51
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
52
|
Strengthening the Case for Cluster Set Resistance Training in Aged and Clinical Settings: Emerging Evidence, Proposed Benefits and Suggestions. Sports Med 2021; 51:1335-1351. [PMID: 33983613 DOI: 10.1007/s40279-021-01455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Resistance training (RT) is a fundamental component of exercise prescription aimed at improving overall health and function. RT techniques such as cluster set (CS) configurations, characterized by additional short intra-set or inter-repetition rest intervals, have been shown to maintain acute muscular force, velocity, and 'power' outputs across a RT session, and facilitate positive longer-term neuromuscular adaptations. However, to date CS have mainly been explored from a human performance perspective despite potential for application in health and clinical exercise settings. Therefore, this current opinion piece aims to highlight emerging evidence and provide a rationale for why CS may be an advantageous RT technique for older adults, and across several neurological, neuromuscular, cardiovascular and pulmonary settings. Specifically, CS may minimize acute fatigue and adverse physiologic responses, improve patient tolerance of RT and promote functional adaptations (i.e., force, velocity, and power). Moreover, we propose that CS may be a particularly useful exercise rehabilitation technique where injury or illness, persistent fatigue, weakness and dysfunction exist. We further suggest that CS offer an alternative RT strategy that can be easily implemented alongside existing exercise/rehabilitation programs requiring no extra cost, minimal upskilling and/or time commitment for the patient and professional. In light of the emerging evidence and likely efficacy in clinical exercise practice, future research should move toward further direct investigation of CS-based RT in a variety of adverse health conditions and across the lifespan given the already demonstrated benefits in healthy populations.
Collapse
|
53
|
Soldatov VO, Kukharsky MS, Belykh AE, Sobolev AM, Deykin AV. Retinal Damage in Amyotrophic Lateral Sclerosis: Underlying Mechanisms. Eye Brain 2021; 13:131-146. [PMID: 34012311 PMCID: PMC8128130 DOI: 10.2147/eb.s299423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in a gradual loss of motor neuron function. Although ophthalmic complaints are not presently considered a classic symptom of ALS, retinal changes such as thinning, axonal degeneration and inclusion bodies have been found in many patients. Retinal abnormalities observed in postmortem human tissues and animal models are similar to spinal cord changes in ALS. These findings are not dramatically unexpected because retina shares an ontogenetic relationship with the brain, and many genes are associated both with neurodegeneration and retinal diseases. Experimental studies have demonstrated that ALS affects many “vulnerable points” of the retina. Aggregate deposition, impaired nuclear protein import, endoplasmic reticulum stress, glutamate excitotoxicity, vascular regression, and mitochondrial dysfunction are factors suspected as being the main cause of motor neuron damage in ALS. Herein, we show that all of these pathways can affect retinal cells in the same way as motor neurons. Furthermore, we suppose that understanding the patterns of neuro-ophthalmic interaction in ALS can help in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Michail S Kukharsky
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Genetic Modelling of Neurodegenerative Processes, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia
| | - Andrey E Belykh
- Department of Pathophysiology, Kursk State Medical University, Kursk, Russia
| | - Andrey M Sobolev
- Laboratory of Genetic Modelling of Neurodegenerative Processes, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
54
|
TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Sci Rep 2021; 11:8159. [PMID: 33854132 PMCID: PMC8047018 DOI: 10.1038/s41598-021-87533-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal activity in the brain reflects an excitation-inhibition balance that is regulated predominantly by glutamatergic and GABAergic neurotransmission, and often disturbed in neuropsychiatric disorders. Here, we tested the effects of a single oral dose of two anti-glutamatergic drugs (dextromethorphan, an NMDA receptor antagonist; perampanel, an AMPA receptor antagonist) and an L-type voltage-gated calcium channel blocker (nimodipine) on transcranial magnetic stimulation (TMS)-evoked electroencephalographic (EEG) potentials (TEPs) and TMS-induced oscillations (TIOs) in 16 healthy adults in a pseudorandomized, double-blinded, placebo-controlled crossover design. Single-pulse TMS was delivered to the hand area of left primary motor cortex. Dextromethorphan increased the amplitude of the N45 TEP, while it had no effect on TIOs. Perampanel reduced the amplitude of the P60 TEP in the non-stimulated hemisphere, and increased TIOs in the beta-frequency band in the stimulated sensorimotor cortex, and in the alpha-frequency band in midline parietal channels. Nimodipine and placebo had no effect on TEPs and TIOs. The TEP results extend previous pharmaco-TMS-EEG studies by demonstrating that the N45 is regulated by a balance of GABAAergic inhibition and NMDA receptor-mediated glutamatergic excitation. In contrast, AMPA receptor-mediated glutamatergic neurotransmission contributes to propagated activity reflected in the P60 potential and midline parietal induced oscillations. This pharmacological characterization of TMS-EEG responses will be informative for interpreting TMS-EEG abnormalities in neuropsychiatric disorders with pathological excitation-inhibition balance.
Collapse
|
55
|
Dai Z, Kalra S, Mah D, Seres P, Sun H, Wu R, Wilman AH. Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. Eur Radiol 2021; 31:1401-1409. [PMID: 32909054 DOI: 10.1007/s00330-020-07243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study is to assess amide concentration changes in ALS patients compared with healthy controls by using quantitative amide proton transfer (APT) and multiparameter magnetic resonance imaging, and testing its correlation with clinical scores. METHODS Sixteen ALS patients and sixteen healthy controls were recruited as part of the Canadian ALS Neuroimaging Consortium, and multimodal magnetic resonance imaging was performed at 3 T, including APT and diffusion imaging. Lorentz fitting was used to quantify the amide effect. Clinical disability was evaluated using the revised ALS functional rating scale (ALSFRS-R), and its correlation with image characteristics was assessed. The diagnostic performance of different imaging parameters was evaluated with receiver operating characteristic analysis. RESULTS Our results showed that the amide peak was significantly different between the motor cortex and other gray matter territories within the brain of ALS patients (p < 0.001). Compared with controls, amide signal intensities in ALS were significantly reduced in the motor cortex (p < 0.001) and corticospinal tract (p = 0.046), while abnormalities were not detected using routine imaging methods. There was no significant correlation between amide and ALSFRS-R score. The diagnostic accuracy of the amide peak was superior to that of diffusion imaging. CONCLUSIONS This study demonstrated changes of amide signal intensities in the motor cortex and corticospinal tract of ALS patients. KEY POINTS • The neurodegenerative disease amyotrophic lateral sclerosis (ALS) has a lack of objective imaging indicators for diagnosis and assessment. • Analysis of amide proton transfer imaging revealed changes in the motor cortex and corticospinal tract of ALS patients that were not visible on standard magnetic resonance imaging. • The diagnostic accuracy of the amide peak was superior to that of diffusion imaging.
Collapse
Affiliation(s)
- Zhuozhi Dai
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Dennell Mah
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Renhua Wu
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| |
Collapse
|
56
|
Spijkers XM, Pasteuning-Vuhman S, Dorleijn JC, Vulto P, Wevers NR, Pasterkamp RJ. A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci Rep 2021; 11:2080. [PMID: 33483540 PMCID: PMC7822896 DOI: 10.1038/s41598-021-81335-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
We report a method to generate a 3D motor neuron model with segregated and directed axonal outgrowth. iPSC-derived motor neurons are cultured in extracellular matrix gel in a microfluidic platform. Neurons extend their axons into an adjacent layer of gel, whereas dendrites and soma remain predominantly in the somal compartment, as verified by immunofluorescent staining. Axonal outgrowth could be precisely quantified and was shown to respond to the chemotherapeutic drug vincristine in a highly reproducible dose-dependent manner. The model was shown susceptible to excitotoxicity upon exposure with excess glutamate and showed formation of stress granules upon excess glutamate or sodium arsenite exposure, mimicking processes common in motor neuron diseases. Importantly, outgrowing axons could be attracted and repelled through a gradient of axonal guidance cues, such as semaphorins. The platform comprises 40 chips arranged underneath a microtiter plate providing both throughput and compatibility to standard laboratory equipment. The model will thus prove ideal for studying axonal biology and disease, drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Xandor M. Spijkers
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands ,grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jennifa C. Dorleijn
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands
| | - Paul Vulto
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands
| | - Nienke R. Wevers
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - R. Jeroen Pasterkamp
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
57
|
Cappella M, Pradat PF, Querin G, Biferi MG. Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy. J Neuromuscul Dis 2021; 8:25-38. [PMID: 33074186 PMCID: PMC7902976 DOI: 10.3233/jnd-200531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.
