51
|
Chen Z, Mou L, Pan Y, Feng C, Zhang J, Li J. CXCL8 Promotes Glioma Progression By Activating The JAK/STAT1/HIF-1α/Snail Signaling Axis. Onco Targets Ther 2019; 12:8125-8138. [PMID: 31686858 PMCID: PMC6783399 DOI: 10.2147/ott.s224721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background Upregulation of CXCL8 (C-X-C motif ligand 8) in tumor cells has been reported in several types of cancer, and it correlates with a poor prognosis. However, the role of CXCL8 in glioma progression remains unknown. Materials and methods In this study, we examined CXCL8 expression levels in human glioma cell lines and in sixteen human gliomas with different grades. The molecular role of CXCL8 in glioma cells was investigated using quantitative polymerase chain reaction (qRT-PCR) assays, Western blotting, CCK-8 assays, EdU assays, colony formation assays, Transwell migration and invasion assays. Results We found that high expression levels of CXCL8 were positively associated with progression and poor prognosis in human glioma. Mechanistically, CXCL8 promoted the epithelial-mesenchymal transition (EMT) in glioma cells by activating the JAK/STAT1/HIF-1α/Snail signaling pathway. Conclusion Taken together, our data provide a plausible mechanism for CXCL8-modulated glioma progression, which suggests that CXCL8 may represent a potential therapeutic target in the prevention and treatment of gliomas.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Lei Mou
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Yiheng Pan
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Chi Feng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Jingjing Zhang
- Department of Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
52
|
Strobel H, Baisch T, Fitzel R, Schilberg K, Siegelin MD, Karpel-Massler G, Debatin KM, Westhoff MA. Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines 2019; 7:biomedicines7030069. [PMID: 31505812 PMCID: PMC6783999 DOI: 10.3390/biomedicines7030069] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
The alkylating agent temozolomide (TMZ) together with maximal safe bulk resection and focal radiotherapy comprises the standard treatment for glioblastoma (GB), a particularly aggressive and lethal primary brain tumor. GB affects 3.2 in 100,000 people who have an average survival time of around 14 months after presentation. Several key aspects make GB a difficult to treat disease, primarily including the high resistance of tumor cells to cell death-inducing substances or radiation and the combination of the highly invasive nature of the malignancy, i.e., treatment must affect the whole brain, and the protection from drugs of the tumor bulk—or at least of the invading cells—by the blood brain barrier (BBB). TMZ crosses the BBB, but—unlike classic chemotherapeutics—does not induce DNA damage or misalignment of segregating chromosomes directly. It has been described as a DNA alkylating agent, which leads to base mismatches that initiate futile DNA repair cycles; eventually, DNA strand breaks, which in turn induces cell death. However, while much is assumed about the function of TMZ and its mode of action, primary data are actually scarce and often contradictory. To improve GB treatment further, we need to fully understand what TMZ does to the tumor cells and their microenvironment. This is of particular importance, as novel therapeutic approaches are almost always clinically assessed in the presence of standard treatment, i.e., in the presence of TMZ. Therefore, potential pharmacological interactions between TMZ and novel drugs might occur with unforeseeable consequences.
Collapse
Affiliation(s)
- Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany.
| | - Tim Baisch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany.
| | - Rahel Fitzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany.
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany.
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany.
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany.
| |
Collapse
|
53
|
Fathi Kazerooni A, Bakas S, Saligheh Rad H, Davatzikos C. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J Magn Reson Imaging 2019; 52:54-69. [PMID: 31456318 DOI: 10.1002/jmri.26907] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, the advent and development of genomic assessment methods and computational approaches have raised the hopes for identifying therapeutic targets that may aid in the treatment of glioblastoma. However, the targeted therapies have barely been successful in their effort to cure glioblastoma patients, leaving them with a grim prognosis. Glioblastoma exhibits high heterogeneity, both spatially and temporally. The existence of different genetic subpopulations in glioblastoma allows this tumor to adapt itself to environmental forces. Therefore, patients with glioblastoma respond poorly to the prescribed therapies, as treatments are directed towards the whole tumor and not to the specific genetic subregions. Genomic alterations within the tumor develop distinct radiographic phenotypes. In this regard, MRI plays a key role in characterizing molecular signatures of glioblastoma, based on regional variations and phenotypic presentation of the tumor. Radiogenomics has emerged as a (relatively) new field of research to explore the connections between genetic alterations and imaging features. Radiogenomics offers numerous advantages, including noninvasive and global assessment of the tumor and its response to therapies. In this review, we summarize the potential role of radiogenomic techniques to stratify patients according to their specific tumor characteristics with the goal of designing patient-specific therapies. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:54-69.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
54
|
Abstract
The complexity of human cancer underlies its devastating clinical consequences. Drugs designed to target the genetic alterations that drive cancer have improved the outcome for many patients, but not the majority of them. Here, we review the genomic landscape of cancer, how genomic data can provide much more than a sum of its parts, and the approaches developed to identify and validate genomic alterations with potential therapeutic value. We highlight notable successes and pitfalls in predicting the value of potential therapeutic targets and discuss the use of multi-omic data to better understand cancer dependencies and drug sensitivity. We discuss how integrated approaches to collecting, curating, and sharing these large data sets might improve the identification and prioritization of cancer vulnerabilities as well as patient stratification within clinical trials. Finally, we outline how future approaches might improve the efficiency and speed of translating genomic data into clinically effective therapies and how the use of unbiased genome-wide information can identify novel predictive biomarkers that can be either simple or complex.
Collapse
Affiliation(s)
- Gary J Doherty
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
| | - Michele Petruzzelli
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Emma Beddowes
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Saif S Ahmad
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Richard J Gilbertson
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
55
|
Yuan Y, Li SL, Cao YL, Li JJ, Wang QP. LKB1 suppresses glioma cell invasion via NF-κB/Snail signaling repression. Onco Targets Ther 2019; 12:2451-2463. [PMID: 31040689 PMCID: PMC6452796 DOI: 10.2147/ott.s193736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Liver kinase B1 (LKB1) is involved in various human diseases. Aberrant expression of LKB1 expression is involved in glioma progression and associated with prognosis, however, the specific mechanism involving NF-κB/Snail signaling pathways remain unknown. Materials and methods In the present study, quantitative real-time PCR analysis was used to investigate the expression of LKB1 tumor tissue samples and cell lines. In glioma cell lines, CCK-8 assay, transwell invasion and migration assays were used to investigate the effects of LKB1on proliferation and invasion. Results We observed that LKB1 knockdown promoted glioma cell proliferation, migration and invasion. This effect was induced through NF-κB/Snail signaling activation. Also, LKB1 overexpression suppressed proliferation, migration, and invasion, which could be rescued by Snail overexpression. Conclusion Taken together, our results show that LKB1 knockdown promotes remarkably glioma cell proliferation, migration and invasion by regulating Snail protein expression through activating the NF-κB signaling. This may serve as a potential prognostic marker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China,
| | - Shi-Lin Li
- Department of Neurology, Qitaihe Qimei Hospital, Qitaihe 154600, People's Republic of China
| | - Yu-Lin Cao
- Department of Hematology, Wuhan General Hospital of Guangzhou Military Area Command, Wuhan 430070, People's Republic of China
| | - Jun-Jun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China,
| | - Qiang-Ping Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China,
| |
Collapse
|
56
|
Colip C, Oztek MA, Lo S, Yuh W, Fink J. Updates in the Neuoroimaging and WHO Classification of Primary CNS Gliomas: A Review of Current Terminology, Diagnosis, and Clinical Relevance From a Radiologic Prospective. Top Magn Reson Imaging 2019; 28:73-84. [PMID: 31022050 DOI: 10.1097/rmr.0000000000000195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As new advances in the genomics and imaging of CNS tumors continues to evolve, a standardized system for classification is increasingly essential to diagnosis and management. The molecular markers introduced in the 2016 WHO classification of CNS tumors bring both practical and conceptual advances to the characterization of gliomas, strengthening the prognostic and predictive value of terminology while shedding light on the underlying mechanisms that drive biologic behavior. The purpose of this article is to provide a succinct overview of primary intracranial gliomas from a neuroradiologic prospective and according to the 5th edition WHO classification that was revised in 2016. An update of the molecular markers pertinent to defining the major lineages of brain gliomas will be provided, followed by discussion of the terminology, grading and imaging features associated with individual entities. Neuroradiologists should be aware of the key genomic and radiomic features of common brain gliomas, and familiar with an integrated approach to their diagnosis and grading.
