51
|
Matrix Metalloproteinase-9 -1562C/T Gene Polymorphism Is Associated with Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1627143. [PMID: 27631001 PMCID: PMC5007315 DOI: 10.1155/2016/1627143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
To investigate the association between the metalloproteinase-9 (MMP9) −1562C/T polymorphism and diabetic nephropathy (DN) in Han Chinese, the patients with type 2 diabetes were collected and divided into the non-DN (NDN) and DN groups; controls were recruited. Genotype and allele frequencies were assessed using polymerase chain reaction and restriction fragment length polymorphism. Results showed that SBP, DBP, HbA1c, UAER, Cr, BUN, TG, and TC were higher in the DN group compared with the control and NDN groups. SBP, HbA1c, and TC in DN patients with the TT and CT genotypes were lower than in those with CC. Compared with controls, the frequency of the T allele in the DN group was significantly lower. The MMP9 −1562C allele, SBP, Cr, BUN, TG, and TC were independent risk factors for DN. All of the above suggested that the MMP9 −1562C/T polymorphism was associated with DN in Han Chinese.
Collapse
|
52
|
Zhang L, He S, Yang F, Yu H, Xie W, Dai Q, Zhang D, Liu X, Zhou S, Zhang K. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Can J Physiol Pharmacol 2016; 94:1249-1256. [PMID: 27704873 DOI: 10.1139/cjpp-2016-0066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate the therapeutic effects of hyperoside (Hyp) on glomerulosclerosis in diabetic nephropathy and its underlying mechanisms. Blood glucose, kidney mass, and renal function of mice were measured. Renal morphology was observed using hematoxylin and eosin, periodic acid - Schiff's, and Masson's trichrome stain. Fibronectin (FN) and collagen IV (COL IV) in kidney were determined by Western blot and immunohistochemical studies. Matrix metalloproteinases (MMP)-2 and -9 and tissue inhibitors of metalloproteinase (TIMP)-1 in renal tissues were detected on both the mRNA and protein levels. miRNA expression and artificial alterations by miRNA agomir transfection were evaluated to investigate the protective mechanism of Hyp in mesangial cells. Hyp effectively improved renal function and physiologic features of db/db mice. Hyp also ameliorated glomerulosclerosis by suppressing FN, COL IV, and TIMP-1 expressions and promoting MMP-9 and MMP-2 expressions. The change in MMP-9 mRNA expression was inconsistent with that in protein levels in kidney, indicating that there was a post-transcriptional regulation. Further exploration in vitro showed that miR-21 was downregulated by Hyp, increasing expression of its target, MMP-9. These results suggest that Hyp can ameliorate glomerulosclerosis in diabetic nephropathy by downregulating miR-21 to increase expression of its target, MMP-9.
Collapse
Affiliation(s)
- Le Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Siyi He
- b Department of Cardiovascular Surgery, Chengdu Military General Hospital, Chengdu 610083, China
| | - Fan Yang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yu
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Xie
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Dai
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Di Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaoqin Liu
- c Department of Applied Chemistry, Chongqing Chemical Industry Vocational College, Chongqing 400020, China
| | - Shiwen Zhou
- d National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Kebin Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
53
|
Yue XJ, Guo Y, Yang HJ, Feng ZW, Li T, Xu YM. Transforming growth factor-β1 induces fibrosis in rat meningeal mesothelial cells via the p38 signaling pathway. Mol Med Rep 2016; 14:1709-13. [DOI: 10.3892/mmr.2016.5411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/28/2016] [Indexed: 11/06/2022] Open
|
54
|
Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem 2016; 22:2858-70. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
| | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Mohan A, Singh RS, Kumari M, Garg D, Upadhyay A, Ecelbarger CM, Tripathy S, Tiwari S. Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats. PLoS One 2016; 11:e0154055. [PMID: 27101382 PMCID: PMC4839711 DOI: 10.1371/journal.pone.0154055] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Non-invasive renal signatures can help in serial monitoring of diabetic patients. We tested whether urinary exosomal (UE) microRNA (miR) analysis could non-invasively predict renal pathology in diabetic rats during the course of diabetes. Diabetes mellitus (DM) was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg body weight). Non-diabetic control (CTRL) rats were injected with vehicle. Insulin (INS) treatment (5U/d, s.c.) was provided to 50% of the DM rats. Urine samples were collected at weeks 3, 6, and 9 following injections and UE prepared. An increase in miR-451-5p and miR-16, observed by pilot small RNA sequencing of UE RNA, was confirmed by quantitative real-time polymerase chain reaction (qPCR) and selected for further study. Subsets of rats were euthanized after 3, 6, and 9 weeks of diabetes for renal pathology analysis, including determination of the tubulointerstitial fibrotic index (TFI) and glomerulosclerotic index (GI) scores. qPCR showed a substantial rise in miR-451-5p in UE from DM rats during the course of diabetes, with a significant rise (median fold change >1000) between 3 and 6 weeks. Moreover, UE miR-451-5p at 6 weeks predicted urine albumin at 9 weeks (r = 0.76). A delayed but significant rise was also observed for miR-16. In contrast, mean urine albumin only increased 21% between 3 and 6 weeks (non-significant rise), and renal TFI and GI were unchanged till 9 weeks. Renal expression of miR-451-5p and miR-16 (at 10 weeks) did not correlate with urine levels, and moreover, was negatively associated with indices of renal pathology (r≥-0.70, p = 0.005 for TFI and r≥-0.6, p≤0.02 for GI). Overall, a relative elevation in renal miR-451-5p and miR-16 in diabetes appeared protective against diabetes-induced kidney fibrosis; while UE miR-451-5p may hold prognostic value as an early and sensitive non-invasive indicator of renal disease.
Collapse
Affiliation(s)
- Aradhana Mohan
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ravi Shankar Singh
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manju Kumari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Devika Garg
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Aditya Upadhyay
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Carolyn M. Ecelbarger
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, CSIR - Indian Institute of Chemical Biology, Kolkata, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
56
|
Kuhad A, Singh P, Chopra K. Matrix metalloproteinases: potential therapeutic target for diabetic neuropathic pain. Expert Opin Ther Targets 2014; 19:177-85. [PMID: 25243524 DOI: 10.1517/14728222.2014.960844] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION MMPs are zinc-dependent endopeptidases that play a key role in the remodeling of extracellular matrix (ECM). Various pathogenic mediators trigger abnormal MMP activity that leads to ECM abnormality. Hyperglycemia is one of the strong stimuli among oxidative stress and inflammation that upregulate MMP expression in the central and peripheral nervous system. MMP-mediated ECM abnormality hypersensitizes peripheral as well as central nerves that precipitate neuropathic pain in diabetic patients. AREAS COVERED Molecular mechanisms associated with MMP-mediated diabetic neuropathic pain have been discussed. Various endogenous, natural and synthetic MMP inhibitors are also explored. EXPERT OPINION In diabetes, hyperglycemia activates MMPs that along with the other pathogenic mediators cause neuronal injury and precipitates neuropathic pain. Thus, MMPs play a crucial role in the development of neuropathic pain among diabetics. However, MMPs are not only responsible for deleterious ECM abnormalities but are also required for beneficial remodeling of ECM under normal physiological conditions. Therefore, highly selective and specific inhibitors must be designed and explored for their clinical potential for treatment/prevention of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Anurag Kuhad
- Panjab University, University Institute of Pharmaceutical Sciences, Pharmacology Research Laboratory, UGC Centre of Advanced Study , Chandigarh - 160 014 , India +91 9915173064 ; +91 172 2534101 ;
| | | | | |
Collapse
|