51
|
Wilkins JM, Trushina E. Application of Metabolomics in Alzheimer's Disease. Front Neurol 2018; 8:719. [PMID: 29375465 PMCID: PMC5770363 DOI: 10.3389/fneur.2017.00719] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) is halted by a lack of understanding early underlying pathological mechanisms. Systems biology encompasses several techniques including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that offers great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles and influences from the environment. Advancements in the field of metabolomics have demonstrated the complexity of dynamic changes associated with AD progression underscoring challenges with the development of efficacious therapeutic interventions. Defining systems-level alterations in AD could provide insights into disease mechanisms, reveal sex-specific changes, advance the development of biomarker panels, and aid in monitoring therapeutic efficacy, which should advance individualized medicine. Since metabolic pathways are largely conserved between species, metabolomics could improve the translation of preclinical research conducted in animal models of AD into humans. A summary of recent developments in the application of metabolomics to advance the AD field is provided below.
Collapse
Affiliation(s)
- Jordan Maximillian Wilkins
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eugenia Trushina
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
52
|
Atri A, Frölich L, Ballard C, Tariot PN, Molinuevo JL, Boneva N, Windfeld K, Raket LL, Cummings JL. Effect of Idalopirdine as Adjunct to Cholinesterase Inhibitors on Change in Cognition in Patients With Alzheimer Disease: Three Randomized Clinical Trials. JAMA 2018; 319:130-142. [PMID: 29318278 PMCID: PMC5833662 DOI: 10.1001/jama.2017.20373] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 11/14/2022]
Abstract
Importance New therapeutic approaches for Alzheimer disease (AD) are needed. Objective To assess whether idalopirdine, a selective 5-hydroxytryptamine-6 receptor antagonist, is effective for symptomatic treatment of mild to moderate AD. Design, Setting, and Participants Three randomized clinical trials that included 2525 patients aged 50 years or older with mild to moderate AD (study 1: n = 933 patients at 119 sites; study 2: n = 858 at 158 sites; and study 3: n = 734 at 126 sites). The 24-week studies were conducted from October 2013 to January 2017; final follow-up on January 12, 2017. Interventions Idalopirdine (10, 30, or 60 mg/d) or placebo added to cholinesterase inhibitor treatment (donepezil in studies 1 and 2; donepezil, rivastigmine, or galantamine in study 3). Main Outcomes and Measures Primary end point in all 3 studies: change in cognition total score (range, 0-70; a lower score indicates less impairment) from baseline to 24 weeks measured by the 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog); key secondary end points: Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change Scale and 23-item Activities of Daily Living Inventory scores. Dose group efficacy required a significant benefit over placebo for the primary end point and 1 or more key secondary end points. Safety data and adverse event profiles were recorded. Results Among 2525 patients randomized in the 3 trials (mean age, 74 years; mean baseline ADAS-Cog total score, 26; between 62% and 65% of participants were women), 2254 (89%) completed the studies. In study 1, the mean change in ADAS-Cog total score between baseline and 24 weeks was 0.37 for the 60-mg dose of idalopirdine group, 0.61 for the 30-mg dose group, and 0.41 for the placebo group (adjusted mean difference vs placebo, 0.05 [95% CI, -0.88 to 0.98] for the 60-mg dose group and 0.33 [95% CI, -0.59 to 1.26] for the 30-mg dose group). In study 2, the mean change in ADAS-Cog total score between baseline and 24 weeks was 1.01 for the 30-mg dose of idalopirdine group, 0.53 for the 10-mg dose group, and 0.56 for the placebo group (adjusted mean difference vs placebo, 0.63 [95% CI, -0.38 to 1.65] for the 30-mg dose group; given the gated testing strategy and the null findings at the 30-mg dose, statistical comparison of the 10-mg dose was not performed). In study 3, the mean change in ADAS-Cog total score between baseline and 24 weeks was 0.38 for the 60-mg dose of idalopirdine group and 0.82 for the placebo group (adjusted mean difference vs placebo, -0.55 [95% CI, -1.45 to 0.36]). Treatment-emergent adverse events occurred in between 55.4% and 69.7% of participants in the idalopirdine groups vs between 56.7% and 61.4% of participants in the placebo groups. Conclusions and Relevance In patients with mild to moderate AD, the use of idalopirdine compared with placebo did not improve cognition over 24 weeks of treatment. These findings do not support the use of idalopirdine for the treatment of AD. Trial Registration clinicaltrials.gov Identifiers: NCT01955161, NCT02006641, and NCT02006654.
