Juliusz Walczak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
90
|
Al Sharabati M, Sabouni R, Husseini GA. Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:277. [PMID: 35055294 PMCID: PMC8780624 DOI: 10.3390/nano12020277] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of porous hybrid organic-inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| |
Collapse
|
91
|
Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion Based Nanostructures for Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most of the active pharmaceutical compounds are often prone to display low bioavailability and biological degradation represents an important drawback. Due to the above, the development of a drug delivery system (DDS) that enables the introduction of a pharmaceutical compound through the body to achieve a therapeutic effect in a controlled manner is an expanding application. Henceforth, new strategies have been developed to control several parameters considered essential for enhancing delivery of drugs. Nanostructure synthesis by microemulsions (ME) consist of enclosing a substance within a wall material at the nanoscale level, allowing to control the size and surface area of the resulting particle. This nanotechnology has shown the importance on targeted drug delivery to improve their stability by protecting a bioactive compound from an adverse environment, enhanced bioavailability as well as controlled release. Thus, a lower dose administration could be achieved by minimizing systemic side effects and decreasing toxicity. This review will focus on describing the different biocompatible nanostructures synthesized by ME as controlled DDS for therapeutic purposes.
Collapse
|
92
|
Gu N, Sheng J. Introduction to Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
93
|
Hassabo AA, Ibrahim EI, Ali BA, Emam HE. Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
94
|
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. EMERGENT MATERIALS 2022; 5:1593-1615. [PMID: 35005431 PMCID: PMC8724657 DOI: 10.1007/s42247-021-00335-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 05/02/2023]
Abstract
Over the past few years, nanotechnology has been attracting considerable research attention because of their outstanding mechanical, electromagnetic and optical properties. Nanotechnology is an interdisciplinary field comprising nanomaterials, nanoelectronics, and nanobiotechnology, as three areas which extensively overlap. The application of metal nanoparticles (MNPs) has drawn much attention offering significant advances, especially in the field of medicine by increasing the therapeutic index of drugs through site specificity preventing multidrug resistance and delivering therapeutic agents efficiently. Apart from drug delivery, some other applications of MNPs in medicine are also well known such as in vivo and in vitro diagnostics and production of enhanced biocompatible materials and nutraceuticals. The use of metallic nanoparticles for drug delivery systems has significant advantages, such as increased stability and half-life of drug carrier in circulation, required biodistribution, and passive or active targeting into the required target site. Green synthesis of MNPs is an emerging area in the field of bionanotechnology and provides economic and environmental benefits as an alternative to chemical and physical methods. Therefore, this review aims to provide up-to-date insights on the current challenges and perspectives of MNPs in drug delivery systems. The present review was mainly focused on the greener methods of metallic nanocarrier preparations and its surface modifications, applications of different MNPs like silver, gold, platinum, palladium, copper, zinc oxide, metal sulfide and nanometal organic frameworks in drug delivery systems.
Collapse
Affiliation(s)
- V. Chandrakala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| |
Collapse
|
95
|
Zakhireh S, Omidi Y, Beygi-Khosrowshahi Y, Aghanejad A, Barar J, Adibkia K. Biocompatibility Evaluation of Hollow Pollen Grains/Fe3 O4 Nanoparticles Composites as Potential Medical Devices. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, pollen grains (PGs) have been introduced as drug carriers and scaffolding building blocks. This study aimed to assess the in-vitro biocompatibility of Pistacia vera L. hollow PGs/Fe3O4 nanoparticles (HPGs/Fe3O4NPs) composites using human adipose-derived mesenchymal stem cells (hAD-MSCs). In this regard, iron oxide nanoparticles (Fe3O4NPs) were assembled on the surface of HPGs at different concentrations. The biocompatibility of the prepared composites was assessed through MTT assay, apoptosis-related gene expression and field emission scanning electron microscopy (FE-SEM) analysis. Compared to the bare HPGs, the HPGs/Fe3O4NPs exhibited a biphasic impact on hAD-MSCs. The composite containing 1% Fe3O4NPs demonstrated no cytotoxicity up to 21 days while higher Fe3O4NPs contents and long-term exposure revealed adverse effects on the hAD-MSCs’ growth. The obtained result was verified by the qRT-PCR and morphological analysis carried out through FE-SEM which suggests that a narrow region below 1% Fe3O4NPs may be the optimum choice for medicinal applications of HPGs/Fe3O4NPs microdevices.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ayoub Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
96
|