Collapse
Affiliation(s)
- Marisa Cappella
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| | - Pierre-François Pradat
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| | - Giorgia Querin
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France.,Association Institut de Myologie, Plateforme Essais Cliniques Adultes, Paris, France.,APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maria Grazia Biferi
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| |
Collapse
|
58
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|
59
|
Liu Y, Wang S, Kan J, Zhang J, Zhou L, Huang Y, Zhang Y. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling. Curr Neuropharmacol 2020; 18:260-276. [PMID: 31686629 PMCID: PMC7327939 DOI: 10.2174/1570159x17666191101125530] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and its signaling is critical for excitatory synaptic transmission. The well-established glutamate system involves glutamate synthesis, presynaptic glutamate release, glutamate actions on the ionotropic glutamate receptors (NMDA, AMPA, and kainate receptors) and metabotropic glutamate receptors, and glutamate uptake by glutamate transporters. When the glutamate system becomes dysfunctional, it contributes to the pathogenesis of neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease, depression, epilepsy, and ischemic stroke. In this review, based on regulating glutamate signaling, we summarize the effects and underlying mechanisms of natural constituents from Chinese herbal medicines on neurological disorders. Natural constituents from Chinese herbal medicine can prevent the glutamate-mediated excitotoxicity via suppressing presynaptic glutamate release, decreasing ionotropic and metabotropic glutamate receptors expression in the excitatory synapse, and promoting astroglial glutamate transporter expression to increase glutamate clearance from the synaptic cleft. However, some natural constituents from Chinese herbal medicine have the ability to restore the collapse of excitatory synapses by promoting presynaptic glutamate release and increasing ionotropic and metabotropic glutamate receptors expression. These regulatory processes involve various signaling pathways, which lead to different mechanistic routes of protection against neurological disorders. Hence, our review addresses the underlying mechanisms of natural constituents from Chinese herbal medicines that regulate glutamate systems and serve as promising agents for the treatment of the above-mentioned neurological disorders.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shan Wang
- Department of Biology, Center of Pain Medicine and Medical School, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Kan
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Lisa Zhou
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.,Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
60
|
Nikseresht S, Hilton JB, Kysenius K, Liddell JR, Crouch PJ. Copper-ATSM as a Treatment for ALS: Support from Mutant SOD1 Models and Beyond. Life (Basel) 2020; 10:E271. [PMID: 33158182 PMCID: PMC7694234 DOI: 10.3390/life10110271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier permeant, copper-containing compound, CuII(atsm), has successfully progressed from fundamental research outcomes in the laboratory through to phase 2/3 clinical assessment in patients with the highly aggressive and fatal neurodegenerative condition of amyotrophic lateral sclerosis (ALS). The most compelling outcomes to date to indicate potential for disease-modification have come from pre-clinical studies utilising mouse models that involve transgenic expression of mutated superoxide dismutase 1 (SOD1). Mutant SOD1 mice provide a very robust mammalian model of ALS with high validity, but mutations in SOD1 account for only a small percentage of ALS cases in the clinic, with the preponderant amount of cases being sporadic and of unknown aetiology. As per other putative drugs for ALS developed and tested primarily in mutant SOD1 mice, this raises important questions about the pertinence of CuII(atsm) to broader clinical translation. This review highlights some of the challenges associated with the clinical translation of new treatment options for ALS. It then provides a brief account of pre-clinical outcomes for CuII(atsm) in SOD1 mouse models of ALS, followed by an outline of additional studies which report positive outcomes for CuII(atsm) when assessed in cell and mouse models of neurodegeneration which do not involve mutant SOD1. Clinical evidence for CuII(atsm) selectively targeting affected regions of the CNS in patients is also presented. Overall, this review summarises the existing evidence which indicates why clinical relevance of CuII(atsm) likely extends beyond the context of cases of ALS caused by mutant SOD1.
Collapse
Affiliation(s)
- Sara Nikseresht
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC 3010, Australia; (S.N.); (J.B.H.); (J.R.L.)
| | - James B.W. Hilton
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC 3010, Australia; (S.N.); (J.B.H.); (J.R.L.)
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Jeffrey R. Liddell
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC 3010, Australia; (S.N.); (J.B.H.); (J.R.L.)
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
61
|
Wang Q, Conlon EG, Manley JL, Rio DC. Widespread intron retention impairs protein homeostasis in C9orf72 ALS brains. Genome Res 2020; 30:1705-1715. [PMID: 33055097 PMCID: PMC7706729 DOI: 10.1101/gr.265298.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
The GGGGCC hexanucleotide expansion in C9orf72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), yet a clear understanding of how C9 fits into the broader context of ALS/FTD pathology has remained lacking. The repetitive RNA derived from the C9 repeat is known to sequester hnRNPH, a splicing regulator, into insoluble aggregates, resulting in aberrant alternative splicing. Furthermore, hnRNPH insolubility and altered splicing of a robust set of targets have been observed to correlate in C9 and sporadic ALS/FTD patients alike, suggesting that changes along this axis are a core feature of disease pathogenesis. Here, we characterize previously uncategorized RNA splicing defects involving widespread intron retention affecting almost 2000 transcripts in C9ALS/FTD brains exhibiting a high amount of sequestered, insoluble hnRNPH. These intron retention events appear not to alter overall expression levels of the affected transcripts but rather the protein-coding regions. These retained introns affect transcripts in multiple cellular pathways predicted to be involved in C9 as well as sporadic ALS/FTD etiology, including the proteasomal and autophagy systems. The retained intron pre-mRNAs display a number of characteristics, including enrichment of hnRNPH-bound splicing enhancer motifs and a propensity for G-quadruplex (G-Q) formation, linking the defective splicing directly to high amounts of sequestered hnRNPH. Together, our results reveal previously undetected splicing defects in high insoluble hnRNPH-associated C9ALS brains, suggesting a feedback between effective RNA-binding protein dosage and protein quality control in C9, and perhaps all, ALS/FTD.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| |
Collapse
|
62
|
The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. Int J Mol Sci 2020; 21:ijms21176429. [PMID: 32899400 PMCID: PMC7503226 DOI: 10.3390/ijms21176429] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases. The ubiquitin-proteasome system (UPS) plays a fundamental role in maintaining protein homeostasis, being involved in protein degradation, among other cellular functions. Through a cascade of enzymatic reactions, proteins are ubiquitinated, tagged, and translocated to the proteasome to be degraded. Within the ubiquitin system, we can find three main groups of enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin-protein ligases). Only the ubiquitinated proteins with specific chain linkages (such as K48) will be degraded by the UPS. In this review, we describe the relevance of this system in NMDs, summarizing the UPS proteins that have been involved in pathological conditions and neuromuscular disorders, such as Spinal Muscular Atrophy (SMA), Charcot-Marie-Tooth disease (CMT), or Duchenne Muscular Dystrophy (DMD), among others. A better knowledge of the processes involved in the maintenance of proteostasis may pave the way for future progress in neuromuscular disorder studies and treatments.
Collapse
|
63
|
Le Gall L, Anakor E, Connolly O, Vijayakumar UG, Duddy WJ, Duguez S. Molecular and Cellular Mechanisms Affected in ALS. J Pers Med 2020; 10:E101. [PMID: 32854276 PMCID: PMC7564998 DOI: 10.3390/jpm10030101] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Owen Connolly
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Udaya Geetha Vijayakumar
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - William J. Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| |
Collapse
|
64
|
Zou YH, Guan PP, Zhang SQ, Guo YS, Wang P. Rofecoxib Attenuates the Pathogenesis of Amyotrophic Lateral Sclerosis by Alleviating Cyclooxygenase-2-Mediated Mechanisms. Front Neurosci 2020; 14:817. [PMID: 32903591 PMCID: PMC7438558 DOI: 10.3389/fnins.2020.00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is reported to be activated during the course of amyotrophic lateral sclerosis (ALS) development and progression. However, the roles of COX-2 in aggravating ALS and the underlying mechanism have been largely overlooked. To reveal the mechanisms, the canonical SOD1G93A mouse model was used as an experimental model for ALS in the current study. In addition, a specific inhibitor of COX-2 activity, rofecoxib, was orally administered to SOD1G93A mice. With this in vivo approach, we revealed that COX-2 proinflammatory signaling cascades were inhibited by rofecoxib in SOD1G93A mice. Specifically, the protein levels of COX-2, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α were elevated as a result of activation of astrocytes and microglia during the course of ALS development and progression. These proinflammatory reactions may contribute to the death of neurons by triggering the movement of astrocytes and microglia to neurons in the context of ALS. Treatment with rofecoxib alleviated this close association between glial cells and neurons and significantly decreased the density of inflammatory cells, which helped to restore the number of motor neurons in SOD1G93A mice. Mechanistically, rofecoxib treatment decreased the expression of COX-2 and its downstream signaling targets, including IL-1β and TNF-α, by deactivating glial cells, which in turn ameliorated the progression of SOD1G93A mice by postponing disease onset and modestly prolonging survival. Collectively, these results provide novel insights into the mechanisms of ALS and aid in the development of new drugs to improve the clinical treatment of ALS.