Collapse
Affiliation(s)
- Alireza Atri
- Ray Dolby Brain Health Center, California Pacific Medical Center, San Francisco
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lutz Frölich
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Clive Ballard
- University of Exeter Medical School, Exeter, England
| | | | - José Luis Molinuevo
- Alzheimer’s Disease and Other Cognitive Disorders Unit, IDIBAPS, Hospital Clinic i Universitari, Barcelona, Spain
- Barcelonaβeta Brain Research Centre, Pasqual Maragall Foundation, Barcelona, Spain
| | | | | | | | | |
Collapse
|
53
|
de Jong IE, Mørk A. Antagonism of the 5-HT 6 receptor – Preclinical rationale for the treatment of Alzheimer's disease. Neuropharmacology 2017; 125:50-63. [DOI: 10.1016/j.neuropharm.2017.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022]
|
54
|
Stenbæk DS, Dam VH, Fisher PM, Hansen N, Hjordt LV, Frokjaer VG. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study. PLoS One 2017; 12:e0184403. [PMID: 28880910 PMCID: PMC5589219 DOI: 10.1371/journal.pone.0184403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.
Collapse
Affiliation(s)
- Dea Siggaard Stenbæk
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Vibeke Høyrup Dam
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nanna Hansen
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Liv Vadskjær Hjordt
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
55
|
Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice. J Neurosci 2017; 36:12106-12116. [PMID: 27903721 DOI: 10.1523/jneurosci.1269-16.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022] Open
Abstract
Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. SIGNIFICANCE STATEMENT Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function.
Collapse
|
56
|
Zheng L, Zhao XE, Zhu S, Tao Y, Ji W, Geng Y, Wang X, Chen G, You J. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid–liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1054:64-72. [DOI: 10.1016/j.jchromb.2017.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/18/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
|
57
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of patients worldwide which can only be treated with symptomatic drugs. Among the numbers of biological targets which are today explored in order to prevent or limit the progression of AD, the modulation of 5-HT6R and 5-HT4R appeared to be promising. This modulation has been proved to enhance the cognition in AD through modulation of the neurotransmitter system but could also be beneficial in order to limit the amyloid pathology. This review will describe recent advances in the understanding of this modulation as well as the medicinal chemistry of 5-HT6R or 5-HT4R ligands from synthesis to ongoing clinical trials.
Collapse
|
58
|
Aitken L, Baillie G, Pannifer A, Morrison A, Jones PS, Smith TK, McElroy SP, Gunn-Moore FJ. In Vitro Assay Development and HTS of Small-Molecule Human ABAD/17β-HSD10 Inhibitors as Therapeutics in Alzheimer’s Disease. SLAS DISCOVERY 2017; 22:676-685. [DOI: 10.1177/2472555217697964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A major hallmark of Alzheimer’s disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-β peptide (Aβ). Aβ has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aβ-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.
Collapse
Affiliation(s)
- Laura Aitken
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, UK
| | - Gemma Baillie
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Andrew Pannifer
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Angus Morrison
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Philip S. Jones
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife, UK
| | - Stuart P. McElroy
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, Lanarkshire, UK
| | - Frank J. Gunn-Moore
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, UK
| |
Collapse
|
59
|
Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5472792. [PMID: 28261376 PMCID: PMC5316456 DOI: 10.1155/2017/5472792] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.