Ibrahim N'I, Mohd Noor H'I, Shuid AN, Mohamad S, Abdul Malik MM, Jayusman PA, Shuid AN, Naina Mohamed I. Osteoprotective Effects in Postmenopausal Osteoporosis Rat Model: Oral Tocotrienol vs. Intraosseous Injection of Tocotrienol-Poly Lactic-Co-Glycolic Acid Combination. Front Pharmacol 2021; 12:706747. [PMID: 34867320 PMCID: PMC8637158 DOI: 10.3389/fphar.2021.706747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis, the most common bone disease, is associated with compromised bone strength and increased risk of fracture. Previous studies have shown that oxidative stress contributes to the progression of osteoporosis. Specifically, for postmenopausal osteoporosis, the reduction in estrogen levels leads to increased oxidative stress in bone remodeling. Tocotrienol, a member of vitamin E that exhibits antioxidant activities, has shown potential as an agent for the treatment of osteoporosis. Most studies on the osteoprotective effects of tocotrienols had used the oral form of tocotrienols, despite their low bioavailability due the lack of transfer proteins and high metabolism in the liver. Several bone studies have utilized tocotrienol combined with a nanocarrier to produce a controlled release of tocotrienol particles into the system. However, the potential of delivering tocotrienol-nanocarrier combination through the intraosseous route has never been explored. In this study, tocotrienol was combined with a nanocarrier, poly lactic-co-glycolic acid (PLGA), and injected intraosseously into the bones of ovariectomized rats to produce targeted and controlled delivery of tocotrienol into the bone microenvironment. This new form of tocotrienol delivery was compared with the conventional oral delivery in terms of their effects on bone parameters. Forty Sprague-Dawley rats were divided into five groups. The first group was sham operated, while other groups were ovariectomized (OVX). Following 2 months, the right tibiae of all the rats were drilled at the metaphysis region to provide access for intraosseous injection. The estrogen group (OVX + ESTO) and tocotrienol group (OVX + TTO) were given daily oral gavages of Premarin (64.5 mg/kg) and annatto-tocotrienol (60 mg/kg), respectively. The locally administered tocotrienol group (OVX + TTL) was given a single intraosseous injection of tocotrienol-PLGA combination. After 8 weeks of treatment, both OVX + TTO and OVX + TTL groups have significantly lower bone markers and higher bone mineral content than the OVX group. In terms of bone microarchitecture, both groups demonstrated significantly higher trabecular separation and connectivity density than the OVX group (p < 0.05). Both groups also showed improvement in bone strength by the significantly higher stress, strain, stiffness, and Young's modulus parameters. In conclusion, daily oral tocotrienol and one-time intraosseous injection of tocotrienol-PLGA combination were equally effective in offering protection against ovariectomy-induced bone changes.
Collapse
Affiliation(s)
- Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hasnul 'Iffah Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Naqib Shuid
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Sharlina Mohamad
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Mohd Maaruf Abdul Malik
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Malaysia
| | - Putri Ayu Jayusman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
97
|
Li Q, Wu X, Xin S, Wu X, Lan J. Preparation and characterization of a naringenin solubilizing glycyrrhizin nanomicelle ophthalmic solution for experimental dry eye disease. Eur J Pharm Sci 2021; 167:106020. [PMID: 34571178 DOI: 10.1016/j.ejps.2021.106020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
An ophthalmic solution of naringenin (NAR) based on dipotassium glycyrrhizinate (DG) micelle solubilization, called DG-NAR, was prepared, and its effect on dry eye disease (DED) was evaluated. DG-NAR was a clear, colorless aqueous solution with small micelle size (24.75±0.52 nm), narrow size distribution of polydispersity index 0.273±0.160, and a high entrapment efficiency (99.67±0.51%). The solution also revealed good storage stability in a 12-week short-term storage evaluation; it also displayed good vivo ocular tolerance in rabbit eyes investigated via a slit lamp observation and histopathological examination. When observed under fluorescence microscopy, the solution further exhibited improved in vivo corneal permeation profiles in mice eyes. As expected, in a BAC-induced DED mouse model, ocular topical administration of DG-NAR achieved a remarkable efficacy against dry eye symptoms when compared to the DG&NAR physical mixture solution or free NAR solution; this included decreased rose bengal and fluorescein staining, increased tear volume and corneal sensitivities, alleviated histopathological symptoms, and reversed corneal epithelium and endothelium damages. Additionally, performance in some efficacy evaluation parameters were better than in the commercialized 0.1% hyaluronic acid sodium salt eye drops. This therapeutic effect can be attributed to the mechanisms regulating HMGB1 signaling and its related proinflammatory cytokines. Together, these in vitro/in vivo results suggested that this novel phytochemical-based nanoformulation of DG-NAR may be a promising candidate in the efficacious treatment of DED.
