51
|
Winiewska M, Kucińska K, Makowska M, Poznański J, Shugar D. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1708-17. [PMID: 25891901 DOI: 10.1016/j.bbapap.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Katarzyna Kucińska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Małgorzata Makowska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
52
|
Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2α/CK2β interaction. Anal Biochem 2015; 468:4-14. [DOI: 10.1016/j.ab.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 01/10/2023]
|
53
|
Swider R, Masłyk M, Zapico JM, Coderch C, Panchuk R, Skorokhyd N, Schnitzler A, Niefind K, de Pascual-Teresa B, Ramos A. Synthesis, biological activity and structural study of new benzotriazole-based protein kinase CK2 inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra12114k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A new series of TBB-derivatives was synthesized and characterized as CK2 inhibitors. Crystallographic analysis and docking studies were used to understand the mode of binding.
Collapse
|
54
|
Winiewska M, Makowska M, Maj P, Wielechowska M, Bretner M, Poznański J, Shugar D. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2. Biochem Biophys Res Commun 2014; 456:282-7. [PMID: 25450618 DOI: 10.1016/j.bbrc.2014.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/19/2014] [Indexed: 01/20/2023]
Abstract
The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC50) and biophysical methods (thermal stability of protein-ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein-ligand complexes shows that the heat of ligand binding (Hbind) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between Hbind and ligand pKa. Screening, based on fluorescence-monitored thermal unfolding of protein-ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
| | | | - Piotr Maj
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland; Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| | | | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Warszawa, Poland
| | | | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
| |
Collapse
|
55
|
Cozza G, Girardi C, Ranchio A, Lolli G, Sarno S, Orzeszko A, Kazimierczuk Z, Battistutta R, Ruzzene M, Pinna LA. Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cell Mol Life Sci 2014; 71:3173-85. [PMID: 24442476 PMCID: PMC11113908 DOI: 10.1007/s00018-013-1552-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
Abstract
It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Cristina Girardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Ranchio
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Graziano Lolli
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw Life Sciences University, Warsaw, Poland
| | | | - Roberto Battistutta
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- CNR, Institute of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
56
|
Abstract
The term 'casein kinase' has been widely used for decades to denote protein kinases sharing the ability to readily phosphorylate casein in vitro. These fall into three main classes: two of them, later renamed as protein kinases CK1 (casein kinase 1, also known as CKI) and CK2 (also known as CKII), are pleiotropic members of the kinome functionally unrelated to casein, whereas G-CK, or genuine casein kinase, responsible for the phosphorylation of casein in the Golgi apparatus of the lactating mammary gland, has only been identified recently with Fam20C [family with sequence similarity 20C; also known as DMP-4 (dentin matrix protein-4)], a member of the four-jointed family of atypical protein kinases, being responsible for the phosphorylation of many secreted proteins. In hindsight, therefore, the term 'casein kinase' is misleading in every instance; in the case of CK1 and CK2, it is because casein is not a physiological substrate, and in the case of G-CK/Fam20C/DMP-4, it is because casein is just one out of a plethora of its targets, and a rather marginal one at that. Strikingly, casein kinases altogether, albeit representing a minimal proportion of the whole kinome, appear to be responsible for the generation of up to 40-50% of non-redundant phosphosites currently retrieved in human phosphopeptides database. In the present review, a short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of our current knowledge of these pleiotropic enzymes, sharing the same misnomer while playing very distinct biological roles.