Collapse
Affiliation(s)
- Charles Colip
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| | - Murat Alp Oztek
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| | - Simon Lo
- University of Washington Medical Center, Department of Radiation Oncology, Seattle, WA
| | - Willam Yuh
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| | - James Fink
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| |
Collapse
|
57
|
García-Martínez A, Sottile J, Sánchez-Tejada L, Fajardo C, Cámara R, Lamas C, Barberá VM, Picó A. DNA Methylation of Tumor Suppressor Genes in Pituitary Neuroendocrine Tumors. J Clin Endocrinol Metab 2019; 104:1272-1282. [PMID: 30423170 DOI: 10.1210/jc.2018-01856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
CONTEXT Epigenetic alterations may play a role in the development and behavior of pituitary neuroendocrine tumors (PitNETs). OBJECTIVE To evaluate the effect of methylation of tumor suppressor genes (TSGs) on their gene expression and on the behavior of PitNETs. MATERIAL AND METHODS We used methylation-specific multiplex ligation-dependent probe amplification and quantitative real-time PCR techniques to analyze the DNA-promoter hypermethylation and gene expression of 35 TSGs in 105 PitNETs. We defined functionality, size, and invasiveness of tumors according to their clinical manifestations, Hardy's classification, and MRI invasiveness of the cavernous sinus, respectively. RESULTS We observed different methylation patterns among PitNET subtypes. The methylation status of TP73 correlated negatively with its gene expression in the overall series (P = 0.013) and in some subtypes. MSH6 and CADM1 showed higher methylation frequency in macroadenomas than in microadenomas in the overall series and in corticotroph PitNETs (all P ≤ 0.053). ESR1 and RASSF1 were more highly methylated in noninvasive than in invasive tumors in the overall series (P = 0.054 and P = 0.031, respectively) and in the gonadotroph subtype (P = 0.055 and P = 0.050, respectively). ESR1 and CASP8 appeared more hypermethylated in functioning than in silent corticotroph tumors (P = 0.034 and P = 0.034, respectively). CONCLUSIONS DNA methylation of TSGs has a selective effect on their gene expression and on the growth and invasiveness of PitNETs. Its involvement in their functionality is biased because all silent operated tumors are macroadenomas, whereas all operated microadenomas are functioning ones. Therefore, the subtypes of PitNETs should be considered different entities.
Collapse
Affiliation(s)
- Araceli García-Martínez
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Johana Sottile
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Laura Sánchez-Tejada
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Carmen Fajardo
- Endocrinology Department, Hospital de La Ribera, Alzira, Valencia, Spain
| | - Rosa Cámara
- Endocrinology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Lamas
- Endocrinology Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Victor Manuel Barberá
- Molecular Genetics Laboratory, Hospital General Universitario de Elche, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Antonio Picó
- Endocrinology Department, Hospital General Universitario de Alicante-ISABIAL, Miguel Hernández University, CIBERER, Alicante, Spain
| |
Collapse
|
58
|
Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui NG, Tabatabai G, Carcaboso AM, Aboagye EO, Suwan K, Hajitou A. Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol Med 2019; 11:e8492. [PMID: 30808679 PMCID: PMC6460351 DOI: 10.15252/emmm.201708492] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary intracranial malignant neoplasm in adults and most resistant to treatment. Integration of gene therapy and chemotherapy, chemovirotherapy, has the potential to improve treatment. We have introduced an intravenous bacteriophage (phage) vector for dual targeting of therapeutic genes to glioblastoma. It is a hybrid AAV/phage, AAVP, designed to deliver a recombinant adeno-associated virus genome (rAAV) by the capsid of M13 phage. In this vector, dual tumor targeting is first achieved by phage capsid display of the RGD4C ligand that binds the αvβ3 integrin receptor. Second, genes are expressed from a tumor-activated and temozolomide (TMZ)-induced promoter of the glucose-regulated protein, Grp78 Here, we investigated systemic combination therapy using TMZ and targeted suicide gene therapy by the RGD4C/AAVP-Grp78 Firstly, in vitro we showed that TMZ increases endogenous Grp78 gene expression and boosts transgene expression from the RGD4C/AAVP-Grp78 in human GBM cells. Next, RGD4C/AAVP-Grp78 targets intracranial tumors in mice following intravenous administration. Finally, combination of TMZ and RGD4C/AAVP-Grp78 targeted gene therapy exerts a synergistic effect to suppress growth of orthotopic glioblastoma.
Collapse
Affiliation(s)
- Justyna Magdalena Przystal
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Sajee Waramit
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Md Zahidul Islam Pranjol
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Wenqing Yan
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Grace Chu
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Aitthiphon Chongchai
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Gargi Samarth
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Nagore Gene Olaciregui
- Institute de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for CNS Tumors, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
| | - Angel Montero Carcaboso
- Institute de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Eric Ofori Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, Faculty of Medicine, London, UK
| | - Keittisak Suwan
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Amin Hajitou
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
59
|
Abstract
The field of neuro-oncology has recently experienced a renaissance in the understanding of the molecular underpinnings and pathophysiology of glioma. Genetic markers have significant implications regarding treatment responsiveness and prognosis and are now the primary basis for classification. This article gives an updated understanding of the pathogenesis and mechanisms of resistance of glioma via discussion of 4 molecular and genetic markers: MGMT, IDH, 1p/19q, and TERT.
Collapse
Affiliation(s)
- Michael W Ruff
- From the Department of Neurology (M.W.R., J.U., E.B.) and Division of Medical Oncology (M.W.R., J.U.), Mayo Clinic, Rochester, MN.
| | - Joon H Uhm
- From the Department of Neurology (M.W.R., J.U., E.B.) and Division of Medical Oncology (M.W.R., J.U.), Mayo Clinic, Rochester, MN
| | - Eduardo E Benarroch
- From the Department of Neurology (M.W.R., J.U., E.B.) and Division of Medical Oncology (M.W.R., J.U.), Mayo Clinic, Rochester, MN
| |
Collapse
|
60
|
Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J, Lewandowska MA. Prognostic and Predictive Epigenetic Biomarkers in Oncology. Mol Diagn Ther 2019; 23:83-95. [PMID: 30523565 PMCID: PMC6394434 DOI: 10.1007/s40291-018-0371-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic patterns, such as DNA methylation, histone modifications, and non-coding RNAs, can be both driver factors and characteristic features of certain malignancies. Aberrant DNA methylation can lead to silencing of crucial tumor suppressor genes or upregulation of oncogene expression. Histone modifications and chromatin spatial organization, which affect transcription, regulation of gene expression, DNA repair, and replication, have been associated with multiple tumors. Certain microRNAs (miRNAs), mainly those that silence tumor suppressor genes and occur in a greater number of copies, have also been shown to promote oncogenesis. Multiple patterns of these epigenetic factors occur specifically in certain malignancies, which allows their potential use as biomarkers. This review presents examples of tests for each group of epigenetic factors that are currently available or in development for use in early cancer detection, prediction, prognosis, and response to treatment. The availability of blood-based biomarkers is noted, as they allow sampling invasiveness to be reduced and the sampling procedure to be simplified. The article stresses the role of epigenetics as a crucial element of future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ewelina Nalejska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Kubiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Wojtysiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Żołna
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marzena Anna Lewandowska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| |
Collapse
|
61
|
Abstract
This chapter discusses analysis and interpretation of large-scale Illumina DNA methylation microarray data, used in the context of cancer studies. We outline commonly used normalization procedures and list issues to consider regarding data preprocessing. Focusing on software packages for R, we describe methods for finding features in the methylation data that are of importance for generating and testing hypotheses in cancer research, like differentially methylated positions or regions and global methylation trends.
Collapse
Affiliation(s)
- Teresia Kling
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
62
|
Fiorentini G, Sarti D, Milandri C, Dentico P, Mambrini A, Fiorentini C, Mattioli G, Casadei V, Guadagni S. Modulated Electrohyperthermia in Integrative Cancer Treatment for Relapsed Malignant Glioblastoma and Astrocytoma: Retrospective Multicenter Controlled Study. Integr Cancer Ther 2019; 18:1534735418812691. [PMID: 30580645 PMCID: PMC7240877 DOI: 10.1177/1534735418812691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There are interesting studies on glioma therapy with modulated electrohyperthermia (mEHT), which combines heat therapy with an electric field. Clinical researchers not only found the mEHT method feasible for palliation but also reported evidence of therapeutic response. PURPOSE To study the efficacy and safety of mEHT for the treatment of relapsed malignant glioma and astrocytoma versus best supportive care (BSC). METHODS We collected data retrospectively on 149 patients affected by malignant glioma and astrocytoma. Inclusion criteria were informed consent signed; >18 years old; histological diagnosis of malignant glioma or astrocytoma; relapsed after surgery, adjuvant temozolomide-based chemotherapy, and radiotherapy; and indication for treatment with mEHT in palliative setting. mEHT was performed with capacitive coupling technique keeping the skin surface at 26°C and the tumor temperature at 40°C to 42.5°C for > 90% of treatment duration (20-60 minutes). The applied power was 40 to 150 W using a step-up heating protocol. Results from patients treated with mEHT were compared with those treated with BSC. RESULTS A total of 149 consecutive patients were enrolled in the study, 111 (74%) had glioblastoma multiforme (GBM), and 38 (26%) had astrocytoma (AST). mEHT was performed for 28 (25%) of GBM and 24 (63%) of AST patients. Tumor response at the 3-month follow-up was observed in 29% and 48% of GBM and AST patients after mEHT, and in 4% and 10% of GBM and AST patients after BSC, respectively. The survival rate at first and second year in the mEHT group was 77.3% and 40.9% for AST, and 61% and 29% for GBM, respectively. The 5-year overall survival of AST was 83% after mEHT versus 25% after BSC and 3.5% after mEHT versus 1.2% after BSC for GBM. The median overall survival of mEHT was 14 months (range 2-108 months) for GBM and 16.5 months (range 3-156 months) for the AST group. We observed 4 long-term survivors in the AST and 2 in the GBM group. Two of the long survivors in AST and 1 in GBM group were treated by mEHT. CONCLUSIONS mEHT in integrative therapy may have a promising role in the treatment and palliation of relapsed GBM and AST.