Collapse
|
60
|
Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time? Cell Mol Life Sci 2017; 74:509-523. [PMID: 27628303 PMCID: PMC5241349 DOI: 10.1007/s00018-016-2361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- A Iatrou
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - G Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - B P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - K Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - D L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.
| |
Collapse
|
61
|
Fernandez SP, Muzerelle A, Scotto-Lomassese S, Barik J, Gruart A, Delgado-García JM, Gaspar P. Constitutive and Acquired Serotonin Deficiency Alters Memory and Hippocampal Synaptic Plasticity. Neuropsychopharmacology 2017; 42:512-523. [PMID: 27461084 PMCID: PMC5399229 DOI: 10.1038/npp.2016.134] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) deficiency occurs in a number of brain disorders that affect cognitive function. However, a direct causal relationship between 5-HT hypo-transmission and memory and underlying mechanisms has not been established. We used mice with a constitutive depletion of 5-HT brain levels (Pet1KO mice) to analyze the contribution of 5-HT to different forms of learning and memory. Pet1KO mice exhibited a striking deficit in novel object recognition memory, a hippocampal-dependent task. No alterations were found in tasks for social recognition, procedural learning, or fear memory. Viral delivery of designer receptors exclusively activated by designer drugs was used to selectively silence the activity of 5-HT neurons in the raphe. Inhibition of 5-HT neurons in the median raphe, but not the dorsal raphe, was sufficient to impair object recognition in adult mice. In vivo electrophysiology in behaving mice showed that long-term potentiation in the hippocampus of 5-HT-deficient mice was altered, and administration of the 5-HT1A agonist 8-OHDPAT rescued the memory deficits. Our data suggest that hyposerotonergia selectively affects declarative hippocampal-dependent memory. Serotonergic projections from the median raphe are necessary to regulate object memory and hippocampal synaptic plasticity processes, through an inhibitory control mediated by 5-HT1A receptors.
Collapse
Affiliation(s)
- Sebastian P Fernandez
- Institut du Fer à Moulin, Paris, France,INSERM, UMRS-839, Paris, France,University Pierre and Marie Curie, Paris, France,Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Université Côte d'Azur, CNRS UMR 7275, Valbonne, 0656, France, Tel: +33 4 93 95 34 41, Fax: +33 4 93 95 34 08, E-mail:
| | - Aude Muzerelle
- Institut du Fer à Moulin, Paris, France,INSERM, UMRS-839, Paris, France,University Pierre and Marie Curie, Paris, France
| | - Sophie Scotto-Lomassese
- Institut du Fer à Moulin, Paris, France,INSERM, UMRS-839, Paris, France,University Pierre and Marie Curie, Paris, France
| | - Jacques Barik
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | | | - Patricia Gaspar
- Institut du Fer à Moulin, Paris, France,INSERM, UMRS-839, Paris, France,University Pierre and Marie Curie, Paris, France
| |
Collapse
|
62
|
Wißbrock A, Kühl T, Silbermann K, Becker AJ, Ohlenschläger O, Imhof D. Synthesis and Evaluation of Amyloid β Derived and Amyloid β Independent Enhancers of the Peroxidase-like Activity of Heme. J Med Chem 2016; 60:373-385. [DOI: 10.1021/acs.jmedchem.6b01432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Amelie Wißbrock
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | - Toni Kühl
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | - Katja Silbermann
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | - Albert J. Becker
- Institute
of Neuropathology, University Hospital Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging−Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Diana Imhof
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| |
Collapse
|
63
|
Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10:541. [PMID: 27932945 PMCID: PMC5121249 DOI: 10.3389/fnins.2016.00541] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Montse Sole
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity College DublinDublin, Ireland
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), Institut of Neurodegenerative DiseasesBordeaux Cedex, France
| |
Collapse
|
64
|
Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT 6 receptor antagonists. Design, synthesis and biological evaluation. Eur J Med Chem 2016; 124:63-81. [DOI: 10.1016/j.ejmech.2016.08.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
|
65
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
66
|