Collapse
|
57
|
Zhou Y, Li X, Zhang N, Zhong R. Structural Basis for Low-Affinity Binding of Non-R2 Carboxylate-Substituted Tricyclic Quinoline Analogs to CK2α: Comparative Molecular Dynamics Simulation Studies. Chem Biol Drug Des 2014; 85:189-200. [DOI: 10.1111/cbdd.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Xitao Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen 518055 China
| | - Na Zhang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Rugang Zhong
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
58
|
Unger GM, Kren BT, Korman VL, Kimbrough TG, Vogel RI, Ondrey FG, Trembley JH, Ahmed K. Mechanism and efficacy of sub-50-nm tenfibgen nanocapsules for cancer cell-directed delivery of anti-CK2 RNAi to primary and metastatic squamous cell carcinoma. Mol Cancer Ther 2014; 13:2018-29. [PMID: 24867250 DOI: 10.1158/1535-7163.mct-14-0166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improved survival for patients with head and neck cancers (HNC) with recurrent and metastatic disease warrants that cancer therapy is specific, with protected delivery of the therapeutic agent to primary and metastatic cancer cells. A further objective should be that downregulation of the intracellular therapy target leads to cell death without compensation by an alternate pathway. To address these goals, we report the utilization of a sub-50-nm tenfibgen (s50-TBG) nanocapsule that delivers RNAi oligonucleotides directed against the essential survival signal protein kinase CK2 (RNAi-CK2) in a cancer cell-specific manner. We have evaluated mechanism and efficacy of using s50-TBG-RNAi-CK2 nanocapsules for therapy of primary and metastatic head and neck squamous cell carcinoma (HNSCC). s50-TBG nanocapsules enter cancer cells via the lipid raft/caveolar pathway and deliver their cargo (RNAi-CK2) preferentially to malignant but not normal tissues in mice. Our data suggest that RNAi-CK2, a unique single-stranded oligonucleotide, co-opts the argonaute 2/RNA-induced silencing complex pathway to target the CK2αα' mRNAs. s50-TBG-RNAi-CK2 inhibited cell growth corresponding with reduced CK2 expression in targeted tumor cells. Treatment of three xenograft HNSCC models showed that primary tumors and metastases responded to s50-TBG-RNAi-CK2 therapy, with tumor shrinkage and 6-month host survival that was achieved at relatively low doses of the therapeutic agent without any adverse toxic effect in normal tissues in the mice. We suggest that our nanocapsule technology and anti-CK2 targeting combine into a therapeutic modality with a potential of significant translational promise.
Collapse
Affiliation(s)
| | - Betsy T Kren
- Medicine, Masonic Cancer Center, University of Minnesota; and
| | | | | | | | | | - Janeen H Trembley
- Laboratory Medicine and Pathology; Masonic Cancer Center, University of Minnesota; and Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - Khalil Ahmed
- Otolaryngology, and Laboratory Medicine and Pathology; Masonic Cancer Center, University of Minnesota; and Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis VA Health Care System, Minneapolis, Minnesota
| |
Collapse
|
59
|
The Thr205 phosphorylation site within respiratory syncytial virus matrix (M) protein modulates M oligomerization and virus production. J Virol 2014; 88:6380-93. [PMID: 24672034 DOI: 10.1128/jvi.03856-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in infants and the elderly worldwide; however, there is no licensed RSV vaccine or effective drug treatment available. The RSV matrix (M) protein plays key roles in virus assembly and budding, but the protein interactions that govern budding of infectious virus are not known. In this study, we focus on M protein and identify a key phosphorylation site (Thr205) in M that is critical for RSV infectious virus production. Recombinant virus with a nonphosphorylatable alanine (Ala) residue at the site was markedly attenuated, whereas virus with a phosphomimetic aspartate (Asp) resulted in a nonviable virus which could only be recovered with an additional mutation in M (serine to asparagine at position 220), strongly implying that Thr205 is critical for viral infectivity. Experiments in vitro showed that mutation of Thr205 does not affect M stability or the ability to form dimers but implicate an effect on higher-order oligomer assembly. In transfected and infected cells, Asp substitution of Thr205 appeared to impair M oligomerization; typical filamentous structures still formed at the plasma membrane, but M assembly during the ensuing elongation process seemed to be impaired, resulting in shorter and more branched filaments as observed using electron microscopy (EM). Our data thus imply for the first time that M oligomerization, regulated by a negative charge at Thr205, may be critical to production of infectious RSV. IMPORTANCE We show here for the first time that RSV M's role in virus assembly/release is strongly dependent on threonine 205 (Thr205), a consensus site for CK2, which appears to play a key regulatory role in modulating M oligomerization and association with virus filaments. Our analysis indicates that T205 mutations do not impair M dimerization or viruslike filament formation per se but rather the ability of M to assemble in ordered fashion on the viral filaments themselves. This appears to impact in turn upon the infectivity of released virus rather than on virus production or release itself. Thus, M oligomerization would appear to be a target of interest for the development of anti-RSV agents; further, the recombinant T205-substituted mutant viruses described here would appear to be the first RSV mutants affected in viral maturation to our knowledge and hence of considerable interest for vaccine approaches in the future.