Collapse
Affiliation(s)
| | - Donatella Sarti
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord”, Pesaro, Italy
| | - Carlo Milandri
- Nuovo Ospedale San Giuseppe, ASL Toscana
Centro, Empoli, Florence, Italy
| | - Patrizia Dentico
- Nuovo Ospedale San Giuseppe, ASL Toscana
Centro, Empoli, Florence, Italy
| | | | | | | | - Virginia Casadei
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord”, Pesaro, Italy
| | | |
Collapse
|
63
|
Rare Stochastic Expression of O6-Methylguanine- DNA Methyltransferase (MGMT) in MGMT-Negative Melanoma Cells Determines Immediate Emergence of Drug-Resistant Populations upon Treatment with Temozolomide In Vitro and In Vivo. Cancers (Basel) 2018; 10:cancers10100362. [PMID: 30274152 PMCID: PMC6209933 DOI: 10.3390/cancers10100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/01/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
The chemotherapeutic agent temozolomide (TMZ) kills tumor cells preferentially via alkylation of the O6-position of guanine. However, cells that express the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT), or harbor deficient DNA mismatch repair (MMR) function, are profoundly resistant to this drug. TMZ is in clinical use for melanoma, but objective response rates are low, even when TMZ is combined with O6-benzylguanine (O6BG), a potent MGMT inhibitor. We used in vitro and in vivo models of melanoma to characterize the early events leading to cellular TMZ resistance. Melanoma cell lines were exposed to a single treatment with TMZ, at physiologically relevant concentrations, in the absence or presence of O6BG. Surviving clones and mass cultures were analyzed by Western blot, colony formation assays, and DNA methylation studies. Mice with melanoma xenografts received TMZ treatment, and tumor tissue was analyzed by immunohistochemistry. We found that MGMT-negative melanoma cell cultures, before any drug treatment, already harbored a small fraction of MGMT-positive cells, which survived TMZ treatment and promptly became the dominant cell type within the surviving population. The MGMT-negative status in individual cells was not stable, as clonal selection of MGMT-negative cells again resulted in a mixed population harboring MGMT-positive, TMZ-resistant cells. Blocking the survival advantage of MGMT via the addition of O6BG still resulted in surviving clones, although at much lower frequency and independent of MGMT, and the resistance mechanism of these clones was based on a common lack of expression of MSH6, a key MMR enzyme. TMZ treatment of mice implanted with MGMT-negative melanoma cells resulted in effective tumor growth delay, but eventually tumor growth resumed, with tumor tissue having become MGMT positive. Altogether, these data reveal stochastic expression of MGMT as a pre-existing, key determinant of TMZ resistance in melanoma cell lines. Although MGMT activity can effectively be eliminated by pharmacologic intervention with O6BG, additional layers of TMZ resistance, although considerably rarer, are present as well and minimize the cytotoxic impact of TMZ/O6BG combination treatment. Our results provide rational explanations regarding clinical observations, where the TMZ/O6BG regimen has yielded mostly disappointing outcomes in melanoma patients.
Collapse
|
64
|
Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:84-93. [PMID: 30195884 DOI: 10.1016/j.phymed.2018.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastomas (GBM) are one of the most aggressive tumor of the central nervous system with an average life expectancy of only 1-2 years after diagnosis, even with the use of advanced treatments with surgery, radiation, and chemotherapy. There are several anticancer drugs with alkylating properties that have been used in the therapy of malignant gliomas. Temozolomide (TMZ) is one of them, widely used even in combination with ionizing radiation. However, the main disadvantage of using these types of drugs in the treatment of GBM is the development of cancer drug resistance. Research of bioactive compounds with anticancer activity has been heavily explored. PURPOSE This review focuses on a carotenoid and a phlorotannin present in seaweed, namely fucoxanthin and phloroglucinol, and their anticancer activity against glioblastoma. The combination of natural compounds with conventional drugs is also discussed. CONCLUSION Several natural compounds existing in seaweeds, such as fucoxanthin and phoroglucinol, have shown cytotoxic activity in models in vitro and in vivo, acting through different molecular mechanisms, such as antioxidant, antiproliferative, DNA damage/DNA repair, proapoptotic, antiangiogenic and antimetastic. Within the scope of interactions with conventional drugs, there are evidences that some seaweed compounds could be used to potentiate the action of anticancer drugs. However, their effects and mechanisms of action, alone or in combination with anticancer drugs, namely TMZ, in glioblastoma cell, still few explored and require more attention due to the unquestionable high potential of these marine compounds.
Collapse
Affiliation(s)
- Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Alice Abreu Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal.
| | - Tânia Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/ Irunlarrea, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
| |
Collapse
|
65
|
Rogers RA, Fleming AM, Burrows CJ. Rapid Screen of Potential i-Motif Forming Sequences in DNA Repair Gene Promoters. ACS OMEGA 2018; 3:9630-9635. [PMID: 30198001 PMCID: PMC6120732 DOI: 10.1021/acsomega.8b01551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
We have studied the in vitro stability of 25 potential i-motif-forming DNA sequences found within the promoter regions of 18 different human DNA repair genes. Three widely available methods of characterization were used to rapidly assess i-motif folding and stability and comprise a simple screen for preliminary identification of physiologically relevant i-motif forming sequences. Four highly pH-stable candidate sequences were identified exhibiting pH transitions (pH at which 50% of the oligodeoxynucleotides in solution are folded) at or above pH 6.6, thermal melting temperatures above 37 °C and isothermal UV difference spectra characteristic of 2'-deoxycytidine imino-nitrogen protonation. These newly identified i-motif forming sequences could represent novel targets for understanding and modulating human DNA repair gene expression.
Collapse
|
66
|
Eagles ME, Nassiri F, Badhiwala JH, Suppiah S, Almenawer SA, Zadeh G, Aldape KD. Dendritic cell vaccines for high-grade gliomas. Ther Clin Risk Manag 2018; 14:1299-1313. [PMID: 30100728 PMCID: PMC6067774 DOI: 10.2147/tcrm.s135865] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal primary adult brain tumor. To date, various promising chemotherapeutic regimens have been trialed for use in GBM; however, temozolomide (TMZ) therapy remains the only US Food and Drug Administration-approved first-line chemotherapeutic option for newly diagnosed GBM. Despite maximal therapy with surgery and combined concurrent chemoradiation and adjuvant TMZ therapy, the median overall survival remains approximately 14 months. Given the failure of conventional chemotherapeutic strategies in GBM, there has been renewed interest in the role of immunotherapy in GBM. Dendritic cells are immune antigen-presenting cells that play a role in both the innate and adaptive immune system, thereby making them prime vehicles for immunotherapy via dendritic cell vaccinations (DCVs) in various cancers. There is great enthusiasm surrounding the use of DCVs for GBM with multiple ongoing trials. In this review, we comprehensively summarize the safety, efficacy, and quality of life results from 33 trials reporting on DCV for high-grade gliomas.
Collapse
Affiliation(s)
- Matthew E Eagles
- Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada, .,MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada
| | - Jetan H Badhiwala
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,
| | - Suganth Suppiah
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,
| | - Saleh A Almenawer
- Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, University Health Network, Toronto, ON, Canada
| | - Kenneth D Aldape
- MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada.,Division of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
67
|
Lo Dico A, Martelli C, Diceglie C, Lucignani G, Ottobrini L. Hypoxia-Inducible Factor-1α Activity as a Switch for Glioblastoma Responsiveness to Temozolomide. Front Oncol 2018; 8:249. [PMID: 30013951 PMCID: PMC6036118 DOI: 10.3389/fonc.2018.00249] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Rationale The activity of the transcription factor, hypoxia-inducible factor (HIF)-1α, is a common driver of a number of the pathways involved in the aggressiveness of glioblastomas (GBMs), and it has been suggested that the reduction in this activity observed, soon after the administration of temozolomide (TMZ), can be a biomarker of an early response in GBM models. As HIF-1α is a tightly regulated protein, studying the processes involved in its downregulation could shed new light on the mechanisms underlying GBM sensitivity or resistance to TMZ. Methods The effect of HIF-1α silencing on cell responsiveness to TMZ was assessed in four genetically different human GBM cell lines by evaluating cell viability and apoptosis-related gene balance. LAMP-2A silencing was used to evaluate the contribution of chaperone-mediated autophagy (CMA) to the modulation of HIF-1α activity in TMZ-sensitive and TMZ-resistant cells. Results The results showed that HIF-1α but not HIF-2α activity is associated with GBM responsiveness to TMZ: its downregulation improves the response of TMZ-resistant cells, while blocking CMA-mediated HIF-1α degradation induces resistance to TMZ in TMZ-sensitive cells. These findings are in line with the modulation of crucial apoptosis-related genes. Conclusion Our results demonstrate the central role played by HIF-1α activity in determining the sensitivity or resistance of GBMs to TMZ, and we suggest that CMA is the cellular mechanism responsible for modulating this activity after TMZ treatment.