Santos LE, Beckman D, Ferreira ST. Microglial dysfunction connects depression and Alzheimer's disease. Brain Behav Immun 2016; 55:151-165. [PMID: 26612494 DOI: 10.1016/j.bbi.2015.11.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) and major depressive disorder (MDD) are highly prevalent neuropsychiatric conditions with intriguing epidemiological overlaps. Depressed patients are at increased risk of developing late-onset AD, and around one in four AD patients are co-diagnosed with MDD. Microglia are the main cellular effectors of innate immunity in the brain, and their activation is central to neuroinflammation - a ubiquitous process in brain pathology, thought to be a causal factor of both AD and MDD. Microglia serve several physiological functions, including roles in synaptic plasticity and neurogenesis, which may be disrupted in neuroinflammation. Following early work on the 'sickness behavior' of humans and other animals, microglia-derived inflammatory cytokines have been shown to produce depressive-like symptoms when administered exogenously or released in response to infection. MDD patients consistently show increased circulating levels of pro-inflammatory cytokines, and anti-inflammatory drugs show promise for treating depression. Activated microglia are abundant in the AD brain, and concentrate around senile plaques, hallmark lesions composed of aggregated amyloid-β peptide (Aβ). The Aβ burden in affected brains is regulated largely by microglial clearance, and the complex activation state of microglia may be crucial for AD progression. Intriguingly, recent reports have linked soluble Aβ oligomers, toxins that accumulate in AD brains and are thought to cause memory impairment, to increased brain cytokine production and depressive-like behavior in mice. Here, we review recent findings supporting the inflammatory hypotheses of AD and MDD, focusing on microglia as a common player and therapeutic target linking these devastating disorders.
Collapse
Affiliation(s)
- Luís Eduardo Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
67
|
Theofilas P, Dunlop S, Heinsen H, Grinberg LT. Turning on the Light Within: Subcortical Nuclei of the Isodentritic Core and their Role in Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 46:17-34. [PMID: 25720408 DOI: 10.3233/jad-142682] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacological interventions in Alzheimer's disease (AD) are likely to be more efficacious if administered early in the course of the disease, foregoing the spread of irreversible changes in the brain. Research findings underline an early vulnerability of the isodendritic core (IC) network to AD neurofibrillary lesions. The IC constitutes a phylogenetically conserved subcortical system including the locus coeruleus in pons, dorsal raphe nucleus, and substantia nigra in the midbrain, and nucleus basalis of Meynert in basal forebrain. Through their ascending projections to the cortex, the IC neurons regulate homeostasis and behavior by synthesizing aminergic and cholinergic neurotransmitters. Here we reviewed the evidence demonstrating that neurons of the IC system show neurofibrillary tangles in the earliest stages of AD, prior to cortical pathology, and how this involvement may explain pre-amnestic symptoms, including depression, agitation, and sleep disturbances in AD patients. In fact, clinical and animal studies show a significant reduction of AD cognitive and behavioral symptoms following replenishment of neurotransmitters associated with the IC network. Therefore, the IC network represents a unique candidate for viable therapeutic intervention and should become a high priority for research in AD.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Psychiatrics, University of Wuerzburg, Germany
| | - Lea Tenenholz Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
68
|
Švob Štrac D, Pivac N, Mück-Šeler D. The serotonergic system and cognitive function. Transl Neurosci 2016; 7:35-49. [PMID: 28123820 PMCID: PMC5017596 DOI: 10.1515/tnsci-2016-0007] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/22/2016] [Indexed: 01/23/2023] Open
Abstract
Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD). The neurobiological mechanisms underlying cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT) as one of the possible cognitionrelated biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic) system in cognitive function, particularly in AD and schizophrenia. The role of the 5-HTergic system in cognition is modulated by the activity and function of 5-HT receptors (5-HTR) classified into seven groups, which differ in structure, action, and localization. Many 5-HTR are located in the regions linked to various cognitive processes. Preclinical studies using animal models of learning and memory, as well as clinical in vivo (neuroimaging) and in vitro (post-mortem) studies in humans have shown that alterations in 5-HTR activity influence cognitive performance. The current evidence implies that reduced 5-HT neurotransmission negatively influences cognitive functions and that normalization of 5-HT activity may have beneficial effects, suggesting that 5-HT and 5-HTR represent important pharmacological targets for cognition enhancement and restoration of impaired cognitive performance in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