Collapse
|
60
|
Cozza G, Zanin S, Determann R, Ruzzene M, Kunick C, Pinna LA. Synthesis and properties of a selective inhibitor of homeodomain-interacting protein kinase 2 (HIPK2). PLoS One 2014; 9:e89176. [PMID: 24586573 PMCID: PMC3933419 DOI: 10.1371/journal.pone.0089176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a Ser/Thr kinase controlling cell proliferation and survival, whose investigation has been hampered by the lack of specific inhibitors able to dissect its cellular functions. SB203580, a p38 MAP kinase inhibitor, has been used as a tool to inhibit HIPK2 in cells, but here we show that its efficacy as HIPK2 inhibitor is negligible (IC50>40 µM). In contrast by altering the scaffold of the promiscuous CK2 inhibitor TBI a new class of HIPK2 inhibitors has been generated. One of these, TBID, displays toward HIPK2 unprecedented efficacy (IC50 = 0.33 µM) and selectivity (Gini coefficient 0.592 out of a panel of 76 kinases). The two other members of the HIPK family, HIPK1 and HIPK3, are also inhibited by TBID albeit less efficiently than HIPK2. The mode of action of TBID is competitive with respect to ATP, consistent with modelling. We also provide evidence that TBID is cell permeable by showing that HIPK2 activity is reduced in cells treated with TBID, although with an IC50 two orders of magnitude higher (about 50 µM) than in vitro.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
| | - Sofia Zanin
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
| | - Renate Determann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Braunschweig, Germany
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Braunschweig, Germany
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- * E-mail:
| |
Collapse
|
61
|
Abstract
Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.
Collapse
Affiliation(s)
- P Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA,
| |
Collapse
|
62
|
Discovery and characterization of synthetic 4′-hydroxyflavones—New CK2 inhibitors from flavone family. Bioorg Med Chem 2013; 21:6681-9. [DOI: 10.1016/j.bmc.2013.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
|
63
|
Son YH, Moon SH, Kim J. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation in vitro. Mol Cells 2013; 36:417-23. [PMID: 24293011 PMCID: PMC3887940 DOI: 10.1007/s10059-013-0184-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning can identify new therapeutic applications for existing drugs, thus mitigating high R&D costs. The Protein kinase 2 (CK2) inhibitor CX-4945 regulates human cancer cell survival and angiogenesis. Here we found that CX-4945 significantly inhibited the RANKL-induced osteoclast differentiation, but enhanced the BMP2-induced osteoblast differentiation in a cell culture model. CX-4945 inhibited the RANKL-induced activation of TRAP and NFATc1 expression accompanied with suppression of Akt phosphorylation, but in contrast, it enhanced the BMP2-mediated ALP induction and MAPK ERK1/2 phosphorylation. CX-4945 is thus a novel drug candidate for bone-related disorders such as osteoporosis.
Collapse
Affiliation(s)
- You Hwa Son
- Laboratory of Translational Therapeutics, Pharmacological Research Center, Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
| | - Seong Hee Moon
- Laboratory of Translational Therapeutics, Pharmacological Research Center, Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
64
|
Green Protocol: Solvent- and Catalyst-Free Synthesis of Benzimidazole Derivatives via Microwave Technique. Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1354-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Manni S, Brancalion A, Mandato E, Tubi LQ, Colpo A, Pizzi M, Cappellesso R, Zaffino F, Di Maggio SA, Cabrelle A, Marino F, Zambello R, Trentin L, Adami F, Gurrieri C, Semenzato G, Piazza F. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. PLoS One 2013; 8:e75280. [PMID: 24086494 PMCID: PMC3785505 DOI: 10.1371/journal.pone.0075280] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023] Open
Abstract
CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27) in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site) and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Alessandra Brancalion
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anna Colpo
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marco Pizzi
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Rocco Cappellesso
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Fortunato Zaffino
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | | | - Anna Cabrelle
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Filippo Marino
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
- * E-mail: (FP); (GS)
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
- * E-mail: (FP); (GS)
| |
Collapse
|
66
|
Dowling JE, Alimzhanov M, Bao L, Block MH, Chuaqui C, Cooke EL, Denz CR, Hird A, Huang S, Larsen NA, Peng B, Pontz TW, Rivard-Costa C, Saeh JC, Thakur K, Ye Q, Zhang T, Lyne PD. Structure and Property Based Design of Pyrazolo[1,5-a]pyrimidine Inhibitors of CK2 Kinase with Activity in Vivo. ACS Med Chem Lett 2013; 4:800-5. [PMID: 24900749 DOI: 10.1021/ml400197u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/03/2013] [Indexed: 11/29/2022] Open
Abstract
In this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft.