Collapse
Affiliation(s)
- Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Lucignani
- Department of Health Sciences, University of Milan, Milan, Italy.,Department of Diagnostic Services, Unit of Nuclear Medicine, San Paolo Hospital, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
68
|
Ji M, Wang L, Chen J, Xue N, Wang C, Lai F, Wang R, Yu S, Jin J, Chen X. CAT 3, a prodrug of 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro[9,10-b]-indolizidine, circumvents temozolomide-resistant glioblastoma via the Hedgehog signaling pathway, independently of O 6-methylguanine DNA methyltransferase expression. Onco Targets Ther 2018; 11:3671-3684. [PMID: 29983575 PMCID: PMC6026589 DOI: 10.2147/ott.s163535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a malignant high-grade glioma with a poor clinical outcome. Temozolomide (TMZ) is the first-line GBM chemotherapy; however, patients commonly develop resistance to its effects. MATERIALS AND METHODS We investigated the antitumor activity of CAT3 in TMZ-resistant glioblastoma cell lines U251/TMZ and T98G. Orthotopic and subcutaneous mice tumor models were used to investigate the effects of various treatment regimes. RESULTS We found that PF403, the active metabolite of CAT3, inhibited proliferation of both cell lines. PF403 repressed the Hedgehog signaling pathway in the U251/TMZ cell line, reduced O6-methylguanine DNA methyltransferase (MGMT) expression, and abolished the effects of the Shh pathway. Moreover, PF403 blocked the Hedgehog signaling pathway in T98G MGMT-expressing cells and downregulated the expression of MGMT. CAT3 suppressed growth in the U251/TMZ orthotopic and T98G subcutaneous xenograft tumor models in vivo. We also demonstrated that inhibition of the Hedgehog pathway by PF403 counteracted TMZ resistance and enhanced the antitumor activity of TMZ in vitro and in vivo. CONCLUSION These results indicate that CAT3 is a potential therapeutic agent for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Liyuan Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Ju Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Nina Xue
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Chunyang Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Fangfang Lai
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Rubing Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Shishan Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, ;
| |
Collapse
|
69
|
Qiu Y, Li Z, Copland JA, Mehrling T, Tun HW. Combined alkylation and histone deacetylase inhibition with EDO-S101 has significant therapeutic activity against brain tumors in preclinical models. Oncotarget 2018; 9:28155-28164. [PMID: 29963268 PMCID: PMC6021334 DOI: 10.18632/oncotarget.25588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
There is a clear unmet need for novel therapeutic agents for management of primary and secondary brain tumors. Novel therapeutic agents with excellent central nervous system (CNS) penetration and therapeutic activity are urgently needed. EDO-S101 is a novel alkylating and histone deacetylase inhibiting agent created by covalent fusion of bendamustine and vorinostat. We used murine models to perform CNS pharmacokinetic analysis and preclinical therapeutic evaluation of EDO-S101 for CNS lymphoma, metastatic triple-negative breast cancer of the brain, and glioblastoma multiforme. EDO-S101 has excellent CNS penetration of 13.8% and 16.5% by intravenous infusion and bolus administration respectively. It shows promising therapeutic activity against CNS lymphoma, metastatic triple-negative breast cancer of the brain, and glioblastoma multiforme with significant prolongation of survival compared to no-treatment controls. Therapeutic activity was higher with IV infusion compared to IV bolus. It should be evaluated further for therapeutic use in brain tumors.
Collapse
Affiliation(s)
- Yushi Qiu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Zhimin Li
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Han W Tun
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.,Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
70
|
Abstract
Epigenetic alterations such as DNA methylation defects and aberrant covalent histone modifications occur within all cancers and are selected for throughout the natural history of tumor formation, with changes being detectable in early onset, progression, and ultimately recurrence and metastasis. The ascertainment and use of these marks to identify at-risk patient populations, refine diagnostic criteria, and provide prognostic and predictive factors to guide treatment decisions are of growing clinical relevance. Furthermore, the targetable nature of epigenetic modifications provides a unique opportunity to alter treatment paradigms and provide new therapeutic options for patients whose malignancies possess these aberrant epigenetic modifications, paving the way for new and personalized medicine. DNA methylation has proven to be of significant clinical utility for its stability and relative ease of testing. The intent of this review is to elaborate upon well-supported examples of epigenetic precision medicine and how the field is moving forward, primarily in the context of aberrant DNA methylation.
Collapse
Affiliation(s)
- Rachael J Werner
- From the *Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | |
Collapse
|
71
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
72
|
Povedano E, Vargas E, Montiel VRV, Torrente-Rodríguez RM, Pedrero M, Barderas R, Segundo-Acosta PS, Peláez-García A, Mendiola M, Hardisson D, Campuzano S, Pingarrón JM. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci Rep 2018; 8:6418. [PMID: 29686400 PMCID: PMC5913137 DOI: 10.1038/s41598-018-24902-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Eva Vargas
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Rodrigo Barderas
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Peláez-García
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group and Molecular Pathology Section, INGEMM, Hospital Universitario La Paz IdiPAZ, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, Madrid, Spain.,Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
73
|
Treatment of a glioblastoma multiforme dural metastasis with stereotactic radiosurgery: A case report and select review of the literature. J Clin Neurosci 2018; 48:118-121. [DOI: 10.1016/j.jocn.2017.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 11/23/2022]
|
74
|
Umans RA, Sontheimer H. Combating malignant astrocytes: Strategies mitigating tumor invasion. Neurosci Res 2018; 126:22-30. [PMID: 29054465 PMCID: PMC6880651 DOI: 10.1016/j.neures.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Malignant gliomas are glial-derived, primary brain tumors that carry poor prognosis. Existing therapeutics are largely ineffective and dramatically affect quality of life. The standard of care details a taxing combination of surgical resection, radiation of the resection cavity, and temozolomide (TMZ) chemotherapy, with treatment extending life by only an average of months (Maher et al., 2001; Stupp et al., 2005). Despite scientific and technological advancement, surgery remains the most important treatment modality. Therapeutic obstacles include xenobiotic protection conveyed by the blood-brain barrier (Zhang et al., 2015), invasiveness and therapeutic resistance of tumor cell populations (Bao et al., 2006), and distinctive attributes of secondary glioma occurrence (Ohgaki and Kleihues, 2013). While these brain malignancies can be classified by grade or grouped by molecular subclass, each tumor presents itself as its own complication. Based on all of these obstacles, new therapeutic approaches are urgently needed. These will likely emerge from numerous exciting studies of glioma biology that are ongoing and reviewed here. These show unexpected roles for ion channels, amino-acid transporters, and connexin gap junctions in supporting the invasive growth of gliomas. These studies have identified a number of proteins that may be targeted for therapy in the future.
Collapse
Affiliation(s)
- Robyn A Umans
- Center for Glial Biology in Health and Disease, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Harald Sontheimer
- Center for Glial Biology in Health and Disease, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
75
|
Toraih EA, Aly NM, Abdallah HY, Al-Qahtani SA, Shaalan AA, Hussein MH, Fawzy MS. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol 2017; 39:1010428317726842. [PMID: 29110584 DOI: 10.1177/1010428317726842] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of microRNAs in brain cancer is still naive. Some act as oncogene and others as tumor suppressors. Discovery of efficient biomarkers is mandatory to debate that aggressive disease. Bioinformatically selected microRNAs and their targets were investigated to evaluate their putative signature as diagnostic and prognostic biomarkers in primary glioblastoma multiforme. Expression of a panel of seven microRNAs (hsa-miR-34a, hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, hsa-miR-326, and hsa-miR-375) and seven target genes ( E2F3, PI3KCA, TOM34, WNT5A, PDCD4, DFFA, and EGFR) in 43 glioblastoma multiforme specimens were profiled compared to non-cancer tissues via quantitative reverse transcription-polymerase chain reaction. Immunohistochemistry staining for three proteins (VEGFA, BAX, and BCL2) was performed. Gene enrichment analysis identified the biological regulatory functions of the gene panel in glioma pathway. MGMT ( O-6-methylguanine-DNA methyltransferase) promoter methylation was analyzed for molecular subtyping of tumor specimens. Our data demonstrated a significant upregulation of five microRNAs (hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, and hsa-miR-375), three genes ( E2F3, PI3KCA, and Wnt5a), two proteins (VEGFA and BCL2), and downregulation of hsa-miR-34a and three other genes ( DFFA, PDCD4, and EGFR) in brain cancer tissues. Receiver operating characteristic analysis revealed that miR-34a (area under the curve = 0.927) and miR-17 (area under the curve = 0.900) had the highest diagnostic performance, followed by miR-221 (area under the curve = 0.845), miR-21 (area under the curve = 0.836), WNT5A (area under the curve = 0.809), PDCD4 (area under the curve = 0.809), and PI3KCA (area under the curve = 0.800). MGMT promoter methylation status was associated with high miR-221 levels. Moreover, patients with VEGFA overexpression and downregulation of TOM34 and BAX had poor overall survival. Nevertheless, miR-17, miR-221, and miR-326 downregulation were significantly associated with high recurrence rate. Multivariate analysis by hierarchical clustering classified patients into four distinct groups based on gene panel signature. In conclusion, the explored microRNA-target dysregulation could pave the road toward developing potential therapeutic strategies for glioblastoma multiforme. Future translational and functional studies are highly recommended to better understand the complex bio-molecular signature of this difficult-to-treat tumor.