69
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
70
|
Enache D, Cavallin L, Lindberg O, Farahmand B, Kramberger MG, Westman E, Jelic V, Eriksdotter M, Ballard C, Winblad B, Wahlund LO, Aarsland D. Medial temporal lobe atrophy and depressive symptoms in elderly patients with and without Alzheimer disease. J Geriatr Psychiatry Neurol 2015; 28:40-8. [PMID: 25080472 DOI: 10.1177/0891988714541873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine whether depressive symptoms are associated with medial temporal lobe atrophy in older people with and without Alzheimer disease (AD). METHOD A total of 368 memory clinic patients with AD, mild cognitive impairment, and subjective cognitive impairment (SCI) were included. Depressive symptoms were defined as a score of 8 or higher on Cornell Scale for Depression in Dementia or use of antidepressant medications. Magnetic resonance imaging and computer tomography scans were rated for medial temporal lobe atrophy (MTA), using the Scheltens scale. For a subsample (n = 57 patients), hippocampal volume was manually traced. RESULTS Based on visual assessment, AD patients with depressive symptoms had less atrophy of the right medial temporal lobe (odds ratio [OR] for having MTA: 0.39; 95% confidence interval [CI] 0.16-0.99) and decreased scores on Scheltens scale for the left medial temporal lobe (OR: 0.43, 95% CI 0.19-0.96) in comparison to AD patients without depressive symptoms. In the subgroup where manual tracing was used to measure hippocampal volume, people with SCI experiencing depressive symptoms had smaller right (mean difference: 0.28 cm(3); P = .005) and left (mean difference 0.32 cm(3); P = .002) hippocampal volumes compared to people with SCI who did not have depressive symptoms. CONCLUSION Hippocampal atrophy was more pronounced among patients having SCI with depressive symptoms, while the medial temporal lobe was less atrophic in patients having AD with depressive symptoms than those without depressive symptoms. These findings suggest that different mechanisms underlie depression in older people with and without AD and may explain some of the inconsistent observations in previous studies.
Collapse
Affiliation(s)
- Daniela Enache
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Carol Davila University of Medicine and Pharmacy, Department of Psychiatry, Bucharest, Romania
| | - Lena Cavallin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Olof Lindberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bahman Farahmand
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Milica Gregoric Kramberger
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Geriatric Medicine, Memory Clinic, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Maria Eriksdotter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Geriatric Medicine, Memory Clinic, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Geriatric Medicine, Memory Clinic, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Geriatric Medicine, Memory Clinic, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Geriatric Medicine, Memory Clinic, Karolinska University Hospital-Huddinge, Stockholm, Sweden Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
71
|
Prakash A, Kalra J, Mani V, Ramasamy K, Majeed ABA. Pharmacological approaches for Alzheimer’s disease: neurotransmitter as drug targets. Expert Rev Neurother 2014; 15:53-71. [DOI: 10.1586/14737175.2015.988709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
72
|
Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer's disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2014; 13:1092-1099. [PMID: 25297016 DOI: 10.1016/s1474-4422(14)70198-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND In human beings, 5-HT6 receptors are almost exclusively expressed in the brain, particularly in areas relevant for cognition, such as the hippocampus and frontal cortex. We assessed the effect on cognitive performance of Lu AE58054 (idalopirdine), a selective 5-HT6 receptor antagonist, in donepezil-treated patients with moderate Alzheimer's disease. METHODS For this randomised, double-blind, placebo-controlled phase 2 trial (LADDER), we recruited patients from 48 