Collapse
Affiliation(s)
- James E. Dowling
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Marat Alimzhanov
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Larry Bao
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Michael H. Block
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Claudio Chuaqui
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Emma L. Cooke
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Christopher R. Denz
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alex Hird
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Shan Huang
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Nicholas A. Larsen
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bo Peng
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Timothy W. Pontz
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Caroline Rivard-Costa
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jamal Carlos Saeh
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kumar Thakur
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Qing Ye
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tao Zhang
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Paul D. Lyne
- AstraZeneca, Oncology Innovative Medicines Unit, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
67
|
Cozza G, Sarno S, Ruzzene M, Girardi C, Orzeszko A, Kazimierczuk Z, Zagotto G, Bonaiuto E, Di Paolo ML, Pinna LA. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1402-9. [PMID: 23360763 DOI: 10.1016/j.bbapap.2013.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 values<100nM) and remarkable selectivity. TDB, unlike other dual PIM1/CK2 inhibitors described in the literature is readily cell permeable and displays a cytotoxic effect on cancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences and CNR, Institute of Neuroscience, University of Padua, Viale G. Colombo 3 35131, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2. Eur J Med Chem 2013; 65:205-22. [PMID: 23711832 DOI: 10.1016/j.ejmech.2013.04.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Herein we describe the synthesis and properties of substituted phenylaminopyrrolo[1,2-a]quinoxaline-carboxylic acid derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 15 compounds was designed and synthesized using convenient and straightforward synthesis protocols. The compounds were tested for inhibition of human protein kinase CK2, which is a potential drug target for many diseases including inflammatory disorders and cancer. New inhibitors with IC50 in the micro- and sub-micromolar range were identified. The most promising compound, the 4-[(3-chlorophenyl)amino]pyrrolo[1,2-a]quinoxaline-3-carboxylic acid 1c inhibited human CK2 with an IC50 of 49 nM. Our findings indicate that pyrrolo[1,2-a]quinoxalines are a promising starting scaffold for further development and optimization of human protein kinase CK2 inhibitors.
Collapse
|
69
|
Gyenis L, Kuś A, Bretner M, Litchfield DW. Functional proteomics strategy for validation of protein kinase inhibitors reveals new targets for a TBB-derived inhibitor of protein kinase CK2. J Proteomics 2013; 81:70-9. [DOI: 10.1016/j.jprot.2012.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 01/01/2023]
|
70
|
Rabellino A, Scaglioni PP. PML Degradation: Multiple Ways to Eliminate PML. Front Oncol 2013; 3:60. [PMID: 23526763 PMCID: PMC3605509 DOI: 10.3389/fonc.2013.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 11/26/2022] Open
Abstract
The promyelocytic leukemia tumor suppressor gene (PML) critically regulates several cellular functions that oppose tumorigenesis such as oncogene-induced senescence, apoptosis, the response to DNA damage and to viral infections. PML deficiency occurs commonly in a broad spectrum of human cancers through mechanisms that involve its aberrant ubiquitination and degradation. Furthermore, several viruses encode viral proteins that promote viral replication through degradation of PML. These observations suggest that restoration of PML should lead to potent antitumor effects or antiviral responses. In this review we will summarize the mechanisms involved in PML degradation with the intent to highlight novel therapeutic strategies to trigger PML restoration.