Collapse
Affiliation(s)
- Eman Ali Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagwa Mahmoud Aly
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Saeed Awad Al-Qahtani
- 3 Department of Physiology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Aly Am Shaalan
- 4 Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Anatomy and Histology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Manal Said Fawzy
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
76
|
Meng W, Jiang Y, Ma J. Is the prognostic significance of O6-methylguanine- DNA methyltransferase promoter methylation equally important in glioblastomas of patients from different continents? A systematic review with meta-analysis. Cancer Manag Res 2017; 9:411-425. [PMID: 29033608 PMCID: PMC5614747 DOI: 10.2147/cmar.s140447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) is an independent predictor of therapeutic response and potential prognosis in patients with glioblastoma multiforme (GBM). However, its significance of clinical prognosis in different continents still needs to be explored. PATIENTS AND METHODS To explore the effects of MGMT promoter methylation on both progression-free survival (PFS) and overall survival (OS) among GBM patients from different continents, a systematic review of published studies was conducted. RESULTS A total of 5103 patients from 53 studies were involved in the systematic review and the total percentage of MGMT promoter methylation was 45.53%. Of these studies, 16 studies performed univariate analyses and 17 performed multivariate analyses of MGMT promoter methylation on PFS. The pooled hazard ratio (HR) estimated for PFS was 0.55 (95% CI 0.50, 0.60) by univariate analysis and 0.43 (95% CI 0.38, 0.48) by multivariate analysis. The effect of MGMT promoter methylation on OS was explored in 30 studies by univariate analysis and in 30 studies by multivariate analysis. The combined HR was 0.48 (95% CI 0.44, 0.52) and 0.42 (95% CI 0.38, 0.45), respectively. CONCLUSION In each subgroup divided by areas, the prognostic significance still remained highly significant. The proportion of methylation in each group was in inverse proportion to the corresponding HR in the univariate and multivariate analyses of PFS. However, from the perspective of OS, compared with data from Europe and the US, higher methylation rates in Asia did not bring better returns.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yangyang Jiang
- Department of Neurosurgery, Shanghai Deji Hospital, Shanghai Neuromedical Center Affiliated to Qingdao University, Shanghai, People's Republic of China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
77
|
Sasmita AO, Wong YP, Ling APK. Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac J Clin Oncol 2017; 14:40-51. [PMID: 28840962 DOI: 10.1111/ajco.12756] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor within the brain. Generally classified as primary and secondary with several different subtypes, ample molecular biomarkers have risen throughout the years which have garnered the attention of researchers. The advancements in genomics and proteomics have allowed researchers to gather prominent molecular biomarkers. All these biomarkers are gathered by means of biopsy or bodily fluid sample collection and are quantitatively analyzed by polymerase chain reaction coupled with other computational technologies. This review highlights the significance, regulation and prevalence of molecular biomarkers such as O6 -methylguanine-DNA methyltransferase, epidermal growth factor receptor vIII, isocitrate dehydrogenase mutation and several others which expressed differently in different types and molecular subtypes of GBM. The discoveries and roles of GBM-specific microRNAs including miR-21 and miR-10b as biomarkers with promising prognostic values were also delineated. The role and mechanism of biomarkers in GBM tumorigenesis are essential in the development of therapy for patients suffering from the disease itself. Thus, this review also discusses the mechanisms, effects and limitations of therapy such as temozolomide, viral gene transfer, biomarker-based vaccines or even engineered T cells for more specific responses. Biomarkers have displayed a high value and could eventually be utilized as drug targets. It is hoped that by combining different aspects of the disease which present with different biomarkers could lead to the development of a robust, effective and innovative take on GBM therapy.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences & Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences & Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences & Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
78
|
Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2017; 51:149-159. [PMID: 28807546 DOI: 10.1016/j.semcancer.2017.08.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.
Collapse
|
79
|
Tripathy K, Das B, Singh AK, Misra A, Misra S, Misra SS. Prognostic Significance of Epidermal Growth Factor Receptor in Patients of Glioblastoma Multiforme. J Clin Diagn Res 2017; 11:EC05-EC08. [PMID: 28969132 DOI: 10.7860/jcdr/2017/30138.10327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/05/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Glioblastoma Multiforme (GBM) is the most aggressive glial tumour with hallmark characteristics of rampant proliferation of glial cells along with high pleomorphism, necrosis, endothelial proliferation and high MIB-1 labeling index (cell proliferation marker). These tumours are managed by surgery followed by Radiotherapy (RT), Chemotherapy (CT) and adjuvant CT Temozolomide (TMZ). AIM To evaluate Epidermal Growth Factor Receptor (EGFR) protein expression in GBM patients. MATERIALS AND METHODS The study comprised of 52 cases of GBM diagnosed by histomorphology from biopsy specimens. Ancillary techniques like Immunohistochemistry (IHC) for Glial Fibrillary Acidic Protein (GFAP), cell proliferation marker (MIB-1 labeling index, P53 expressions) were done in all cases. EGFR protein expression was assessed by IHC as the percentage of positive tumour cells in hot spots (10 high power fields). Response to therapy was assessed at three months post therapy by using World Health Organization (WHO) Response Evaluation Criteria In Solid Tumours (RECIST) guideline. Statistical analysis was performed by using IBM-Statistical Package for Social Sciences (SPSS) software, version 20. The p-value of ≤ 0.05 was considered significant. The mean survival of the patients was calculated using unpaired t-test and ANOVA (analysis of variance) test. RESULTS Out of 52 cases, thirty cases was EGFR positive and 22 cases were EGFR negative. Response to therapy was evident in 33 (63.5%) cases and 19 cases (36.5%) were non responders. The responders with EGFR negative were 86.4% and EGFR positive were 46.7% with a p-value of 0.003. The mean survival among EGFR positive and negative GBM were 315.73±257.54 and 657.91±305.88 days respectively with a significant p-value of 0.001. CONCLUSION EGFR negative patients respond better to therapy along with longer duration of survival as compared to EGFR positive patient.
Collapse
Affiliation(s)
- Kalpalata Tripathy
- Assistant Professor, Department of Pathology, SCB Medical College, Cuttack, Odisha, India
| | - Bidyutprava Das
- Associate Professor, Department of Pathology, SCB Medical College, Cuttack, Odisha, India
| | - Ajit Kumar Singh
- Postgraduate Student, Department of Pathology, SCB Medical College, Cuttack, Odisha, India
| | - Aparajita Misra
- Assistant Professor, Department of Pathology, SCB Medical College, Cuttack, Odisha, India
| | - Sanjib Misra
- Professor, Department of Neurosurgery, SCB Medical College, Cuttack, Odisha, India
| | | |
Collapse
|
80
|
Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm 2017; 531:372-388. [PMID: 28755993 DOI: 10.1016/j.ijpharm.2017.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour, and the most aggressive in nature. The prognosis for patients with GBM remains poor, with a median survival time of only 1-2 years. The treatment failure relies on the development of resistance by tumour cells and the difficulty of ensuring that drugs effectively cross the dual blood brain barrier/blood brain tumour barrier. The advanced molecular and genetic knowledge has allowed to identify the mechanisms responsible for temozolomide resistance, which represents the standard of care in GBM, along with surgical resection and radiotherapy. Such resistance has motivated the researchers to investigate new avenues for GBM treatment intended to improve patient survival. In this review, we provide an overview of major obstacles to effective treatment of GBM, encompassing biological barriers, cancer stem cells, DNA repair mechanisms, deregulated signalling pathways and autophagy. New insights and potential therapy approaches for GBM are also discussed, emphasizing localized chemotherapy delivered directly to the brain, immunotherapy, gene therapy and nanoparticle-mediated brain drug delivery.
Collapse
Affiliation(s)
- Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - María Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Spain
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal.
| |
Collapse
|
81
|
MicroRNA Regulation of Glycolytic Metabolism in Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9157370. [PMID: 28804724 PMCID: PMC5539934 DOI: 10.1155/2017/9157370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and common malignant brain tumour in adults. A well-known hallmark of GMB and many other tumours is aerobic glycolysis. MicroRNAs (miRNAs) are a class of short nonprotein coding sequences that exert posttranscriptional controls on gene expression and represent critical regulators of aerobic glycolysis in GBM. In GBM, miRNAs regulate the expression of glycolytic genes directly and via the regulation of metabolism-associated tumour suppressors and oncogenic signalling pathways. This review aims to establish links between miRNAs expression levels, the expression of GBM glycolytic regulatory genes, and the malignant progression and prognosis of GBM. In this review, the involvement of 25 miRNAs in the regulation of glycolytic metabolism of GBM is discussed. Seven of these miRNAs have been shown to regulate glycolytic metabolism in other tumour types. Further eight miRNAs, which are differentially expressed in GBM, have also been reported to regulate glycolytic metabolism in other cancer types. Thus, these miRNAs could serve as potential glycolytic regulators in GBM but will require functional validation. As such, the characterisation of these molecular and metabolic signatures in GBM can facilitate a better understanding of the molecular pathogenesis of this disease.
Collapse
|
82
|
Chakravarthi BVSK, Nepal S, Varambally S. Genomic and Epigenomic Alterations in Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1724-35. [PMID: 27338107 DOI: 10.1016/j.ajpath.2016.02.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 12/20/2022]
Abstract
Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research.
Collapse
Affiliation(s)
| | - Saroj Nepal
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
83
|
Würstle S, Schneider F, Ringel F, Gempt J, Lämmer F, Delbridge C, Wu W, Schlegel J. Temozolomide induces autophagy in primary and established glioblastoma cells in an EGFR independent manner. Oncol Lett 2017; 14:322-328. [PMID: 28693171 DOI: 10.3892/ol.2017.6107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/13/2017] [Indexed: 01/16/2023] Open
Abstract
Despite major contributions to the current molecular understanding of autophagy, a recycling process for intracellular components to maintain homeostatic balance, relatively little is known about the interacting networks. To address this issue, the current study investigated the role of autophagy in primary and established glioblastoma multiforme (GBM) cells and its interplay with the epidermal growth factor receptor (EGFR) and the standard chemotherapeutic agent temozolomide (TMZ). TMZ treatment leads to an upregulation of autophagy, predominantly in primary GBM cells. The interaction between EGFR and Beclin-1, an important protein in initiating autophagy, was assessed using a cancer cell line transfected with EGFRvIII, and by stimulation with EGF. The results of the current study suggest that Beclin-1 and EGFR do not interact directly in either primary or established GBM cells. To enable the limited efficacy of patient treatment strategies of GBM to potentially be enhanced through the application of autophagy regulators, the multiple cellular interactions of autophagy require further elucidation.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Fabian Schneider
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Technische Universität München, D-81675 Munich, Germany.,Department of Neurosurgery, Universitätsmedizin Mainz, D-55131 Mainz, Germany
| | - Jens Gempt
- Department of Neurosurgery, Technische Universität München, D-81675 Munich, Germany
| | - Friederike Lämmer
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Wei Wu
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| |
Collapse
|
84
|
Semukunzi H, Roy D, Li H, Khan GJ, Lyu X, Yuan S, Lin S. IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α. Biomed Pharmacother 2017; 89:805-811. [PMID: 28273642 DOI: 10.1016/j.biopha.2017.02.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Particular mutations in the isocitrate dehydrogenase gene (IDH) were discovered in several gliomas citing astrocytoma, oligodendroglioma, and glioblastoma multiform, but also in leukemia; these mutations were discovered in nearly all cases of secondary glioblastomas, they evolve from lower-grade gliomas, but are limited in primary high-grade glioblastoma multiform. These mutations distinctively produce (D)-2-hydroxyglutarate (D-2-HG) from alpha-ketoglutarate (α-KG). (D)-2-hydroxyglutarate is accumulated to very high concentrations which inhibit the function of enzymes that are dependent on alpha-ketoglutarate. This modification leads to a hyper-methylated state of DNA and histones, resulting in different gene expression that can activate oncogenes and inactivate tumor-suppressor genes. In our work we review the impact of the mutations that occur in IDH genes, we focus on their impact on distribution in cancer. As IDH mutations appear in many different conditions we expose the extent of IDH mutations and derivate their impact on cancer prognosis, diagnosis, and even their oncogenicity, we will also link their impact to HIF-1α and derivate some target and finally, we present some of the therapeutics under research and out on market.