Collapse
Affiliation(s)
- Qiqi Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaoming Wu
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Shanshan Xin
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Jie Lan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
98
|
The High Potency of Green Synthesized Copper Nanoparticles to Prevent the Toxoplasma gondii Infection in Mice. Acta Parasitol 2021; 66:1472-1479. [PMID: 34050875 DOI: 10.1007/s11686-021-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Nowadays, due to the lack of an effective vaccine to prevent the toxoplasmosis, chemotherapy with the combination of pyrimethamine and sulfadiazine is considered as the "gold standard" treatment for toxoplasmosis. Recent reports have exhibited that these synthesized chemical drugs are associated with some serious side effects. The present study aims to evaluate the prophylactic effects of copper nanoparticles (CuNPs) green synthesized by Capparis spinosa fruit methanolic extract alone and combined with atovaquone against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice METHODS: Mice were then orally administrated with CuNPs at the doses of 2 and 4 mg/kg/day and in combined with atovaquone 50 mg/kg for 14 days. Male BALB/c mice were divided into two seven groups include C1 (non-treated non-infected); C2 (treated with normal saline); C3 (Infected mice treated with atovaquone 100 mg/kg/day); Ex1 (treated with CuNPs 2 mg/kg/day); Ex2 (treated with CuNPs 4 mg/kg/day); Ex3 (treated with CuNPs 2 mg/kg/day + atovaquone 50 mg/kg/day); Ex3 (treated with CuNPs 4 mg/kg/day + atovaquone 50 mg/kg/day). On the 15th day, the mice were infected with the intraperitoneal inoculation of 20-25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12, IFN-γ, and inducible nitric oxide synthase (iNOS) in mice of each tested group were measured. RESULTS CuNPs were green synthesized by C. spinosa methanolic extract. Scanning electron microscopy showed that the particle size of CuNPs was 17 and 41 nm with maximum peak at the wavelength of 414 nm. The mean number of T. gondii tissue cysts in mice of tested groups of Ex1, Ex2, Ex3, and Ex4, significantly decreased as a dose-dependent response compared with control group. Moreover, in similar to the control group C3, no T. gondii tissue cysts was observed in mice of experimental group Ex3 and Ex4. The mRNA levels of IFN-γ, IL-12, and iNO was measured in mice of all tested groups. The mRNA levels of IFN-γ, IL-12, and iNO was increased in all mice of experimental groups in comparison with the control group C2; however, a significant enhancement was detected in mRNA level of IFN-γ, IL-12, and iNO in the tested groups of Ex3 and Ex4 when compared with control group C3. CONCLUSION The obtained results revealed the high potency of CuNPs alone and combined with atovaquone to prevent toxoplasmosis in mice. Although, the prophylactic effects of CuNPs and other properties, such as improved cellular immunity and low toxicity, are positive topics; however, more studies are required to approve these findings especially in clinical settings.
Collapse
|
99
|
Saadatmand M, Al-Awsi GRL, Alanazi AD, Sepahvand A, Shakibaie M, Shojaee S, Mohammadi R, Mahmoudvand H. Green synthesis of zinc nanoparticles using Lavandula angustifolia Vera. Extract by microwave method and its prophylactic effects on Toxoplasma gondii infection. Saudi J Biol Sci 2021; 28:6454-6460. [PMID: 34764762 PMCID: PMC8568829 DOI: 10.1016/j.sjbs.2021.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Today, a suitable vaccine has not yet been discovered to prevent Toxoplasma gondii infection. Therefore, prophylaxis can be suggested as the preferred approach to prevent toxoplasmosis. This study aims to evaluate the prophylactic effects of synthesized zinc nanoparticles (ZnNPs) using Lavandula angustifolia Vera., by microwave method on chronic toxoplasmosis in mice. Methods BALB/c Mice orally administrated with ZnNPs the doses of 32.5, 75, 150 mg/kg/day for two weeks. On the 15th day, the mice were intraperitoneally infected with the Tehran strain of T. gondii (25 tissue cysts). The mean diameter and the numbers of brain tissue cysts, as well as the mRNA levels of inducible nitric oxide synthesize (iNOs), and interferon-gamma (IFN-γ) in mice of each experimental group were evaluated. Results The synthesized ZnNPs represent a spherical form with a size ranging from 30 to 80 nm. The results revealed that oral administration of Zn NPs at the doses of 32.5 (p < 0.001) and 75 mg/kg/day (p < 0.001) for 14 days significantly reduced the mean number and diameter of the brain tissue cysts in tested mice. No T. gondii tissue cyst was observed after oral administration of Zn NPs at the doses of 150 mg/kg. Based on the results of Real-time PCR analysis, the expression level of IFN-γ and iNOs was significantly increased (p < 0.001) in mice treated with 32.5, 75, 150 mg/kg/day for two weeks. Conclusion The obtained findings of the current investigation exhibit the significant prophylactic effects of ZnNPs against chronic toxoplasmosis in mice; so that oral administration of ZnNPs the doses 32.5, 75, 150 mg/kg reduced the parasite load and even completely controlled the infection in mice. The results show that the ZnNPs had strengthened the innate immune system which could be the reason for its strong prophylactic effects. However, further in vivo and clinical investigations are required to confirm these results as well as other possible mechanisms that can trigger these pharmacological properties.
Collapse
Affiliation(s)
- Massumeh Saadatmand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Asghar Sepahvand
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Shakibaie
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Mohammadi
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
100
|
Nwabuife JC, Pant AM, Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv Drug Deliv Rev 2021; 178:113861. [PMID: 34242712 DOI: 10.1016/j.addr.2021.113861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.
Collapse
|