Collapse
Affiliation(s)
- Andrea Rabellino
- Division of Hematology and Oncology, Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
71
|
Gyenis L, Turowec JP, Bretner M, Litchfield DW. Chemical proteomics and functional proteomics strategies for protein kinase inhibitor validation and protein kinase substrate identification: applications to protein kinase CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1352-8. [PMID: 23416530 DOI: 10.1016/j.bbapap.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 02/01/2023]
Abstract
Since protein kinases have been implicated in numerous human diseases, kinase inhibitors have emerged as promising therapeutic agents. Despite this promise, there has been a relative lag in the development of unbiased strategies to validate both inhibitor specificity and the ability to inhibit target activity within living cells. To overcome these limitations, our efforts have been focused on the development of systematic strategies that employ chemical and functional proteomics. We utilized these strategies to evaluate small molecule inhibitors of protein kinase CK2, a constitutively active kinase that has recently emerged as target for anti-cancer therapy in clinical trials. Our chemical proteomics strategies used ATP or CK2 inhibitors immobilized on sepharose beads together with mass spectrometry to capture and identify binding partners from cell extracts. These studies have verified that interactions between CK2 and its inhibitors occur in complex mixtures. However, in the case of CK2 inhibitors related to 4,5,6,7-tetrabromo-1H-benzotriazole (TBB), our work has also revealed off-targets for the inhibitors. To complement these studies, we devised functional proteomics approaches to identify proteins that exhibit decreases in phosphorylation when cells are treated with CK2 inhibitors. To identify and validate those proteins that are direct substrates for CK2, we have also employed mutants of CK2 with decreased inhibitor sensitivity. Overall, our studies have yielded systematic platforms for studying CK2 inhibitors which we believe will foster efforts to define the biological functions of CK2 and to rigorously investigate its potential as a candidate for molecular-targeted therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
72
|
Poznański J, Shugar D. Halogen bonding at the ATP binding site of protein kinases: preferred geometry and topology of ligand binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1381-6. [PMID: 23376187 DOI: 10.1016/j.bbapap.2013.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 11/25/2022]
Abstract
Halogenated ligands have been widely developed as potent, and frequently selective, inhibitors of protein kinases (PK). Herein, all structures of protein kinases complexed with a halogenated ligand, identified in the PDB, were analyzed in the context of eventual contribution of halogen bonding to protein-ligand interactions. Global inspection shows that two carbonyl groups of residues located in the hinge region are the most abundant halogen bond acceptors. In contrast to solution data, well-defined water molecules, located at sites conserved across most PK structures, are also involved in halogen bonding. Analysis of cumulative distributions of halogen-acceptor distances shows that structures displaying short contacts involving a halogen atom are overpopulated, contributing together to clearly defined maxima of 2.82, 2.91 and 2.94Å for chlorine, bromine and iodine, respectively. The angular preference of a halogen bond favors ideal topology (180°, 120°) for iodine. For bromine the distribution is much more dispersed, and no such preference was found for chlorine. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| | | |
Collapse
|
73
|
Abstract
INTRODUCTION CK2 is a pleiotropic, ubiquitous and constitutively active protein kinase, localized in both cytosolic and nuclear compartments, where it catalyzes the phosphorylation of hundreds of proteins. CK2 is generally described as a tetramer composed of two catalytic (α and/or α') and two regulatory subunits (β), however, the free α/α' subunits are catalytically active by themselves. CK2 plays a key role in several physiological and pathological processes and has been connected to many neoplastic, inflammatory, autoimmune and infectious disorders. In the last 20 years, several inhibitors of CK2 have been discovered though only one of these, CX-4945, has recently entered into Phase II clinical trials as potential anticancer drug. AREAS COVERED The main objective of the present review is to describe the development of CK2 activity modulators over the years according to the timeline of their patent registration. EXPERT OPINION CK2 was discovered in 1954, but the first patent on CK2 modulators was deposited only 50 years later, in 2004. However, in the last 5 years an increasing number of patents on CK2 inhibitors have been registered, reflecting an increased interest in this kind of drug candidates and their possible therapeutic applications.