Collapse
Affiliation(s)
- Yan-Hui Zou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shen-Qing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yan-Su Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
65
|
Yao P, Zhou L, Zhu L, Zhou B, Yu Q. Mesenchymal Stem Cells: A Potential Therapeutic Strategy for Neurodegenerative Diseases. Eur Neurol 2020; 83:235-241. [PMID: 32690856 DOI: 10.1159/000509268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
Neurodegenerative disease is a kind of chronic, progressive nervous system disease characterized by neuron degeneration or apoptosis. Current treatments cannot prevent the development of the disease. Possible alternative treatments include cell therapy, especially with the use of mesenchymal stem cells (MSCs). MSCs are pluripotent stem cells with capacities for self-renewal and multidirectional differentiation. MSCs may serve as a reliable source of neural cells for potential cell replacement therapy or regenerative medicine treatment. Here, we summarized the therapeutic mechanisms of MSCs and how they can contribute to the development of treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Panpan Yao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lujie Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Binjie Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China,
| |
Collapse
|
66
|
Assad N, Luz WL, Santos-Silva M, Carvalho T, Moraes S, Picanço-Diniz DLW, Bahia CP, Oliveira Batista EDJ, da Conceição Passos A, Oliveira KRHM, Herculano AM. Acute Restraint Stress Evokes Anxiety-Like Behavior Mediated by Telencephalic Inactivation and GabAergic Dysfunction in Zebrafish Brains. Sci Rep 2020; 10:5551. [PMID: 32218457 PMCID: PMC7099036 DOI: 10.1038/s41598-020-62077-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Acute stress is an important factor in the development of anxiety disorders. Zebrafish are an organism model widely used by studies that aim to describe the events in the brain that control stress-elicited anxiety. The goal of the current study was to evaluate the pattern of cell activation in the telencephalon of adult zebrafish and the role of the GABAergic system on the modulation of anxiety-like behavior evoked by acute restraint stress. Zebrafish that underwent acute restraint stress presented decreased expression of the c-fos protein in their telencephalon as well as a significant decrease in GABA release. The data also supports that decreased GABA levels in zebrafish brains have diminished the activation of GABAA receptors eliciting anxiety-like behavior. Taken together these findings have helped clarify a neurochemical pathway controlling anxiety-like behavior evoked by acute stress in zebrafish while also opening the possibility of new perspective opportunities to use zebrafish as an animal model to test anxyolitic drugs that target the GABAergic system.
Collapse
Affiliation(s)
- Nadyme Assad
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Waldo Lucas Luz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Mateus Santos-Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Tayana Carvalho
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Suellen Moraes
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Evander de Jesus Oliveira Batista
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil.,Lab. Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
67
|
Wang G, Rayner S, Chung R, Shi B, Liang X. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater Today Bio 2020; 6:100055. [PMID: 32529183 PMCID: PMC7280770 DOI: 10.1016/j.mtbio.2020.100055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurodegenerative disease that affects both upper and lower motor neurons, which results in loss of muscle control and eventual paralysis [1]. Currently, there are as yet unresolved challenges regarding efficient drug delivery into the central nervous system (CNS). These challenges can be attributed to multiple factors including the presence of the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), as well as the inherent characteristics of the drugs themselves (e.g. low solubility, insufficient bioavailability/bio-stability, 'off-target' effects) etc. As a result, conventional drug delivery systems may not facilitate adequate dosage of the required drugs for functional recovery in ALS patients. Nanotechnology-based strategies, however, employ engineered nanostructures that show great potential in delivering single or combined therapeutic agents to overcome the biological barriers, enhance interaction with targeted sites, improve drug bioavailability/bio-stability and achieve real-time tracking while minimizing the systemic side-effects. This review provides a concise discussion of recent advances in nanotechnology-based strategies in relation to combating specific pathophysiology relevant to ALS disease progression and investigates the future scope of using nanotechnology to develop innovative treatments for ALS patients.
Collapse
Affiliation(s)
- G.Y. Wang
- Huaihe Hospital, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - S.L. Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - R. Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - B.Y. Shi
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - X.J. Liang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
68
|
Spasic S, Stanojevic M, Nesovic Ostojic J, Kovacevic S, Todorovic J, Dincic M, Nedeljkov V, Prostran M, Lopicic S. Two distinct electrophysiological mechanisms underlie extensive depolarization elicited by 2,4 diaminobutyric acid in leech Retzius neurons. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105398. [PMID: 31891816 DOI: 10.1016/j.aquatox.2019.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that 2,4-DABA, a neurotoxic excitatory amino acid present in virtually all environments, but predominantly in aquatic ecosystems may be a risk factor for development of neurodegenerative diseases in animals and humans. Despite its neurotoxicity and potential environmental importance, mechanisms underlying the excitatory and putative excitotoxic action of 2,4-DABA in neurons are still unexplored. We previously reported on extensive two-stage membrane depolarization and functional disturbances in leech Retzius neurons induced by 2,4-DABA. Current study presents the first detailed look into the electrophysiological processes leading to this depolarization. Intracellular recordings were performed on Retzius neurons of the leech Haemopis sanguisuga using glass microelectrodes and input membrane resistance (IMR) was measured by injecting hyperpolarizing current pulses through these electrodes. Results show that the excitatory effect 2,4-DABA elicits on neurons' membrane potential is dependent on sodium ions. Depolarizing effect of 5·10-3 mol/L 2,4-DABA in sodium-free solution was significantly diminished by 91% reducing it to 3.26 ± 0.62 mV and its two-stage nature was abrogated. In addition to being sodium-dependent, the depolarization of membrane potential induced by this amino acid is coupled with an increase of membrane permeability, as 2,4-DABA decreases IMR by 8.27 ± 1.47 MΩ (67.60%). Since present results highlight the role of sodium ions, we investigated the role of two putative sodium-dependent mechanisms in 2,4-DABA-induced excitatory effect - activation of ionotropic glutamate receptors and the electrogenic transporter for neutral amino acids. Excitatory effect of 5·10-3 mol/L 2,4-DABA was partially blocked by 10-5 mol/L 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) a non-NMDA receptor antagonist as the first stage of membrane depolarization was significantly reduced by 2.59 ± 0.98 mV (40%), whilst second stage remained unaltered. Moreover, involvement of the sodium-dependent transport system for neutral amino acids was investigated by equimolar co-application of 5·10-3 mol/L 2,4-DABA and L-alanine, a competitive inhibitor of this transporter. Although L-alanine exhibited no effect on the first stage of membrane depolarization elicited by 2,4-DABA, it substantially reduced the second stage (the overall membrane depolarization) from 39.63 ± 2.22 mV to 16.28 ± 2.58 mV, by 58.92%. We therefore propose that the electrophysiological effect of 2,4-DABA on Retzius neurons is mediated by two distinct mechanisms, i.e. by activation of ionotropic glutamate receptor that initiates the first stage of membrane depolarization followed by the stimulation of an electrogenic sodium-dependent neutral amino acid transporter, leading to additional influx of positive charge into the cell and the second stage of depolarization.
Collapse
Affiliation(s)
- Svetolik Spasic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia.
| | - Marija Stanojevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Sanjin Kovacevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Jasna Todorovic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Marko Dincic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Vladimir Nedeljkov
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Milica Prostran
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine University of Belgrade, Dr Subotica 1/III, 11000, Belgrade, Serbia
| | - Srdjan Lopicic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| |
Collapse
|
69
|
Vila OF, Qu Y, Vunjak-Novakovic G. In vitro models of neuromuscular junctions and their potential for novel drug discovery and development. Expert Opin Drug Discov 2019; 15:307-317. [PMID: 31846349 DOI: 10.1080/17460441.2020.1700225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Neuromuscular Junctions (NMJs) are the synapses between motor neurons and skeletal muscle fibers, and they are responsible for voluntary motor function. NMJs are affected at early stages of numerous neurodegenerative and neuroimmunological diseases. Due to the difficulty of systematically studying and manipulating NMJs in live subjects, in vitro systems with human tissue models would provide a powerful complement to simple cell cultures and animal models for mechanistic and drug development studies.Areas covered: The authors review the latest advances in in vitro models of NMJs, from traditional cell co-culture systems to novel tissue culture approaches, with focus on disease modeling and drug testing.Expert opinion: In recent years, more sophisticated in vitro models of human NMJs have been established. The combination of human stem cell technology with advanced tissue culture systems has resulted in systems that better recapitulate the human NMJ structure and function, and thereby allow for high-throughput quantitative functional measurements under both healthy and diseased conditions. Although they still have limitations, these advanced systems are increasingly demonstrating their utility for evaluating new therapies for motoneuron and autoimmune neuromuscular diseases, and we expect them to become an integral part of the drug discovery process in the near future.