outpatient clinical sites in seven countries. Patients were 50 years or older, had moderate Alzheimer's disease (a mini-mental state examination score of 12-19), and had been stably treated with donepezil 10 mg per day for 3 or more months. Using a computer-generated sequence, we randomly assigned patients (1:1, stratified by site) to receive either idalopirdine 90 mg per day (30 mg thrice daily) or placebo. The primary endpoint was change from baseline in the 11-item Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) at week 24. We analysed all efficacy endpoints in the full-analysis set (modified intention-to-treat analysis). This trial is registered with ClinicalTrials.gov, number NCT01019421. FINDINGS Between Dec 8, 2009, and Dec 23, 2011, we randomly allocated 278 patients to treatment: 133 to placebo and 145 to idalopirdine. 132 patients in the placebo group and 140 in the experimental group were included in the final analysis. At week 24, the change from baseline in ADAS-cog total score was +1·38 (SD 0·53) in the placebo group and -0·77 (0·55) in the idalopirdine group (treatment difference of -2·16 points, 95% CI -3·62 to -0·69; p=0·0040). 25 patients (seven taking placebo and 18 taking idalopirdine) discontinued treatment because of adverse events, the difference between groups being mainly due to asymptomatic transient increases in transaminase concentrations in some idalopirdine-treated patients. The most common adverse events (occurring in >3% of patients) were increased γ-glutamyltransferase (14 [10%] patients in the idalopirdine group vs two [2%] in the placebo group), diarrhoea (six [4%] vs nine [7%]), urinary tract infection (three [2%] vs nine [7%]), fall (three [2%] vs eight [6%]), increased alanine aminotransferase (nine [6%] vs none), and benign prostatic hyperplasia (two [5%] vs none). Serious adverse events were reported by 14 (10%) patients in the idalopirdine group and 13 (10%) patients in the placebo group. One death occurred in each treatment group, neither were regarded as being related to treatment. INTERPRETATION Idalopirdine improved cognitive function in donepezil-treated patients with moderate Alzheimer's disease. Larger studies in a broader population of patients are ongoing to substantiate the effects reported here. FUNDING H Lundbeck A/S.
Collapse
|
73
|
Lepailleur A, Freret T, Lemaître S, Boulouard M, Dauphin F, Hinschberger A, Dulin F, Lesnard A, Bureau R, Rault S. Dual histamine H3R/serotonin 5-HT4R ligands with antiamnesic properties: pharmacophore-based virtual screening and polypharmacology. J Chem Inf Model 2014; 54:1773-84. [PMID: 24857631 DOI: 10.1021/ci500157n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, preclinical and clinical studies have generated considerable interest in the development of histamine H3 receptor (H3R) antagonists as novel treatment for degenerative disorders associated with impaired cholinergic function. To identify novel scaffolds for H3R antagonism, a common feature-based pharmacophore model was developed and used to screen the 17,194 compounds of the CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) chemical library. Out of 268 virtual hits which have been gathered in 34 clusters, we were particularly interested in tricyclic derivatives also exhibiting a potent 5HT4R affinity. Benzo[h][1,6]naphthyridine derivatives showed the highest H3R affinity, and compound 17 (H3R Ki = 41.6 nM; 5-HT4R Ki = 208 nM) completely reversed the amnesiant effect of scopolamine at 3 mg/kg in a spatial working memory experiment. For the first time we demonstrated the feasibility to combine H3R and 5-HT4R activities in a single molecule, raising the exciting possibility that dual H3R antagonist/5HT4R agonist have potential for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
74
|
Benhamú B, Martín-Fontecha M, Vázquez-Villa H, Pardo L, López-Rodríguez ML. Serotonin 5-HT6 Receptor Antagonists for the Treatment of Cognitive Deficiency in Alzheimer’s Disease. J Med Chem 2014; 57:7160-81. [DOI: 10.1021/jm5003952] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bellinda Benhamú
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Leonardo Pardo
- Laboratori
de Medicina Computacional, Unitat de Bioestadística, Facultat
de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - María L. López-Rodríguez
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
75
|
Serotonergic Therapies for Cognitive Symptoms in Alzheimer’s Disease: Rationale and Current Status. Drugs 2014; 74:729-36. [DOI: 10.1007/s40265-014-0217-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
76
|