Collapse
Affiliation(s)
- Giorgio Cozza
- University of Padova, Department of Biomedical Sciences, Padova 35121, Italy
| | | | | |
Collapse
|
74
|
Zhou Y, Zhang N, Zhong R. Exploring the crucial structural elements required for tricyclic quinoline analogs as protein kinase CK2 inhibitors by a combined computational analysis. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
75
|
Isomeric mono-, di-, and tri-bromobenzo-1H-triazoles as inhibitors of human protein kinase CK2α. PLoS One 2012; 7:e48898. [PMID: 23155426 PMCID: PMC3498355 DOI: 10.1371/journal.pone.0048898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 02/03/2023] Open
Abstract
To further clarify the role of the individual bromine atoms of 4,5,6,7-tetrabromotriazole (TBBt), a relatively selective inhibitor of protein kinase CK2, we have examined the inhibition (IC(50)) of human CK2α by the two mono-, the four di-, and the two tri- bromobenzotriazoles relative to that of TBBt. Halogenation of the central vicinal C(5)/C(6) atoms proved to be a key factor in enhancing inhibitory activity, in that 5,6-di-Br(2)Bt and 4,5,6-Br(3)Bt were almost as effective inhibitors as TBBt, notwithstanding their marked differences in pK(a) for dissociation of the triazole proton. The decrease in pK(a) on halogenation of the peripheral C(4)/C(7) atoms virtually nullifies the gain due to hydrophobic interactions, and does not lead to a decrease in IC(50). Molecular modeling of structures of complexes of the ligands with the enzyme, as well as QSAR analysis, pointed to a balance of hydrophobic and electrostatic interactions as a discriminator of inhibitory activity. The role of halogen bonding remains debatable, as originally noted for the crystal structure of TBBt with CK2α (pdb1j91). Finally we direct attention to the promising applicability of our series of well-defined halogenated benzotriazoles to studies on inhibition of kinases other than CK2.
Collapse
|
76
|
Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS One 2012; 7:e49193. [PMID: 23145120 PMCID: PMC3493520 DOI: 10.1371/journal.pone.0049193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
CK2 is a pleiotropic protein kinase, which regulates many survival pathways and plays a global anti-apoptotic function. It is highly expressed in tumor cells, and is presently considered a promising therapeutic target. Among the many inhibitors available for this kinase, the recently developed CX-4945 and CX-5011 have proved to be very potent, selective and effective in inducing cell death in tumor cells; CX-4945 has recently entered clinical trials. However, no data are available on the efficacy of these compounds to overcome drug resistance, a major reasons of cancer therapy failure. Here we address this point, by studying their effects in several tumor cell lines, each available as variant R resistant to drug-induced apoptosis, and normal-sensitive variant S. We found that the inhibition of endogenous CK2 was very similar in S and R treated cells, with more than 50% CK2 activity reduction at sub-micromolar concentrations of CX-4945 and CX-5011. A consequent apoptotic response was induced both in S and R variants of each pairs. Moreover, the combined treatment of CX-4945 plus vinblastine was able to sensitize to vinblastine R cells that are otherwise almost insensitive to this conventional antitumor drug. Consistently, doxorubicin accumulation in multidrug resistant (MDR) cells was greatly increased by CX-4945. In summary, we demonstrated that all the R variants are sensitive to CX-4945 and CX-5011; since some of the treated R lines express the extrusion pump Pgp, often responsible of the MDR phenotype, we can also conclude that the two inhibitors can successfully overcome the MDR phenomenon.
Collapse
|
77
|
Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S, Battistutta R, Pinna LA. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 2012; 51:6097-107. [PMID: 22794353 DOI: 10.1021/bi300531c] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sixteen flavonoids and related compounds have been tested for their ability to inhibit three acidophilic Ser/Thr protein kinases: the Golgi apparatus casein kinase (G-CK) recently identified with protein FAM20C, protein kinase CK1, and protein kinase CK2. While G-CK is entirely insensitive to all compounds up to 40 μM concentration, consistent with the view that it is not a member of the kinome, and CK1 is variably inhibited in an isoform-dependent manner by fisetin and luteolin, and to a lesser extent by myricetin and quercetin, CK2 is susceptible to drastic inhibition by many flavonoids, displaying with six of them IC(50) values < 1 μM. A common denominator of these compounds (myricetin, quercetin, fisetin, kaempferol, luteolin, and apigenin) is a flavone scaffold with at least two hydroxyl groups at positions 7 and 4'. Inhibition is competitive with respect to the phospho-donor substrate ATP. The crystal structure of apigenin and luteolin in complex with the catalytic subunit of Zea mays CK2 has been solved, revealing their ability to interact with both the hinge region (Val116) and the positive area near Lys68 and the conserved water W1, the two main polar ligand anchoring points in the CK2 active site. Modeling experiments account for the observation that luteolin but not apigenin inhibits also CK1. The observation that luteolin shares its pyrocatechol moiety with tyrphostin AG99 prompted us to solve also the structure of this compound in complex with CK2. AG99 was found inside the ATP pocket, consistent with its mode of inhibition competitive with respect to ATP. As in the case of luteolin, the pyrocatechol group of AG99 is critical for binding, interacting with the positive area in the deepest part of the CK2 active site.