Collapse
Affiliation(s)
- Olaia F Vila
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yihuai Qu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | |
Collapse
|
70
|
Association between Zika virus and future neurological diseases. J Neurol Sci 2019; 409:116617. [PMID: 31835212 DOI: 10.1016/j.jns.2019.116617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022]
|
71
|
Malik AR, Willnow TE. Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 2019; 20:ijms20225671. [PMID: 31726793 PMCID: PMC6888459 DOI: 10.3390/ijms20225671] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.
Collapse
Affiliation(s)
- Anna R. Malik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
72
|
Neale JH, Yamamoto T. N-acetylaspartylglutamate (NAAG) and glutamate carboxypeptidase II: An abundant peptide neurotransmitter-enzyme system with multiple clinical applications. Prog Neurobiol 2019; 184:101722. [PMID: 31730793 DOI: 10.1016/j.pneurobio.2019.101722] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
N-Acetylaspartylglutamate (NAAG) is the third most prevalent neurotransmitter in the mammalian nervous system, yet its therapeutic potential is only now being fully recognized. Drugs that inhibit the inactivation of NAAG by glutamate carboxypeptidase II (GCPII) increase its extracellular concentration and its activation of its receptor, mGluR3. These drugs warrant attention, as they are effective in animal models of several clinical disorders including stroke, traumatic brain injury and schizophrenia. In inflammatory and neuropathic pain studies, GCPII inhibitors moderated both the primary and secondary pain responses when given systemically, locally or in brain regions associated with the pain perception pathway. The finding that GCPII inhibition also moderated the motor and cognitive effects of ethanol intoxication led to the discovery of their procognitive efficacy in long-term memory tests in control mice and in short-term memory in a mouse model of Alzheimer's disease. NAAG and GCPII inhibitors respectively reduce cocaine self-administration and the rewarding effects of a synthetic stimulant. Most recently, GCPII inhibition also has been reported to be efficacious in a model of inflammatory bowel disease. GCPII was first discovered as a protein expressed by and released from metastatic prostate cells where it is known as prostate specific membrane antigen (PSMA). GCPII inhibitors with high affinity for this protein have been developed as prostate imaging and radiochemical therapies for prostate cancer. Taken together, these data militate in favor of the development and application of GCPII inhibitors in more advanced preclinical research as a prelude to clinical trials.
Collapse
Affiliation(s)
- Joseph H Neale
- Department of Biology, Georgetown University, 37(th) and O Sts., NW, Washington, DC, 20057, USA.
| | - Tatsuo Yamamoto
- Dept. of Anesthesiology, Kumamoto University., Kumamoto, Japan
| |
Collapse
|
73
|
Bonifacino T, Rebosio C, Provenzano F, Torazza C, Balbi M, Milanese M, Raiteri L, Usai C, Fedele E, Bonanno G. Enhanced Function and Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression. Int J Mol Sci 2019; 20:ijms20184552. [PMID: 31540330 PMCID: PMC6774337 DOI: 10.3390/ijms20184552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu)-mediated excitotoxicity is a major cause of amyotrophic lateral sclerosis (ALS) and our previous work highlighted that abnormal Glu release may represent a leading mechanism for excessive synaptic Glu. We demonstrated that group I metabotropic Glu receptors (mGluR1, mGluR5) produced abnormal Glu release in SOD1G93A mouse spinal cord at a late disease stage (120 days). Here, we studied this phenomenon in pre-symptomatic (30 and 60 days) and early-symptomatic (90 days) SOD1G93A mice. The mGluR1/5 agonist (S)-3,5-Dihydroxyphenylglycine (3,5-DHPG) concentration dependently stimulated the release of [3H]d-Aspartate ([3H]d-Asp), which was comparable in 30- and 60-day-old wild type mice and SOD1G93A mice. At variance, [3H]d-Asp release was significantly augmented in 90-day-old SOD1G93A mice and both mGluR1 and mGluR5 were involved. The 3,5-DHPG-induced [3H]d-Asp release was exocytotic, being of vesicular origin and mediated by intra-terminal Ca2+ release. mGluR1 and mGluR5 expression was increased in Glu spinal cord axon terminals of 90-day-old SOD1G93A mice, but not in the whole axon terminal population. Interestingly, mGluR1 and mGluR5 were significantly augmented in total spinal cord tissue already at 60 days. Thus, function and expression of group I mGluRs are enhanced in the early-symptomatic SOD1G93A mouse spinal cord, possibly participating in excessive Glu transmission and supporting their implication in ALS. Please define all abbreviations the first time they appear in the abstract, the main text, and the first figure or table caption.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Luca Raiteri
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), 16149 Genova, Italy.
| | - Ernesto Fedele
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
74
|
Does Riluzole Influence Bone Formation?: An In Vitro Study of Human Mesenchymal Stromal Cells and Osteoblast. Spine (Phila Pa 1976) 2019; 44:1107-1117. [PMID: 30896584 DOI: 10.1097/brs.0000000000003022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A post-test design biological experiment. OBJECTIVE The aim of this study was to evaluate the osteogenic effects of riluzole on human mesenchymal stromal cells and osteoblasts. SUMMARY OF BACKGROUND DATA Riluzole may benefit patients with spinal cord injury (SCI) from a neurologic perspective, but little is known about riluzole's effect on bone formation, fracture healing, or osteogenesis. METHODS Human mesenchymal stromal cells (hMSCs) and human osteoblasts (hOB) were obtained and isolated from healthy donors and cultured. The cells were treated with riluzole of different concentrations (50, 150, 450 ng/mL) for 1, 2, 3, and 4 weeks. Cytotoxicity was evaluated as was the induction of osteogenic differentiation of hMSCs. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and with Alizarin red staining. Osteogenic gene expression of type I collagen (Col1), ALP, osteocalcin (Ocn), Runx2, Sox9, Runx2/Sox9 ratio were measured by qRT-PCR. RESULTS No cytotoxicity or increased proliferation was observed in bone marrow derived hMSCs and primary hOBs cultured with riluzole over 7 days. ALP activity was slightly increased in hMSCs after treatment for 2 weeks with riluzole 150 ng/mL and slightly upregulated by 150% (150 ng/mL) and 90% (450 ng/mL) in hMSCs at 3 weeks. In hOBs, ALP activity almost doubled after 2 weeks of culture with riluzole 150 ng/mL (P < 0.05). More pronounced 2.6-fold upregulation was noticed after 3 weeks of culture with riluzole at both 150 ng/mL (P = 0.05) and 450 ng/mL (P = 0.05). No significant influence of riluzole on the mRNA expression of osteocalcin (OCN) was observed. CONCLUSION The effect of riluzole on bone formation is mixed; low-dose riluzole has no effect on the viability or function of either hMSCs or hOBs. The activity of ALP in both cell types is upregulated by high-dose riluzole, which may indicate that high-dose riluzole can increase osteogenic metabolism and subsequently accelerate bone healing process. However, at high concentrations, riluzole leads to a decrease in osteogenic gene expression, including Runx2 and type 1 collagen. LEVEL OF EVIDENCE N/A.
Collapse
|
75
|
Saba L, Viscomi MT, Martini A, Caioli S, Mercuri NB, Guatteo E, Zona C. Modified age-dependent expression of NaV1.6 in an ALS model correlates with motor cortex excitability alterations. Neurobiol Dis 2019; 130:104532. [PMID: 31302244 DOI: 10.1016/j.nbd.2019.104532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.