Vogel KR, Arning E, Wasek BL, Bottiglieri T, Gibson KM. Non-physiological amino acid (NPAA) therapy targeting brain phenylalanine reduction: pilot studies in PAHENU2 mice. J Inherit Metab Dis 2013; 36:513-23. [PMID: 22976763 PMCID: PMC3654543 DOI: 10.1007/s10545-012-9524-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/11/2012] [Accepted: 07/19/2012] [Indexed: 11/26/2022]
Abstract
Transport of large neutral amino acids (LNAA) across the blood brain barrier (BBB) is facilitated by the L-type amino acid transporter, LAT1. Peripheral accumulation of one LNAA (e.g., phenylalanine (phe) in PKU) is predicted to increase uptake of the offending amino acid to the detriment of others, resulting in disruption of brain amino acid homeostasis. We hypothesized that selected non-physiological amino acids (NPAAs) such as DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), 2-aminoisobutyrate (AIB), and N-methyl-aminoisobutyrate (MAIB), acting as competitive inhibitors of various brain amino acid transporters, could reduce brain phe in Pah (enu2) mice, a relevant murine model of PKU. Oral feeding of 5 % NL, 5 % AIB, 0.5 % NB and 3 % MAIB reduced brain phe by 56 % (p < 0.01), -1 % (p = NS), 27 % (p < 0.05) and 14 % (p < 0.01), respectively, compared to untreated subjects. Significant effects on other LNAAs (tyrosine, methionine, branched chain amino acids) were also observed, however, with MAIB displaying the mildest effects. Of interest, MAIB represents an inhibitor of the system A (alanine) transporter that primarily traffics small amino acids and not LNAAs. Our studies represent the first in vivo use of these NPAAs in Pah (enu2) mice, and provide proof-of-principle for their further preclinical development, with the long-term objective of identifying NPAA combinations and concentrations that selectively restrict brain phe transport while minimally impacting other LNAAs and downstream intermediates.
Collapse
Affiliation(s)
- Kara R. Vogel
- Section of Clinical Pharmacology, College of Pharmacy, Washington State University, Spokane, WA USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Research Institute, Baylor University Medical Center, Dallas, TX USA
| | - Brandi L. Wasek
- Institute of Metabolic Disease, Baylor Research Institute, Baylor University Medical Center, Dallas, TX USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, Baylor University Medical Center, Dallas, TX USA
| | - K. Michael Gibson
- Section of Clinical Pharmacology, College of Pharmacy, Washington State University, Spokane, WA USA
- Correspondence: Section of Clinical Pharmacology, College of Pharmacy, Washington State University, 313 Wegner Hall, PO Box 646510, Pullman WA 99164-6510; phone 509-335-4754; fax 509-335-5902;
| |
Collapse
|
77
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Dougherty JP, Oristaglio J. Chronic treatment with the serotonin 2A/2C receptor antagonist SR 46349B enhances the retention and efficiency of rule-guided behavior in mice. Neurobiol Learn Mem 2013; 103:50-63. [PMID: 23587729 DOI: 10.1016/j.nlm.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/13/2013] [Accepted: 04/04/2013] [Indexed: 01/21/2023]
Abstract
Animal studies have established that drugs activating the serotonin 2A (5-HT2A) receptor can enhance learning and memory in a variety of classical and operant conditioning tasks. Unfortunately, long-term agonism typically results in receptor downregulation, which can negate such nootropic effects. Conversely, chronic antagonism can act to increase receptor density, an adaptation which, in principle, should enhance cognition in a manner similar to acute agonism. In this study, we questioned whether chronic treatment with the 5-HT2A receptor antagonist, SR 46349B, a drug known to increase 5-HT2A receptor density in vivo, would improve cognitive performance in normal mice. To address this question, we administered SR 46349B to mice for 4 days following initial training on a simple rule-based reward acquisition task. We subsequently tested their recall of this task and, finally, their ability to adapt to a reversal in reward contingency (reversal learning). For comparison, two additional groups were treated with the 5-HT2A/2C receptor agonist, DOI, which downregulates the 5-HT2A receptor. SR 46349B improved retention of the previously-learned task but did not affect reversal learning. Subjects treated with SR 46349B also completed trials faster and with greater motor efficiency than vehicle- or DOI-treated subjects. We hypothesize that long-term drug treatments resulting in 5-HT2A receptor up-regulation may be useful in enhancing recall of learned behaviors and, thus, may have potential for treating cognitive impairment associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- John P Dougherty
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | |
Collapse
|