Collapse
Affiliation(s)
- Graziano Lolli
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy, Via G. Orus 2 35129 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Wąsik R, Wińska P, Poznański J, Shugar D. Synthesis and physico-chemical properties in aqueous medium of all possible isomeric bromo analogues of benzo-1H-triazole, potential inhibitors of protein kinases. J Phys Chem B 2012; 116:7259-68. [PMID: 22632480 DOI: 10.1021/jp301561x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ongoing studies on the role of the individual bromine atoms of 4,5,6,7-tetrabromobenzotriazole (TBBt) in its relatively selective inhibition of protein kinase CK2α, we have prepared all the possible two mono-, four di-, and two tri-bromobenzotriazoles and determined their physicochemical properties in aqueous medium. They exhibited a general trend of a decrease in solubility with an increase in the number of bromines on the benzene ring, significantly modulated by the pattern of substitution. For a given number of attached bromines, this was directly related to the electronic effects resulting from different sites of substitution, leading to marked variations of pK(a) values for dissociation of the triazole proton. Experimental data (pK(a), solubility) and ab initio calculations demonstrated that hydration of halogenated benzotriazoles is driven by a subtle balance of hydrophobic and polar interactions. The combination of QM-derived free energies for solvation and proton dissociations was found to be a reasonably good predictor of inhibitory activity of halogenated benzotriazoles vs CK2α. Since the pattern of halogenation of the benzene ring of benzotriazole has also been shown to be one of the determinants of inhibitory potency vs some viruses and viral enzymes, the present comprehensive description of their physicochemical properties should prove helpful in efforts to elucidate reaction mechanisms, including possible halogen bonding, and the search for more selective and potent inhibitors.
Collapse
Affiliation(s)
- Romualda Wąsik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland
| | | | | | | |
Collapse
|
80
|
Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, Ave E, Zaffino F, Di Maira G, Ruzzene M, Adami F, Zambello R, Pitari MR, Tassone P, Pinna LA, Gurrieri C, Semenzato G, Piazza F. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res 2012; 18:1888-900. [PMID: 22351691 DOI: 10.1158/1078-0432.ccr-11-1789] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Protein kinase CK2 promotes multiple myeloma cell growth by regulating critical signaling pathways. CK2 also modulates proper HSP90-dependent client protein folding and maturation by phosphorylating its co-chaperone CDC37. Because the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is central in myeloma pathogenesis, we tested the hypothesis that the CK2/CDC37/HSP90 axis could be involved in UPR in myeloma cells. EXPERIMENTAL DESIGN We analyzed CK2 activity upon ER stress, the effects of its inactivation on the UPR pathways and on ER stress-induced apoptosis. The consequences of CK2 plus HSP90 inhibition on myeloma cell growth in vitro and in vivo and CK2 regulation of HSP90-triggered UPR were determined. RESULTS CK2 partly localized to the ER and ER stress triggered its kinase activity. CK2 inhibition reduced the levels of the ER stress sensors IRE1α and BIP/GRP78, increased phosphorylation of PERK and EIF2α, and enhanced ER stress-induced apoptosis. Simultaneous inactivation of CK2 and HSP90 resulted in a synergic anti-myeloma effect (combination index = 0.291) and in much stronger alterations of the UPR pathways as compared with the single inhibition of the two molecules. Cytotoxicity from HSP90 and CK2 targeting was present in a myeloma microenvironment model, on plasma cells from patients with myeloma and in an in vivo mouse xenograft model. Mechanistically, CK2 inhibition led to a reduction of IRE1α/HSP90/CDC37 complexes in multiple myeloma cells. CONCLUSIONS Our results place CK2 as a novel regulator of the ER stress/UPR cascades and HSP90 function in myeloma cells and offer the groundwork to design novel combination treatments for this disease.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, University of Padova, Via Giustiniani 2, Padova 35128, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sarno S, Mazzorana M, Traynor R, Ruzzene M, Cozza G, Pagano MA, Meggio F, Zagotto G, Battistutta R, Pinna LA. Structural features underlying the selectivity of the kinase inhibitors NBC and dNBC: role of a nitro group that discriminates between CK2 and DYRK1A. Cell Mol Life Sci 2012; 69:449-60. [PMID: 21720886 PMCID: PMC11114634 DOI: 10.1007/s00018-011-0758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 11/27/2022]