Collapse
Affiliation(s)
- Luana Saba
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy
| | - Maria Teresa Viscomi
- Università Cattolica del Sacro Cuore, Istituto di Istologia ed Embriologia, Fondazione Policlinico Universitario A. Gemelli, Largo F. Vito 1, Rome 00168, Italy
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Silvia Caioli
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy; Department of Motor Science and Wellness, University of Naples 'Parthenope', Via Medina 40, Naples 80133, Italy
| | - Cristina Zona
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
76
|
Genin EC, Madji Hounoum B, Bannwarth S, Fragaki K, Lacas-Gervais S, Mauri-Crouzet A, Lespinasse F, Neveu J, Ropert B, Augé G, Cochaud C, Lefebvre-Omar C, Bigou S, Chiot A, Mochel F, Boillée S, Lobsiger CS, Bohl D, Ricci JE, Paquis-Flucklinger V. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10 S59L/+ mouse. Acta Neuropathol 2019; 138:123-145. [PMID: 30874923 DOI: 10.1007/s00401-019-01988-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
Abstract
Recently, we provided genetic basis showing that mitochondrial dysfunction can trigger motor neuron degeneration, through identification of CHCHD10 encoding a mitochondrial protein. We reported patients, carrying the p.Ser59Leu heterozygous mutation in CHCHD10, from a large family with a mitochondrial myopathy associated with motor neuron disease (MND). Rapidly, our group and others reported CHCHD10 mutations in amyotrophic lateral sclerosis (ALS), frontotemporal dementia-ALS and other neurodegenerative diseases. Here, we generated knock-in (KI) mice, carrying the p.Ser59Leu mutation, that mimic the mitochondrial myopathy with mtDNA instability displayed by the patients from our original family. Before 14 months of age, all KI mice developed a fatal mitochondrial cardiomyopathy associated with enhanced mitophagy. CHCHD10S59L/+ mice also displayed neuromuscular junction (NMJ) and motor neuron degeneration with hyper-fragmentation of the motor end plate and moderate but significant motor neuron loss in lumbar spinal cord at the end stage of the disease. At this stage, we observed TDP-43 cytoplasmic aggregates in spinal neurons. We also showed that motor neurons differentiated from human iPSC carrying the p.Ser59Leu mutation were much more sensitive to Staurosporine or glutamate-induced caspase activation than control cells. These data confirm that mitochondrial deficiency associated with CHCHD10 mutations can be at the origin of MND. CHCHD10 is highly expressed in the NMJ post-synaptic part. Importantly, the fragmentation of the motor end plate was associated with abnormal CHCHD10 expression that was also observed closed to NMJs which were morphologically normal. Furthermore, we found OXPHOS deficiency in muscle of CHCHD10S59L/+ mice at 3 months of age in the absence of neuron loss in spinal cord. Our data show that the pathological effects of the p.Ser59Leu mutation target muscle prior to NMJ and motor neurons. They likely lead to OXPHOS deficiency, loss of cristae junctions and destabilization of internal membrane structure within mitochondria at motor end plate of NMJ, impairing neurotransmission. These data are in favor with a key role for muscle in MND associated with CHCHD10 mutations.
Collapse
|
77
|
Dokumaci DS, Dogan F, Geter S, Almaz V, Calik M. Does B12 deficiency lead to change in brain metabolites in pediatric population? A MR spectroscopy study. Neurol Sci 2019; 40:2319-2324. [PMID: 31240574 DOI: 10.1007/s10072-019-03990-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study is to examine metabolite changes in different brain regions of the children with vitamin B12 deficiency disease using MR spectroscopy. METHODS Eighteen children with serum vit. B12 deficiency and 12 healthy volunteer children were included in the study. All children were examined with single-voxel spectroscopy examination via 1.5-Tesla MRI. The spectra were obtained from the left frontal periventricular white matter, left lentiform nucleus and left cerebellar hemisphere. The comparisons between patient group and control group were made with ratios calculated as NAA/Cr, Cho/Cr, mI/Cr, and Glx/Cr. All brain images were also examined in terms of brain atrophy, abnormal brain parenchyma intensity changes, or myelination status. RESULTS The children were between 3 months and 16 years old in the patient group, and between 3 months and 15 years old in the control group. There were no statistical differences in terms of metabolite ratios in the three different brain regions between the patients and control group. In two patients, periventricular white matter hyperintensities were observed. In four patients, brain atrophy was detected. DISCUSSION MR spectroscopy examination demonstrated that there were no statistical differences in terms of all metabolite ratios in left frontal periventricular white matter, left lentiform nucleus and left cerebellar hemisphere.
Collapse
Affiliation(s)
- Dilek Sen Dokumaci
- Department of Radiology, Harran University School of Medicine, Sanliurfa-Mardin Highway 18.Km, 63300, Sanliurfa, Turkey.
| | - Ferit Dogan
- Department of Radiology, Sanliurfa Training and Research Hospital, 63250, Sanliurfa, Turkey
| | - Suleyman Geter
- Department of Pediatrics, Sanliurfa Training and Research Hospital, 63250, Sanliurfa, Turkey
| | - Veysi Almaz
- Department of Pediatrics, Sanliurfa Training and Research Hospital, 63250, Sanliurfa, Turkey
| | - Mustafa Calik
- Department of Pediatrics, Harran University School of Medicine, 63300, Sanliurfa, Turkey
| |
Collapse
|
78
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
79
|
Functional microglia neurotransmitters in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2019; 94:121-128. [PMID: 31009755 DOI: 10.1016/j.semcdb.2019.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Today neuroscience is dominated by the perspective that microglia are essential elements in any integrated view of the nervous system. A number of different neuroinflammatory conditions affect the CNS where microglia involvement, and particularly microgliosis, is not only a prominent feature, but also a pathogenic key mechanism of disease. On the other side, microglia can also constitute an important trigger of neuronal protection during neurodegenerative disorders. For instance in ALS and other motor neuron diseases, available evidence suggests the coexistence of quite different roles for microglia, characterized by neuroprotective functions at early stages, and neurotoxic actions during disease progression. The scope of this review is a brief discussion about microglia being activated and functioning during ALS, and particularly about neurotransmitters participating to the pathological signature of ALS microglia. We will discuss that ALS microglia can express a variety of classical neurotransmitter receptors comprising those for extracellular ATP, glutamate and histamine. We will review data indicating that the modulation of these transmitter receptors may induce beneficial effects in ALS models, so that the protective properties of microglia can be emphasized at the expenses of their toxicity.
Collapse
|
80
|
Schram S, Chuang D, Schmidt G, Piponov H, Helder C, Kerns J, Gonzalez M, Song F, Loeb JA. Mutant SOD1 prevents normal functional recovery through enhanced glial activation and loss of motor neuron innervation after peripheral nerve injury. Neurobiol Dis 2019; 124:469-478. [DOI: 10.1016/j.nbd.2018.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
|
81
|
Benussi A, Alberici A, Buratti E, Ghidoni R, Gardoni F, Di Luca M, Padovani A, Borroni B. Toward a Glutamate Hypothesis of Frontotemporal Dementia. Front Neurosci 2019; 13:304. [PMID: 30983965 PMCID: PMC6449454 DOI: 10.3389/fnins.2019.00304] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder, characterized by diverse clinical presentations, neuropathological characteristics and underlying genetic causes. Emerging evidence has shown that FTD is characterized by a series of changes in several neurotransmitter systems, including serotonin, dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD. Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, while in patients, glutamatergic pyramidal neurons are depleted in several areas, including the frontal and temporal cortices. Recently, a selective involvement of the AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3 antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines. Other in vivo evidence of the involvement of the glutamatergic system in FTD derives from non-invasive brain stimulation studies using transcranial magnetic stimulation, in which specific stimulation protocols have indirectly identified a selective and prominent impairment in glutamatergic circuits in patients with both sporadic and genetic FTD. In view of limited disease modifying therapies to slow or revert disease progression in FTD, an important approach could consist in targeting the neurotransmitter deficits, similarly to what has been achieved in Parkinson’s disease with dopaminergic therapy or Alzheimer’s disease with cholinergic therapy. In this review, we summarize the current evidence concerning the involvement of the glutamatergic system in FTD, suggesting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Roberta Ghidoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
82
|
Cieślak M, Roszek K, Wujak M. Purinergic implication in amyotrophic lateral sclerosis-from pathological mechanisms to therapeutic perspectives. Purinergic Signal 2019; 15:1-15. [PMID: 30430356 PMCID: PMC6439052 DOI: 10.1007/s11302-018-9633-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by degeneration of upper motor neurons in the brainstem and lower motor neurons in the spinal cord. Multiple mechanisms of motor neuron injury have been implicated, including more than 20 different genetic factors. The pathogenesis of ALS consists of two stages: an early neuroprotective stage and a later neurotoxic. During early phases of disease progression, the immune system through glial and T cell activities provides anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a rapidly succeeding neurotoxic phase develops. A well-orchestrated purine-mediated dialog among motor neurons, surrounding glia and immune cells control the beneficial and detrimental activities occurring in the nervous system. In general, low adenosine triphosphate (ATP) concentrations protect cells against excitotoxic stimuli through purinergic P2X4 receptor, whereas high concentrations of ATP trigger toxic P2X7 receptor activation. Finally, adenosine is also involved in ALS progression since A2A receptor antagonists prevent motor neuron death. Given the complex cellular cross-talk occurring in ALS and the recognized function of extracellular nucleotides and adenosine in neuroglia communication, the comprehensive understanding of purinome dynamics might provide new research perspectives to decipher ALS and help to design more efficient and targeted drugs. This review will focus on the purinergic players involved in ALS etiology and disease progression and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity.