Collapse
Affiliation(s)
- Herve Semukunzi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Debmalya Roy
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyang Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ghulam Jilany Khan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodan Lyu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
85
|
Abstract
The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing and regulation is spurring a revolution in biology. Paired with the rapid expansion of reference and personalized genomic sequence information, technologies based on CRISPR-Cas are enabling nearly unlimited genetic manipulation, even in previously difficult contexts, including human cells. Although much attention has focused on the potential of CRISPR-Cas to cure Mendelian diseases, the technology also holds promise to transform the development of therapies to treat complex heritable and somatic disorders. In this Review, we discuss how CRISPR-Cas can affect the next generation of drugs by accelerating the identification and validation of high-value targets, uncovering high-confidence biomarkers and developing differentiated breakthrough therapies. We focus on the promises, pitfalls and hurdles of this revolutionary gene-editing technology, discuss key aspects of different CRISPR-Cas screening platforms and offer our perspectives on the best practices in genome engineering.
Collapse
|
86
|
Lapointe S, Florescu M, Simonyan D, Michaud K. Impact of standard care on elderly glioblastoma patients. Neurooncol Pract 2016; 4:4-14. [PMID: 31385982 DOI: 10.1093/nop/npw011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 11/13/2022] Open
Abstract
Background Uncertainty persists about the survival advantage of concomitant and adjuvant temozolomide (TMZ) plus radiotherapy (RT) in elderly patients with newly diagnosed glioblastoma (GBM). We compared the clinical outcome of unselected elderly GBM patients treated with 4 adjuvant treatment modalities, including the Stupp protocol. Methods From 2010 to 2014, retrospective chart review was performed on 171 GBM patients aged ≥55 who received either concurrent chemoradiation therapy (CCRT) with standard 60 Gy/30 (SRT); CCRT with hypofractionated 40 Gy/15 (HRT); HRT alone; or TMZ alone. Stratification is by age (55-69, ≥70), KPS (<70, ≥70), and resection status (biopsy, resection). Results Out of 171 patients identified, 128(75%) had surgical resection, median age was 66(55-83), and median overall survival (mOS) 11.4mo. Majority (109/171) were treated according to the Stupp protocol (CCRT-SRT), and 106/171 received post-CCRT adjuvant TMZ (median of 3 cycles). In our population, age <70yo was a significant prognostic factor (mOS of patients aged 55-69 vs ≥70 yo = 13.3 vs 6.6 mo; P = .001). However, among the population receiving the Stupp regimen, there was no difference in survival between patients aged 55-69 and those ≥70 (respectively, 14.4 vs 13.2 mo; P = .798). Patients ≥70 yo had similar survival when treated with CCRT-HRT and CCRT-SRT (P = .248), although numbers were small. Conclusions Our data suggests that, despite having a worse global prognostic than their younger counterparts, GBM patients ≥70yo with a good performance status could be treated according to the Stupp protocol with similar survival. Theses results need prospective confirmation.
Collapse
Affiliation(s)
- Sarah Lapointe
- Neurology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (S.L.); Hematology and Oncology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (M.F.); Neurosurgery Division, CHU Enfant-Jésus Hospital, Laval University, 1401 18th street, Québec G1J1Z4, Canada (K.M.); Clinical and Evaluative Research Platform, CHU de Québec Research Center, 10 de l'Espinay, D6-747, Québec, QC, G1L 3L5, Canada (D.S.)
| | - Marie Florescu
- Neurology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (S.L.); Hematology and Oncology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (M.F.); Neurosurgery Division, CHU Enfant-Jésus Hospital, Laval University, 1401 18th street, Québec G1J1Z4, Canada (K.M.); Clinical and Evaluative Research Platform, CHU de Québec Research Center, 10 de l'Espinay, D6-747, Québec, QC, G1L 3L5, Canada (D.S.)
| | - David Simonyan
- Neurology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (S.L.); Hematology and Oncology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (M.F.); Neurosurgery Division, CHU Enfant-Jésus Hospital, Laval University, 1401 18th street, Québec G1J1Z4, Canada (K.M.); Clinical and Evaluative Research Platform, CHU de Québec Research Center, 10 de l'Espinay, D6-747, Québec, QC, G1L 3L5, Canada (D.S.)
| | - Karine Michaud
- Neurology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (S.L.); Hematology and Oncology Division, CHUM Notre-Dame Hospital, University of Montreal, 1560 Sherbrooke East, Montreal H2L 4M1, Canada (M.F.); Neurosurgery Division, CHU Enfant-Jésus Hospital, Laval University, 1401 18th street, Québec G1J1Z4, Canada (K.M.); Clinical and Evaluative Research Platform, CHU de Québec Research Center, 10 de l'Espinay, D6-747, Québec, QC, G1L 3L5, Canada (D.S.)
| |
Collapse
|
87
|
Methyl Guanine Methyl Transferase Methylation Status and Epidermal Growth Factor Receptor expression in a cohort of Egyptian glioblastoma patients. EGYPTIAN JOURNAL OF PATHOLOGY 2016. [DOI: 10.1097/01.xej.0000511094.91402.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
88
|
Afatinib, an irreversible ErbB family blocker, with protracted temozolomide in recurrent glioblastoma: a case report. Oncotarget 2016; 6:34030-7. [PMID: 26423602 PMCID: PMC4741824 DOI: 10.18632/oncotarget.5297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
There are few effective treatments for recurrent glioblastoma multiforme (GBM). We present a patient with recurrent GBM who achieved a prolonged response to treatment with afatinib, an irreversible ErbB family blocker, plus temozolomide. A 58-year-old female patient was diagnosed with multifocal primary GBM. After surgical resection, first-line therapy comprised radiotherapy and temozolomide. Following disease progression after 3 temozolomide cycles, the patient entered a phase I/II clinical trial of afatinib (20-40 mg daily for 28 days) plus temozolomide (50 mg/m2 every 21/28 days). Next-generation sequencing analysis of the brain tumor specimen was performed. At the last assessment, 63 treatment cycles had been completed and the patient had survived for ~5 years since recurrence. Significant disease regression was observed after 5 cycles and was maintained during long-term follow-up. Adverse events were consistent with the known tolerability profile of afatinib and were managed by treatment interruption/dose reduction. The patient had several epidermal growth factor receptor (EGFR) aberrations, including gene amplification and EGFRvIII positivity. Three somatic mutations were identified, including an unprecedented extracellular-domain substitution (D247Y). The patient has survived ~6-fold longer than normally expected in patients with recurrent GBM. The complex EGFR genotype may underlie sustained response to afatinib plus temozolomide.
Collapse
|
89
|
Shankar A, Jain M, Lim MJ, Angara K, Zeng P, Arbab SA, Iskander A, Ara R, Arbab AS, Achyut BR. Anti-VEGFR2 driven nuclear translocation of VEGFR2 and acquired malignant hallmarks are mutation dependent in glioblastoma. ACTA ACUST UNITED AC 2016; 8:172-178. [PMID: 28149448 DOI: 10.4172/1948-5956.1000410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Anti-angiogenic therapies (AATs), targeting VEGF-VEGFR pathways, are being used as an adjuvant to normalize glioblastoma (GBM) vasculature. Unexpectedly, clinical trials have witnessed transient therapeutic effect followed by aggressive tumor recurrence. In pre-clinical studies, targeting VEGFR2 with vatalanib, increased GBM growth under hypoxic microenvironment. There is limited understanding of these unanticipated results. Here, we investigated tumor cell associated phenotypes in response to VEGFR2 blockade. METHODS Human U251 cells were orthotopically implanted in mice (day 0) and were treated with vehicle or vatalanib on day 8. Tumor specimens were collected for immunohistochemistry and protein array. Nuclear translocation of VEGFR2 was analyzed through IHC and western blot. In vitro studies were performed in U251 (p53 and EGFR mutated) and U87 (p53 and EGFR wildtype) cells following vehicle or vatalanib treatments under normoxia (21% O2) and hypoxia (1% O2). Proliferation, cell cycle and apoptosis assays were done to analyze tumor cell phenotypes after treatments. RESULTS Vatalanib treated animals displayed distinct patterns of VEGFR2 translocation into nuclear compartment of U251 tumor cells. In vitro studies suggest that vatalanib significantly induced nuclear translocation of VEGFR2, characterized in chromatin bound fraction, especially in U251 tumor cells grown under normoxia and hypoxia. Anti-VEGFR2 driven nuclear translocation of VEGFR2 was associated with increased cell cycle and proliferation, decreased apoptosis, and displayed increased invasiveness in U251 compared to U87 cells. CONCLUSIONS Study suggests that AAT- induced molecular and phenotypic alterations in tumor cells are associated with mutation status and are responsible for aggressive tumor growth. Therefore, mutation status of the tumor in GBM patients should be taken in to consideration before applying targeted therapy to overcome unwanted effects.