Abstract
8-hydroxy-4-methyl-9-nitrobenzo(g)chromen-2-one (NBC) has been found to be a fairly potent ATP site-directed inhibitor of protein kinase CK2 (Ki = 0.22 μM). Here, we show that NBC also inhibits PIM kinases, especially PIM1 and PIM3, the latter as potently as CK2. Upon removal of the nitro group, to give 8-hydroxy-4-methyl-benzo(g)chromen-2-one (here referred to as "denitro NBC", dNBC), the inhibitory power toward CK2 is almost entirely lost (IC(50) > 30 μM) whereas that toward PIM1 and PIM3 is maintained; in addition, dNBC is a potent inhibitor of a number of other kinases that are weakly inhibited or unaffected by NBC, with special reference to DYRK1A whose IC(50) values with NBC and dNBC are 15 and 0.60 μM, respectively. Therefore, the observation that NBC, unlike dNBC, is a potent inducer of apoptosis is consistent with the notion that this effect is mediated by inhibition of endogenous CK2. The structural features underlying NBC selectivity have been revealed by inspecting its 3D structure in complex with the catalytic subunit of Z. mays CK2. The crucial role of the nitro group is exerted both through a direct electrostatic interaction with the side chain of Lys68 and, indirectly, by enhancing the acidic dissociation constant of the adjacent hydroxyl group which interacts with a conserved water molecule in the deepest part of the cavity. By contrast, the very same nitro group is deleterious for the binding to the active site of DYRK1A, as disclosed by molecular docking. This provides the rationale for preferential inhibition of DYRK1A by dNBC.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
| | - Marco Mazzorana
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
- Present Address: Diamond Light Source Ltd—Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Ryan Traynor
- Medical Research Council Protein Phosphorylation Unit, University of Dundee, Dundee, DD1 5EH Scotland, UK
| | - Maria Ruzzene
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
| | - Giorgio Cozza
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
| | - Mario A. Pagano
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
| | - Flavio Meggio
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical Sciences, University of Padua, via Marzolo 5, 35131 Padova, Italy
| | - Roberto Battistutta
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
- Department of Chemical Sciences, Via Marzolo 1, 35131 Padua, Italy
| | - Lorenzo A. Pinna
- Department of Biological Chemistry, University of Padua, V.le G. Colombo 3, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy
| |
Collapse
|
82
|
Enkvist E, Viht K, Bischoff N, Vahter J, Saaver S, Raidaru G, Issinger OG, Niefind K, Uri A. A subnanomolar fluorescent probe for protein kinase CK2 interaction studies. Org Biomol Chem 2012; 10:8645-53. [DOI: 10.1039/c2ob26022k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
83
|
Janeczko M, Orzeszko A, Kazimierczuk Z, Szyszka R, Baier A. CK2α and CK2α' subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives. Eur J Med Chem 2011; 47:345-50. [PMID: 22115617 DOI: 10.1016/j.ejmech.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/14/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
The goal of this study was to test the inhibitory activity of a series of tetrahalogenobenzimidazoles, including a number of novel derivatives, on individual catalytic subunits of human CK2. 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazoles and their newly obtained N(1)- and 2-S-carboxyalkyl derivatives showed potent inhibitory activity against both these subunits. CK2α' was up to 6 times more sensitive to the studied compounds than CK2α. The investigated iododerivatives showed, in most cases, stronger inhibitory properties than the respective brominated congeners, but the differences showed considerable dependence on the protein substrate used.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, Al. Krasnicka 102, 20-718 Lublin, Poland
| | | | | | | | | |
Collapse
|
84
|
Dobeš P, Řezáč J, Fanfrlík J, Otyepka M, Hobza P. Semiempirical Quantum Mechanical Method PM6-DH2X Describes the Geometry and Energetics of CK2-Inhibitor Complexes Involving Halogen Bonds Well, While the Empirical Potential Fails. J Phys Chem B 2011; 115:8581-9. [DOI: 10.1021/jp202149z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Petr Dobeš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine − Hematooncology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 771 46 Olomouc, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 771 46 Olomouc, Czech Republic
| |
Collapse
|