Collapse
Affiliation(s)
- M Cieślak
- Neurology Clinic, Marek Cieślak, Toruń, Poland
| | - K Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland
| | - M Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland.
| |
Collapse
|
83
|
|
84
|
Wadosky KM, Shourideh M, Goodrich DW, Koochekpour S. Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 2019; 79:140-150. [PMID: 30280407 DOI: 10.1002/pros.23719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is diagnosed at the highest rate of all non-cutaneous male cancers in the United States. The androgen-dependent (AD) transcription factor, androgen receptor (AR), drives PCa-but inhibiting AR or androgen biosynthesis induces remission for only a short time. At which point, patients acquire more aggressive castration-resistant (CR) disease with re-activated AR-dependent signaling. To combat treatment resistance, down-regulating AR protein expression has been considered as a potential treatment strategy for CR-PCa. METHODS AD- and CR-PCa cell lines were treated with the well-tolerated FDA-approved oral medicine, riluzole. Expression of full-length or wild-type AR (AR-FL) and constitutively active AR-splice variant 7 (AR-V7) was assessed by immunoblotting. AR-FL/AR-V7 activity was measured using qRT-PCR of AR-target genes. Cytoplasmic [Ca2+ ] levels were measured using a fluorescent Ca2+ indicator microplate assay. Markers of the endoplasmic reticulum stress (ERS) pathway and autophagy were assessed by immunoblotting. Direct interaction between AR and selective autophagy receptor p62 was demonstrated by co-immunoprecipitation. RESULTS We demonstrate that riluzole downregulates AR-FL, mutant ARs, and AR-V7 proteins expression by protein degradation through ERS pathway and selective autophagy. Riluzole also significantly inhibited AR transcription activity by decreasing its target genes expression (PSA, TMPRSS2, and KLK2). CONCLUSIONS We provide key mechanistic insights by which riluzole exerts its anti-tumorigenic effects and induces AR protein degradation via ERS pathways. Our findings support the potential utility of riluzole for treatment of PCa.
Collapse
Affiliation(s)
- Kristine M Wadosky
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mojgan Shourideh
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Shahriar Koochekpour
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
85
|
Myung W, Lee H, Kim H. Short-term air pollution exposure and emergency department visits for amyotrophic lateral sclerosis: A time-stratified case-crossover analysis. ENVIRONMENT INTERNATIONAL 2019; 123:467-475. [PMID: 30622072 DOI: 10.1016/j.envint.2018.12.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disease, eventually leading to respiratory failure. Although the only currently available therapeutic interventions merely slow the disease progression, few studies have examined risk factors associated with ALS exacerbation and progression. OBJECTIVE To investigate the association between exposure to short-term air pollution and acute exacerbation of ALS requiring emergency department (ED) visit. METHODS We identified from the national emergency database of Korea 617 patients who visited EDs in Seoul with ALS as a primary cause during the period 2008-2014. We estimated short-term exposure to particles <2.5 μm (PM2.5), particles <10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO). We conducted a conditional logistic regression with a time-stratified case-crossover design to examine the association between ED visits for ALS and short-term exposure to interquartile range (IQR) increase and upper quartile levels of air pollutants on the day of the ED visit, compared to the control days matched to day of the week, month, and year. RESULTS The risk of ED visits for ALS was significantly associated with an IQR increase of PM2.5 [Odds ratio (OR) = 1.21; 95% confidence interval (CI): 1.08, 1.35], PM10 [OR = 1.13; 95% CI: 1.02, 1.25], SO2 [OR = 1.19; 95% CI: 1.01, 1.41], and CO [OR = 1.19; 95% CI: 1.03, 1.36]. Exposure to the highest quartiles of PM2.5 and PM10 showed higher associations with ED visits for ALS [OR = 1.40; 95% CI: 1.06, 1.85 and OR = 1.33; 95% CI: 1.00, 1.77]. DISCUSSION We provide new evidence that exposure to short-term air pollution may increase the risk of acute exacerbation of ALS. Further studies are warranted to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyewon Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| |
Collapse
|
86
|
Lanznaster D, de Assis DR, Corcia P, Pradat PF, Blasco H. Metabolomics Biomarkers: A Strategy Toward Therapeutics Improvement in ALS. Front Neurol 2018; 9:1126. [PMID: 30619076 PMCID: PMC6305341 DOI: 10.3389/fneur.2018.01126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Biomarkers research in amyotrophic lateral sclerosis (ALS) holds the promise of improving ALS diagnosis, follow-up of patients, and clinical trials outcomes. Metabolomics have a big impact on biomarkers identification. In this mini-review, we provide the main findings of metabolomics studies in ALS and discuss the most relevant therapeutics attempts that targeted some prominent alterations found in ALS, like glutamate excitotoxicity, oxidative stress, alterations in energetic metabolism, and creatinine levels. Metabolomics studies have reported putative diagnosis or prognosis biomarkers, but discrepancies among these studies did not allow validation of metabolic biomarkers for clinical use in ALS. In this context, we wonder whether metabolomics knowledge could improve ALS therapeutics. As metabolomics identify specific metabolic pathways modified by disease progression and/or treatment, we support that adjuvant or combined treatment should be used to rescue these pathways, creating a new perspective for ALS treatment. Some ongoing clinical trials are already trying to target these pathways. As clinical trials in ALS have been disappointing and considering the heterogeneity of the disease presentation, we support the application of a pharmacometabolomic approach to evaluate the individual response to drug treatments and their side effects, enabling the development of personalized treatments for ALS. We suggest that the best strategy to apply metabolomics for ALS therapeutics progress is to establish a metabolic signature for ALS patients in order to improve the knowledge of patient metabotypes, to choose the most adequate pharmacological treatment, and to follow the drug response and side effects, based on metabolomics biomarkers.
Collapse
Affiliation(s)
| | | | - Philippe Corcia
- Université de Tours, Inserm U1253, Tours, France.,Centre Constitutif SLA, CHRU Bretonneau, Tours, France.,Federation des centres SLA de Tours et Limoges, LITORALS, Tours, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Hélène Blasco
- Université de Tours, Inserm U1253, Tours, France.,Service de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| |
Collapse
|
87
|
Bedlack R. ALSUntangled 46: penicillin G/hydrocortisone. Amyotroph Lateral Scler Frontotemporal Degener 2018; 20:126-131. [PMID: 30430873 DOI: 10.1080/21678421.2018.1512704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
88
|
Lee NY, Kang YS. Taurine Protects Glutamate Neurotoxicity in Motor Neuron Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:887-895. [PMID: 28849508 DOI: 10.1007/978-94-024-1079-2_70] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fetal neurodegenerative disease that results in motor dysfunction and death. However, there is no cure or effective therapy for ALS. In our previous results, taurine protects motor neurons by repairing for constitutive oxidative stress in an ALS model. ALS is caused by multiple factors including inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and proteasomal dysfunction. Especially, glutamate excitotoxicity has been well known as a mediator in the disease process, and may occur from changes in the excitability of the neurons being stimulated. D-serine is known to a key factor of determination on glutamate toxicity in ALS. Therefore, in the present study, we investigated neuroprotective effects of taurine from glutamate excitotoxicity using motor neuron cells, mtSOD1 (G93A) transgenic cell line model of ALS (NSC-34/hSOD1G93A cells). We evidenced that taurine protects cultured motor neurons from neurotoxic injury. Our findings indicated that taurine has neuroprotective properties and may be a good candidate for therapeutic trials in ALS.
Collapse
Affiliation(s)
- Na-Young Lee
- College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women's University, Seoul, South Korea
| | - Young-Sook Kang
- College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women's University, Seoul, South Korea.
| |
Collapse
|
89
|
Osaki T, Uzel SGM, Kamm RD. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. SCIENCE ADVANCES 2018; 4:eaat5847. [PMID: 30324134 PMCID: PMC6179377 DOI: 10.1126/sciadv.aat5847] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/05/2018] [Indexed: 05/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease involving loss of motor neurons (MNs) and muscle atrophy, still has no effective treatment, despite much research effort. To provide a platform for testing drug candidates and investigating the pathogenesis of ALS, we developed an ALS-on-a-chip technology (i.e., an ALS motor unit) using three-dimensional skeletal muscle bundles along with induced pluripotent stem cell (iPSC)-derived and light-sensitive channelrhodopsin-2-induced MN spheroids from a patient with sporadic ALS. Each tissue was cultured in a different compartment of a microfluidic device. Axon outgrowth formed neuromuscular junctions on the muscle fiber bundles. Light was used to activate muscle contraction, which was measured on the basis of pillar deflections. Compared to a non-ALS motor unit, the ALS motor unit generated fewer muscle contractions, there was MN degradation, and apoptosis increased in the muscle. Furthermore, the muscle contractions were recovered by single treatments and cotreatment with rapamycin (a mechanistic target of rapamycin inhibitor) and bosutinib (an Src/c-Abl inhibitor). This recovery was associated with up-regulation of autophagy and degradation of TAR DNA binding protein-43 in the MNs. Moreover, administering the drugs via an endothelial cell barrier decreased the expression of P-glycoprotein (an efflux pump that transports bosutinib) in the endothelial cells, indicating that rapamycin and bosutinib cotreatment has considerable potential for ALS treatment. This ALS-on-a-chip and optogenetics technology could help to elucidate the pathogenesis of ALS and to screen for drug candidates.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA 02139, USA
| | - Sebastien G. M. Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA 02139, USA
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Corresponding author.