Collapse
Affiliation(s)
- Adarsh Shankar
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Mei Jing Lim
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Kartik Angara
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Peng Zeng
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Syed A Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Asm Iskander
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Roxan Ara
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| |
Collapse
|
90
|
Stepanenko AA, Andreieva SV, Korets KV, Mykytenko DO, Baklaushev VP, Huleyuk NL, Kovalova OA, Kotsarenko KV, Chekhonin VP, Vassetzky YS, Avdieiev SS, Dmitrenko VV. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int 2016; 16:36. [PMID: 27158244 PMCID: PMC4858898 DOI: 10.1186/s12935-016-0311-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line drug for the treatment of glioblastoma. Long-term TMZ-treated tumour cells acquire TMZ resistance by profound reprogramming of the transcriptome, proteome, kinome, metabolism, and demonstrate versatile and opposite changes in proliferation, invasion, in vivo growth, and drug cross-resistance. We hypothesized that chromosomal instability (CIN) may be implicated in the generation of TMZ-driven molecular and phenotype diversity. CIN refers to the rate (cell-to-cell variability) with which whole chromosomes or portions of chromosomes are gained or lost. METHODS The long-term TMZ-treated cell lines were established in vitro (U251TMZ1, U251TMZ2, T98GTMZ and C6TMZ) and in vivo (C6R2TMZ). A glioma model was achieved by the intracerebral stereotactic implantation of C6 cells into the striatum region of rats. Genomic and phenotypic changes were analyzed by conventional cytogenetics, array CGH, trypan blue exclusion assay, soft agar colony formation assay, scratch wound healing assay, transwell invasion assay, quantitative polymerase chain reaction, and Western blotting. RESULTS Long-term TMZ treatment increased CIN-mediated genomic diversity in U251TMZ1, U251TMZ2 and T98GTMZ cells but reduced it in C6TMZ and C6R2TMZ cells. U251TMZ1 and U251TMZ2 cell lines, established in parallel with a similar treatment procedure with the only difference in the duration of treatment, underwent individual phenotypic changes. U251TMZ1 had a reduced proliferation and invasion but increased migration, whereas U251TMZ2 had an enhanced proliferation and invasion but no changes in migration. U251TMZ1 and U251TMZ2 cells demonstrated individual patterns in expression/activation of signal transduction proteins (e.g., MDM2, p53, ERK, AKT, and ASK). C6TMZ and C6R2TMZ cells had lower proliferation, colony formation efficiency and migration, whereas T98GTMZ cells had increased colony formation efficiency without any changes in proliferation, migration, and invasion. TMZ-treated lines demonstrated a differential response to a reduction in glucose concentration and an increased resistance to TMZ re-challenge but not temsirolimus (mTOR inhibitor) or U0126 (MEK1/2 inhibitor) treatment. CONCLUSION Long-term TMZ treatment selected resistant genotype-phenotype variants or generated novel versatile phenotypes by increasing CIN. An increase of resistance to TMZ re-challenge seems to be the only predictable trait intrinsic to all long-term TMZ-treated tumour cells. Changes in genomic diversity may be responsible for heterogeneous phenotypes of TMZ-treated cell lines.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| | - Svitlana V Andreieva
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| | - Kateryna V Korets
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| | - Dmytro O Mykytenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| | - Vladimir P Baklaushev
- Department of Medicinal Nanobiotechnology, Pirogov Russian State Medical University, Ostrovitianov str. 1, Moscow, 117997 Russia ; Federal Research and Clinical Centre, FMBA of Russia, Orekhoviy Bulvar str. 28, Moscow, 115682 Russia
| | - Nataliya L Huleyuk
- Department of Diagnostic of Hereditary Pathology, Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lysenko str. 31A, Lviv, 79008 Ukraine
| | - Oksana A Kovalova
- Department of Experimental Cell System, R.E.Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Science of Ukraine, Vasylkivska str. 45, Kiev, 03022 Ukraine
| | - Kateryna V Kotsarenko
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| | - Vladimir P Chekhonin
- Department of Medicinal Nanobiotechnology, Pirogov Russian State Medical University, Ostrovitianov str. 1, Moscow, 117997 Russia
| | - Yegor S Vassetzky
- CNRS UMR8126, Institut de Cancérologie Gustave Roussy, Université Paris-Sud 11, Camille-Desmoulins str. 39, Villejuif, 94805 France
| | - Stanislav S Avdieiev
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| | - Vladimir V Dmitrenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Zabolotnogo str. 150, Kiev, 03680 Ukraine
| |
Collapse
|
91
|
Fluorogenic Real-Time Reporters of DNA Repair by MGMT, a Clinical Predictor of Antitumor Drug Response. PLoS One 2016; 11:e0152684. [PMID: 27035132 PMCID: PMC4818092 DOI: 10.1371/journal.pone.0152684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/17/2016] [Indexed: 01/26/2023] Open
Abstract
Common alkylating antitumor drugs, such as temozolomide, trigger their cytotoxicity by methylating the O6-position of guanosine in DNA. However, the therapeutic effect of these drugs is dampened by elevated levels of the DNA repair enzyme, O6-methylguanine DNA methyltransferase (MGMT), which directly reverses this alkylation. As a result, assessing MGMT levels in patient samples provides an important predictor of therapeutic response; however, current methods available to measure this protein are indirect, complex and slow. Here we describe the design and synthesis of fluorescent chemosensors that report directly on MGMT activity in a single step within minutes. The chemosensors incorporate a fluorophore and quencher pair, which become separated by the MGMT dealkylation reaction, yielding light-up responses of up to 55-fold, directly reflecting repair activity. Experiments show that the best-performing probe retains near-native activity at mid-nanomolar concentrations. A nuclease-protected probe, NR-1, was prepared and tested in tumor cell lysates, demonstrating an ability to evaluate relative levels of MGMT repair activity in twenty minutes. In addition, a probe was employed to evaluate inhibitors of MGMT, suggesting utility for discovering new inhibitors in a high-throughput manner. Probe designs such as that of NR-1 may prove valuable to clinicians in selection of patients for alkylating drug therapies and in assessing resistance that arises during treatment.
Collapse
|
92
|
Rennert RC, Hochberg FH, Carter BS. ExRNA in Biofluids as Biomarkers for Brain Tumors. Cell Mol Neurobiol 2016; 36:353-60. [PMID: 26993514 DOI: 10.1007/s10571-015-0284-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
Patients with high-grade gliomas and glioblastomas (GBMs) have poor survival despite optimal surgical and drug therapy. Minimally invasive diagnostic biomarkers would enable early diagnosis and tumor-specific treatments for 'personalized targeted' therapy, and would create the basis for response tracking in patients with GBM. Extracellular vesicles (EVs) isolated from cerebrospinal fluid and blood contain glioma-specific molecules, including tumor-derived EV RNAs that are detectable in small copy numbers in these biofluids. EV RNA mutations or expression changes are also detectable, the analysis of which gives rise to 'liquid biopsy' tumor profiling.
Collapse
Affiliation(s)
- Robert C Rennert
- Department of Neurosurgery, University of California - San Diego, 3855 Health Science Drive #0987, La Jolla, San Diego, CA, 92093-0987, USA.