| |
Collapse
|
90
|
Balakrishnan S, Mironov SL. Regenerative glutamate release in the hippocampus of Rett syndrome model mice. PLoS One 2018; 13:e0202802. [PMID: 30256804 PMCID: PMC6157837 DOI: 10.1371/journal.pone.0202802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Excess glutamate during intense neuronal activity is not instantly cleared and may accumulate in the extracellular space. This has various long-term consequences such as ectopic signaling, modulation of synaptic efficacy and excitotoxicity; the latter implicated in various neurodevelopmental and neurodegenerative diseases. In this study, the quantitative imaging of glutamate homeostasis of hippocampal slices from methyl-CpG binding protein 2 knock-out (Mecp2-/y) mice, a model of Rett syndrome (RTT), revealed unusual repetitive glutamate transients. They appeared in phase with bursts of action potentials in the CA1 neurons. Both glutamate transients and bursting activity were suppressed by the blockade of sodium, AMPA and voltage-gated calcium channels (T- and R-type), and enhanced after the inhibition of HCN channels. HCN and calcium channels in RTT and wild-type (WT) CA1 neurons displayed different voltage-dependencies and kinetics. Both channels modulated postsynaptic integration and modified the pattern of glutamate spikes in the RTT hippocampus. Spontaneous glutamate transients were much less abundant in the WT preparations, and, when observed, had smaller amplitude and frequency. The basal ambient glutamate levels in RTT were higher and transient glutamate increases (spontaneous and evoked by stimulation of Schaffer collaterals) decayed slower. Both features indicate less efficient glutamate uptake in RTT. To explain the generation of repetitive glutamate spikes, we designed a novel model of glutamate-induced glutamate release. The simulations correctly predicted the patterns of spontaneous glutamate spikes observed under different experimental conditions. We propose that pervasive spontaneous glutamate release is a hallmark of Mecp2-/y hippocampus, stemming from and modulating the hyperexcitability of neurons.
Collapse
Affiliation(s)
- Saju Balakrishnan
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| | - Sergej L. Mironov
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| |
Collapse
|
91
|
Zielonka M, Breuer M, Okun JG, Carl M, Hoffmann GF, Kölker S. Pharmacologic rescue of hyperammonemia-induced toxicity in zebrafish by inhibition of ornithine aminotransferase. PLoS One 2018; 13:e0203707. [PMID: 30199544 PMCID: PMC6130883 DOI: 10.1371/journal.pone.0203707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is the common biochemical hallmark of urea cycle disorders, activating neurotoxic pathways. If untreated, affected individuals have a high risk of irreversible brain damage and mortality. Here we show that acute hyperammonemia strongly enhances transamination-dependent formation of osmolytic glutamine and excitatory glutamate, thereby inducing neurotoxicity and death in ammoniotelic zebrafish larvae via synergistically acting overactivation of NMDA receptors and bioenergetic impairment induced by depletion of 2-oxoglutarate. Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations. Thus, OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperammonemia.
Collapse
Affiliation(s)
- Matthias Zielonka
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
- * E-mail:
| | - Maximilian Breuer
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Jürgen Günther Okun
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
- University of Trento, Center for Integrative Biology (CIBIO), Laboratory of Translational Neurogenetics, Trento, Italy
| | - Georg Friedrich Hoffmann
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
92
|
Ramalho TC, de Castro AA, Tavares TS, Silva MC, Silva DR, Cesar PH, Santos LA, da Cunha EFF, Nepovimova E, Kuca K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Prog Neurobiol 2018; 169:135-157. [PMID: 29981392 DOI: 10.1016/j.pneurobio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
Several rare or orphan diseases have been characterized that singly affect low numbers of people, but cumulatively reach ∼6%-10% of the population in Europe and in the United States. Human genetics has shown to be broadly effective when evaluating subjacent genetic defects such as orphan genetic diseases, but on the other hand, a modest progress has been achieved toward comprehending the molecular pathologies and designing new therapies. Chemical genetics, placed at the interface of chemistry and genetics, could be employed to understand the molecular mechanisms of subjacent illnesses and for the discovery of new remediation processes. This review debates current progress in chemical genetics, and how a variety of compounds and reaction mechanisms can be used to study and ultimately treat rare genetic diseases. We focus here on a study involving Amyotrophic lateral sclerosis (ALS), Duchenne Muscular Dystrophy (DMD), Spinal muscular atrophy (SMA) and Familial Amyloid Polyneuropathy (FAP), approaching different treatment methods and the reaction mechanisms of several compounds, trying to elucidate new routes capable of assisting in the treatment profile.
Collapse
Affiliation(s)
- Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | - Tássia S Tavares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Maria C Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Pedro H Cesar
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Lucas A Santos
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
93
|
Blasco H, Patin F, Descat A, Garçon G, Corcia P, Gelé P, Lenglet T, Bede P, Meininger V, Devos D, Gossens JF, Pradat PF. A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS One 2018; 13:e0198116. [PMID: 29870556 PMCID: PMC5988280 DOI: 10.1371/journal.pone.0198116] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
There is an urgent and unmet need for accurate biomarkers in Amyotrophic Lateral Sclerosis. A pharmaco-metabolomics study was conducted using plasma samples from the TRO19622 (olesoxime) trial to assess the link between early metabolomic profiles and clinical outcomes. Patients included in this trial were randomized into either Group O receiving olesoxime (n = 38) or Group P receiving placebo (n = 36). The metabolomic profile was assessed at time-point one (V1) and 12 months (V12) after the initiation of the treatment. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites (Biocrates® commercial kit). Multivariate analysis based on machine learning approaches (i.e. Biosigner algorithm) was performed. Metabolomic profiles at V1 and V12 and changes in metabolomic profiles between V1 and V12 accurately discriminated between Groups O and P (p<5×10–6), and identified glycine, kynurenine and citrulline/arginine as the best predictors of group membership. Changes in metabolomic profiles were closely linked to clinical progression, and correlated with glutamine levels in Group P and amino acids, lipids and spermidine levels in Group O. Multivariate models accurately predicted disease progression and highlighted the discriminant role of sphingomyelins (SM C22:3, SM C24:1, SM OH C22:2, SM C16:1). To predict SVC from SM C24:1 in group O and SVC from SM OH C22:2 and SM C16:1 in group P+O, we noted a median sensitivity between 67% and 100%, a specificity between 66.7 and 71.4%, a positive predictive value between 66 and 75% and a negative predictive value between 70% and 100% in the test sets. This proof-of-concept study demonstrates that the metabolomics has a role in evaluating the biological effect of an investigational drug and may be a candidate biomarker as a secondary outcome measure in clinical trials.
Collapse
Affiliation(s)
- Hélène Blasco
- Université François-Rabelais, Inserm, Tours, France
- Laboratoire de Biochimie, CHRU de Tours, Tours, France
- * E-mail:
| | - Franck Patin
- Université François-Rabelais, Inserm, Tours, France
- Laboratoire de Biochimie, CHRU de Tours, Tours, France
| | - Amandine Descat
- Centre Universitaire de Mesures et d'Analyses (CUMA), EA, Université de Lille, Lille, France
| | - Guillaume Garçon
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA, IMPECS, Lille, France
| | - Philippe Corcia
- Université François-Rabelais, Inserm, Tours, France
- Centre SLA, Service de Neurologie, CHRU Bretonneau, Tours, France
| | - Patrick Gelé
- Centre d'Investigation Clinique, Université de Lille, Lille, France
| | - Timothée Lenglet
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Peter Bede
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale,Paris, France
- Academic Unit of Neurology, Trinity College, Dublin, Ireland
| | | | - David Devos
- INSERM U1171, Pharmacologie Médicale & Neurologie, Université, Faculté de Médecine, CHU de Lille, Lille, France
| | - Jean François Gossens
- Centre Universitaire de Mesures et d'Analyses (CUMA), EA, Université de Lille, Lille, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale,Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| |
Collapse
|
94
|
Neuroimmunology Research. A Report from the Cuban Network of Neuroimmunology. Behav Sci (Basel) 2018; 8:bs8050047. [PMID: 29738432 PMCID: PMC5981241 DOI: 10.3390/bs8050047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/17/2022] Open
Abstract
Neuroimmunology can be traced back to the XIX century through the descriptions of some of the disease’s models (e.g., multiple sclerosis and Guillain Barret syndrome, amongst others). The diagnostic tools are based in the cerebrospinal fluid (CSF) analysis developed by Quincke or in the development of neuroimmunotherapy with the earlier expression in Pasteur’s vaccine for rabies. Nevertheless, this field, which began to become delineated as an independent research area in the 1940s, has evolved as an innovative and integrative field at the shared edges of neurosciences, immunology, and related clinical and research areas, which are currently becoming a major concern for neuroscience and indeed for all of the scientific community linked to it. The workshop focused on several topics: (1) the molecular mechanisms of immunoregulation in health and neurological diseases, (like multiple sclerosis, autism, ataxias, epilepsy, Alzheimer and Parkinson’s disease); (2) the use of animal models for neurodegenerative diseases (ataxia, fronto-temporal dementia/amyotrophic lateral sclerosis, ataxia-telangiectasia); (3) the results of new interventional technologies in neurology, with a special interest in the implementation of surgical techniques and the management of drug-resistant temporal lobe epilepsy; (4) the use of non-invasive brain stimulation in neurodevelopmental disorders; as well as (5) the efficacy of neuroprotective molecules in neurodegenerative diseases. This paper summarizes the highlights of the symposium.