| | - Fred H Hochberg
- Department of Neurosurgery, University of California - San Diego, 3855 Health Science Drive #0987, La Jolla, San Diego, CA, 92093-0987, USA
| | - Bob S Carter
- Department of Neurosurgery, University of California - San Diego, 3855 Health Science Drive #0987, La Jolla, San Diego, CA, 92093-0987, USA
| |
Collapse
|
93
|
Ge N, Guo L, Zhang J, Lin Z, Li Y, Liu Y, Kong F, Fang X, Zhao S. Impact of O6-methylguanine-DNA methyltransferase expression on the drug resistance of clear cell renal cell carcinoma. Jpn J Clin Oncol 2015; 45:860-6. [PMID: 26185135 DOI: 10.1093/jjco/hyv095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The deoxyribonucleic acid-repair protein O(6)-methylguanine-deoxyribonucleic acid methyltransferase is a major determinant of resistance of cells to various alkylating drugs. Its expression profile is different in different cancer types. Here, we studied the expression and function of O(6)-methylguanine-deoxyribonucleic acid methyltransferase in clear cell renal cell carcinoma. METHODS The expression of O(6)-methylguanine-deoxyribonucleic acid methyltransferase was evaluated in clear cell renal cell carcinoma tissues and cell lines by quantitative real-time polymerase chain reaction and immunohistochemistry. The relationship between O(6)-methylguanine-deoxyribonucleic acid methyltransferase expression and clinicopathological characteristics was analyzed. To further investigate the function of O(6)-methylguanine-deoxyribonucleic acid methyltransferase in clear cell renal cell carcinoma resistance to alkylating agents, siRNA targeting O(6)-methylguanine-deoxyribonucleic acid methyltransferase were used to silence the O(6)-methylguanine-deoxyribonucleic acid methyltransferase expression. RESULTS We found that O(6)-methylguanine-deoxyribonucleic acid methyltransferase is over-expressed in clear cell renal cell carcinoma tissues and cell lines. O(6)-methylguanine-deoxyribonucleic acid methyltransferase expression is related with tumor progression in clear cell renal cell carcinoma patients. Up-regulation of O(6)-methylguanine-deoxyribonucleic acid methyltransferase plays a critical role in primary resistance to alkylating agents. CONCLUSIONS The overexpression of O(6)-methylguanine-deoxyribonucleic acid methyltransferase contributes to resistance of clear cell renal cell carcinoma to standard chemotherapy. Our results have significance for understanding a new pathway of the development of drug resistance of clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Nan Ge
- Department of Urology Surgery, The Second Hospital, Shandong University, Jinan
| | - Liqiang Guo
- Department of Urology Surgery, The Second Hospital, Shandong University, Jinan
| | - Jie Zhang
- Department of Urology Surgery, The Second Hospital, Shandong University, Jinan
| | - Zhaomin Lin
- Central Research Laboratory, The Second Hospital, Shandong University, Jinan
| | - Yan Li
- Department of Radiology, The Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yuqiang Liu
- Department of Urology Surgery, The Second Hospital, Shandong University, Jinan
| | - Feng Kong
- Central Research Laboratory, The Second Hospital, Shandong University, Jinan
| | - Xiaolei Fang
- Department of Urology Surgery, The Second Hospital, Shandong University, Jinan
| | - Shengtian Zhao
- Department of Urology Surgery, The Second Hospital, Shandong University, Jinan
| |
Collapse
|
94
|
Abstract
Glioblastoma Multiforme (GBM), a uniformly lethal stage IV astrocytoma, is currently treated with a combination of surgical and radiation therapy as well as Temozolomide (TMZ) chemotherapy. Resistance to TMZ is rapidly acquired by GBM cells and overcoming this resistance has been an area of signi?cant research. GBM 'cancer stem cells' (CSC) also known as 'cancer initiating cells' are often positively selected by CD133 expression and TMZ resistance. In this project, we selected GBM CSC from two cell lines based on CD133 expression. CD133+ and CD133- GBM cells showed comparable cell cycle status. The expression of genes within the Sonic Hedgehog Signaling pathway, PTCH1 (SHH receptor/basal signaling repressor) and Gli1 (effector transcription factor) were increased. The recent literature indicated a decreased in PTCH expression by miRNA and this was independent of SHH expression. We analyzed 5 potential PTCH-targeting miRNA and identi?ed an increase in miRNA-9-2. The CD133+ cells showed an increase in the Multiple Drug Resistance 1 gene (MDR1). Knockdown of Gli1 and MDR1 with siRNA enhanced TMZ induced cell death. Taken together, these studies show CD133+ GBM CSCs expressed greater levels of miR-9 and activation of the SHH/PTCH1/MDR1 axis. This axis has been shown to impart TMZ resistance. In the case of the CD133+ cells, the resistance is not acquires but seems to be inherent. Identi?cation of this pathway as well as the identi?cation of miR-9 may allow for the development of miRNA-targeted approach to Cancer Stem Cell therapy in GBM.
Collapse
|
95
|
Gratas C, Séry Q, Rabé M, Oliver L, Vallette FM. Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma. Oncotarget 2015; 5:2428-35. [PMID: 24811082 PMCID: PMC4058016 DOI: 10.18632/oncotarget.1642] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent used for the treatment of glioblastoma multiforme (GBM), the main form of human brain tumours in adults. It has been reported that TMZ induced DNA lesions that subsequently trigger cell death but the actual mechanisms involved in the process are still unclear. We investigated the implication of major proteins of the Bcl-2 family in TMZ-induced cell death in GBM cell lines at concentrations closed to that reached in the brain during the treatments. We did not observe modulation of autophagy at these concentrations but we found an induction of apoptosis. Using RNA interference, we showed that TMZ induced apoptosis is dependent on the pro-apoptotic protein Bak but independent of the pro-apoptotic protein Bax. Apoptosis was not enhanced by ABT-737, an inhibitor of Bcl-2/Bcl-Xl/Bcl-W but not Mcl-1. The knock-down of Mcl-1 expression increased TMZ induced apoptosis. Our results identify a Mcl-1/Bak axis for TMZ induced apoptosis in GBM and thus unravel a target to overcome therapeutic resistance toward TMZ.
Collapse
Affiliation(s)
- Catherine Gratas
- Centre de Recherche en Cancérologie Nantes Angers, UMR INSERM 892 / CNRS 6299
| | | | | | | | | |
Collapse
|
96
|
Baryła I, Styczeń-Binkowska E, Bednarek AK. Alteration of WWOX in human cancer: a clinical view. Exp Biol Med (Maywood) 2015; 240:305-14. [PMID: 25681467 DOI: 10.1177/1535370214561953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WWOX gene is located in FRA16D, the highly affected chromosomal fragile site. Its tumor suppressor activity has been proposed on a basis of numerous genomic alterations reported in chromosome 16q23.3-24.1 locus. WWOX is affected in many cancers, showing as high as 80% loss of heterozygosity in breast tumors. Unlike most tumor suppressors impairing of both alleles of WWOX is very rare. Despite cellular and animal models information on a WWOX role in cancer tissue is limited and sometimes confusing. This review summarizes information on WWOX in human tumors.
Collapse
Affiliation(s)
- Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
97
|
Caffo M, Caruso G, Fata GL, Barresi V, Visalli M, Venza M, Venza I. Heavy metals and epigenetic alterations in brain tumors. Curr Genomics 2015; 15:457-63. [PMID: 25646073 PMCID: PMC4311389 DOI: 10.2174/138920291506150106151847] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature.
Collapse
Affiliation(s)
- Maria Caffo
- Neurosurgical Clinic, Department of Neuroscience, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Neurosurgical Clinic, Department of Neuroscience, University of Messina, Messina, Italy
| | - Giuseppe La Fata
- Neurosurgical Clinic, Department of Neuroscience, University of Messina, Messina, Italy
| | - Valeria Barresi
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mario Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
98
|
Hygino da Cruz LC, Kimura M. Neuroimaging and genetic influence in treating brain neoplasms. Neuroimaging Clin N Am 2014; 25:121-40. [PMID: 25476517 DOI: 10.1016/j.nic.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The current treatment of glioblastoma patients based on surgery, radiation, and chemotherapy has achieved modest improvement in progression-free survival. In this direction, personalized treatment is the next achievement for better patient management and increased overall survival. Genetic characterization of high-grade gliomas by MR imaging is the goal in neuroimaging. The main genetic alterations described in these neoplasms, implications in patient treatment, and prognosis are reviewed. MR imaging features and novel techniques are correlated with the main genetic aspects of such tumors. Posttreatment phenomena, such as pseudoprogression and pseudoresponse, are analyzed in association with the genetic expression of these tumors.
Collapse
Affiliation(s)
- L Celso Hygino da Cruz
- MRI Department of Clínica de Diagnostico por Imagem (CDPI) and IRM Ressonância Magnética, Av. das Américas, 4666 Sl 325, Centro Médico Barrashopping, Rio de Janeiro, RJ, Brazil.
| | - Margareth Kimura
- MRI Department of Clínica de Diagnostico por Imagem (CDPI), Av. das Américas, 4666 Sl 325, Centro Médico Barrashopping, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
99
|
Trépant AL, Bouchart C, Rorive S, Sauvage S, Decaestecker C, Demetter P, Salmon I. Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. Tumour Biol 2014; 36:1943-53. [PMID: 25384509 DOI: 10.1007/s13277-014-2800-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/03/2014] [Indexed: 12/15/2022] Open
Abstract
Despite advances in surgical and adjuvant treatments, overall survival of glioblastoma (GBM) patients remains poor. The cancer stem cell concept suggests that a rare stem cell population, called glioma stem cells (GSCs), has high ability to self-renewal leading to recurrence in GBM. The identification of specific markers of GSCs would provide a powerful tool to detect and to characterise them in order to develop targeted therapies. We carried out a comparative analysis based on the identification of inter-study concordances to identify the genes that exhibit at best differential levels of expression between GSC-enriched cell cultures and differentiated tumour cell cultures from independent studies using DNA chip microarray technologies. We finally studied the protein expression of the marker we considered the most specific by immunohistochemistry and semi-quantitative analysis on a retrospective series of 18 GBMs. Of the selected studies, 32 genes were retained. Among them, eight genes were identified to be overexpressed in GSC-enriched cultures compared to differentiated tumour cell cultures. Finally, among the eight genes, oligodendrocyte lineage transcription factor 2 (OLIG2) was characterised by the most different expression level in the "GSC model" compared to the "differentiated tumour cells model". Our approach suggests that OLIG2 is the most specific GSC marker; additional investigations with careful considerations about methodology and strategies of validation are, however, mandatory.
Collapse
Affiliation(s)
- Anne-Laure Trépant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
100
|
Christofides A, Kosmopoulos M, Piperi C. Pathophysiological mechanisms regulated by cytokines in gliomas. Cytokine 2014; 71:377-84. [PMID: 25458967 DOI: 10.1016/j.cyto.2014.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Glioma, a neuroglia originated malignancy, consists of one of the most aggressive primary tumors of the central nervous system with poor prognosis and lack of efficient treatment strategy. Cytokines have been implicated in several stages of glioma progression, participating in tumor onset, growth enhancement, angiogenesis and aggressiveness. Interestingly, cytokines have also the ability to inhibit glioma growth upon specific regulation or interplay with other molecules. This review addresses the dual role of major cytokines implicated in glioma pathology, pointing toward promising therapeutic approaches.
Collapse
Affiliation(s)
- Anthos Christofides
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
| | - Marinos Kosmopoulos
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece.
| |
Collapse
|