Collapse
|
95
|
Madji Hounoum B, Blasco H, Coque E, Vourc'h P, Emond P, Corcia P, Andres CR, Raoul C, Mavel S. The Metabolic Disturbances of Motoneurons Exposed to Glutamate. Mol Neurobiol 2018; 55:7669-7676. [PMID: 29435916 DOI: 10.1007/s12035-018-0945-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Glutamate-induced excitotoxicity is considered as one of the major pathophysiological factors of motoneuron death in amyotrophic lateral sclerosis and other motoneuron diseases. In order to expand our knowledge on mechanisms of glutamate-induced excitotoxicity, the present study proposes to determine the metabolic consequences of glutamate and astrocytes in primary enriched motoneuron culture. Using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we showed that the presence of astrocytes and glutamate profoundly modified the metabolic profile of motoneurons. Our study highlights for the first time that crosstalk between astrocytes and enriched motoneuron culture induced alterations in phenylalanine, tryptophan, purine, arginine, proline, aspartate, and glutamate metabolism in motoneurons. We observed that astrocytes modulate the sensitivity of motoneurons to glutamate, since metabolites altered by glutamate in motoneurons cultured alone were different (except 5-hydroxylysine) from those altered in co-cultured motoneurons. Our findings provide new insight into the metabolic alterations associated to astrocytes and glutamate in motoneurons and provide opportunities to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Blandine Madji Hounoum
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France
| | - Hélène Blasco
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Emmanuelle Coque
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Patrick Vourc'h
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Patrick Emond
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France
| | - Philippe Corcia
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France.,Centre SLA, Service de Neurologie, CHRU de Tours, Tours, France
| | - Christian R Andres
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Sylvie Mavel
- INSERM U930 "Imagerie et Cerveau," CHRU de Tours, Université François-Rabelais, Tours, France. .,UFR Pharmacie, INSERM U930, 31 av Monge, 37200, Tours, France.
| |
Collapse
|
96
|
Veyrat-Durebex C, Reynier P, Procaccio V, Hergesheimer R, Corcia P, Andres CR, Blasco H. How Can a Ketogenic Diet Improve Motor Function? Front Mol Neurosci 2018; 11:15. [PMID: 29434537 PMCID: PMC5790787 DOI: 10.3389/fnmol.2018.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
A ketogenic diet (KD) is a normocaloric diet composed by high fat (80-90%), low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs) production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | | | - Philippe Corcia
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Service de Neurologie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christian R. Andres
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Hélène Blasco
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| |
Collapse
|
97
|
Glutaminase C overexpression in the brain induces learning deficits, synaptic dysfunctions, and neuroinflammation in mice. Brain Behav Immun 2017. [PMID: 28624534 PMCID: PMC5650935 DOI: 10.1016/j.bbi.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glutaminolysis, a metabolic process that converts glutamine to glutamate, is particularly important for the central nervous system since glutamate is the major transmitter of excitatory synapses. Glutaminase is the mitochondrial enzyme that catalyzes the first step of glutaminolysis. Two genes encode at least four isoforms of glutaminase in humans. Gls1 gene encodes isoforms kidney-type glutaminase (KGA) and glutaminase C (GAC) through alternative splicing, whereas Gls2 gene encodes liver-type glutaminase isoforms. KGA and GAC have been associated with several neurological diseases. However, it remains unclear whether changes in their expressions can directly cause brain abnormalities. Using a transgenic approach, we generated mice that overexpressed GAC in the brain. The resulting transgenic mice had severe impairments in spatial and fear learning compared with littermate controls. The learning deficits were consistent with diminished hippocampal long-term potentiation in the hippocampal slices of the GAC transgenic mice. Furthermore, we found increases in astrocyte and microglia markers, inflammatory factors, and a decrease in synapse marker synaptophysin, suggesting neuroinflammation and synaptic changes in the GAC transgenic mouse brains. In conclusion, these findings provide the first evidence that GAC overexpression in the brain has deleterious effects on learning and synaptic integrity in vivo.
Collapse
|
98
|
Cappello V, Francolini M. Neuromuscular Junction Dismantling in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18102092. [PMID: 28972545 PMCID: PMC5666774 DOI: 10.3390/ijms18102092] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular junction assembly and plasticity during embryonic, postnatal, and adult life are tightly regulated by the continuous cross-talk among motor nerve endings, muscle fibers, and glial cells. Altered communications among these components is thought to be responsible for the physiological age-related changes at this synapse and possibly for its destruction in pathological states. Neuromuscular junction dismantling plays a crucial role in the onset of Amyotrophic Lateral Sclerosis (ALS). ALS is characterized by the degeneration and death of motor neurons leading to skeletal muscle denervation, atrophy and, most often, death of the patient within five years from diagnosis. ALS is a non-cell autonomous disease as, besides motor neuron degeneration, glial cells, and possibly muscle fibers, play a role in its onset and progression. Here, we will review the recent literature regarding the mechanisms leading to neuromuscular junction disassembly and muscle denervation focusing on the role of the three players of this peripheral tripartite synapse.
Collapse
Affiliation(s)
- Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano-Via Vanvitelli 32, 20129 Milano, Italy.
| |
Collapse
|
99
|
Makhaeva GF, Sokolov VB, Shevtsova EF, Kovaleva NV, Lushchekina SV, Boltneva NP, Rudakova EV, Aksinenko AY, Shevtsov PN, Neganova ME, Dubova LG, Bachurin SO. Focused design of polypharmacophoric neuroprotective compounds: Conjugates of γ-carbolines with carbazole derivatives and tetrahydrocarbazole. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alzheimer’s disease has a complex multifactorial nature; therefore, a promising approach for the development of efficient therapeutic agents is the concept of multitarget drugs, which affect several biological targets involved in the pathogenesis of the disease. We developed a synthetic algorithm for conjugating several pharmacophoric ligands acting on the key stages of pathogenesis of several neurodegenerative diseases and synthesized hybrid structures combining the γ-carboline fragment of Dimebon with carbazole and tetrahydrocarbazole moieties. Using the complex primary screening system the structures have been revealed that combine the high inhibitory activity and selectivity towards butyrylcholinesterase with the radical-scavenging activity and the ability to potentiate tubulin polymerization to microtubules with a normal structure and/or prevent mitochondrial permeability transition. The lead compound was identified for future optimization and development of new multi-target drugs against neurodegenerative diseases combining the cognitive-stimulating and neuroprotective potentials.
Collapse
|
100
|
Cieslarova Z, Lopes FS, do Lago CL, França MC, Colnaghi Simionato AV. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine's metabolites: Potential biomarkers of amyotrophic lateral sclerosis. Talanta 2017; 170:63-68. [PMID: 28501214 DOI: 10.1016/j.talanta.2017.03.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL-1 acetic acid as background electrolyte and 5mmolL-1 acetic acid in 50% methanol/H2O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL-1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS.
Collapse
Affiliation(s)
- Zuzana Cieslarova
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernando Silva Lopes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Cidade Universitaria, 05508-000 São Paulo, SP, Brazil
| | - Claudimir Lucio do Lago
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Cidade Universitaria, 05508-000 São Paulo, SP, Brazil
| | - Marcondes Cavalcante França
- Faculty of Medical Sciences, Department of Neurology, University of Campinas, P.O. Box 6111, 13083-970 Campinas, SP, Brazil
| | - Ana Valéria Colnaghi Simionato
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology in Bioanalytics, Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|