51
|
Lee H, Wang L, Ni FF, Yang XY, Feng SP, Gao XJ, Chi H, Luo YT, Chen XL, Yang BH, Wan JL, Jiao J, Wu DQ, Zhang GF, Wang M, Yang HP, Chan H, Li Q. Association between HLA alleles and sub-phenotype of childhood steroid-sensitive nephrotic syndrome. World J Pediatr 2022; 18:109-119. [PMID: 34973118 PMCID: PMC8843916 DOI: 10.1007/s12519-021-00489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Few studies have addressed the effects of human leukocyte antigen (HLA) alleles on different clinical sub-phenotypes in childhood steroid-sensitive nephrotic syndrome (SSNS), including SSNS without recurrence (SSNSWR) and steroid-dependent nephrotic syndrome/frequently relapse nephrotic syndrome (SDNS/FRNS). In this study, we investigated the relationship between HLA system and children with SSNSWR and SDNS/FRNS and clarified the value of HLA allele detection for precise typing of childhood SSNS. METHODS A total of 241 Chinese Han individuals with SSNS were genotyped using GenCap-WES Capture Kit, and four-digit resolution HLA alleles were imputed from available Genome Wide Association data. The distribution and carrying frequency of HLA alleles in SSNSWR and SDNS/FRNS were investigated. Additionally, logistic regression and mediating effects were used to examine the relationship between risk factors for disease process and HLA system. RESULTS Compared with SSNSWR, significantly decreased serum levels of complement 3 (C3) and complement 4 (C4) at onset were detected in SDNS/FRNS (C3, P < 0.001; C4, P = 0.018). The average time to remission after sufficient initial steroid treatment in SDNS/FRNS was significantly longer than that in SSNSWR (P = 0.0001). Low level of C4 was further identified as an independent risk factor for SDNS/FRNS (P = 0.008, odds ratio = 0.174, 95% confidence interval 0.048-0.630). The HLA-A*11:01 allele was independently associated with SSNSWR and SDNS/FRNS (P = 0.0012 and P = 0.0006, respectively). No significant HLA alleles were detected between SSNSWR and SDNS/FRNS. In addition, a mediating effect among HLA-I alleles (HLA-B*15:11, HLA-B*44:03 and HLA-C*07:06), C4 level and SDNS/FRNS was identified. CONCLUSIONS HLA-I alleles provide novel genetic markers for SSNSWR and SDNS/FRNS. HLA-I antigens may be involved in steroid dependent or frequent relapse in children with SSNS as mediators of immunoregulation.
Collapse
Affiliation(s)
- Hao Lee
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, 610041 China
| | - Fen-Fen Ni
- grid.452787.b0000 0004 1806 5224Department of Nephrology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xue-Ying Yang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Pin Feng
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, 610041 China
| | - Xiao-Jie Gao
- grid.452787.b0000 0004 1806 5224Department of Nephrology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Huan Chi
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ye-Tao Luo
- grid.488412.3Department of Statistics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xue-Lan Chen
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bao-Hui Yang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Li Wan
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jiao
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dao-Qi Wu
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Gao-Fu Zhang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Mo Wang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Ping Yang
- grid.488412.3Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Han Chan
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
52
|
Hackl A, Zed SEDA, Diefenhardt P, Binz-Lotter J, Ehren R, Weber LT. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8:18. [PMID: 34792685 PMCID: PMC8600105 DOI: 10.1186/s40348-021-00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Seif El Din Abo Zed
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rasmus Ehren
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
53
|
Rong L, Chen L, Rao J, Shen Q, Li G, Liu J, Mao J, Feng C, Wang X, Wang S, Kuang X, Huang W, Ma Q, Liu X, Ling C, Fu R, Gao X, Ding G, Yang H, Han M, Huang Z, Li Q, Zhang Q, Lin Y, Jiang X, Xu H. Genetic Variations and Clinical Features of NPHS1-Related Nephrotic Syndrome in Chinese Children: A Multicenter, Retrospective Study. Front Med (Lausanne) 2021; 8:771227. [PMID: 34859019 PMCID: PMC8632042 DOI: 10.3389/fmed.2021.771227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Few studies have addressed the genetic spectrum of NPHS1 variants in Chinese children with nephrotic syndrome. In this multicenter study, the clinical manifestations and features of NPHS1 variants in Chinese children with nephrotic syndrome were researched. Method: Genotypical and phenotypical data from 30 children affected by NPHS1 variants were collected from a multicenter registration system in China and analyzed retrospectively. Results: The patients were divided into two groups: congenital nephrotic syndrome (CNS [n = 24]) and non-CNS (early onset nephrotic syndrome [n = 6]). Renal biopsy was performed on four patients in the non-CNS group, revealing minimal change disease in three and focal segmental glomerulosclerosis in one. A total of 61 NPHS1 variants were detected, involving 25 novel variants. The "recurrent variants" included c.928G>A(p.Asp310Asn) in eight patients with CNS, followed by c.616C>A(p.Pro206Thr) in four, and c.2207T>C (p.Val736Ala) in three. Steroid treatment was applied in 29.2% (7/24)of the patients in the CNS group and 50% (3/6) of the patients in the non-CNS group. One patient in each group experienced complete remission but relapsed subsequently. Immunosuppressants were administered to three patients in the non-CNS group, eliciting an effective response. In the CNS group, three patients underwent renal transplantation and six died mainly from infection. Conclusion: Variants of NPHS1 cause CNS and early childhood-onset nephrotic syndrome. NPHS1 variants in Chinese individuals with nephrotic syndrome (NS) were mainly compound heterozygous variants, and c.928G>A(p.Asp310Asn) in exon 8 may act as a recurrent variant in the Chinese population, followed by c.616C>A(p.Pro206Thr) in exon 6. Steroids and immunosuppressants may be effective in selected patients.
Collapse
Affiliation(s)
- Liping Rong
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Guomin Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyue Feng
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowen Wang
- Department of Nephrology and Rheumatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Si Wang
- Department of Nephrology and Rheumatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xinyu Kuang
- Department of Nephrology and Rheumatology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Wenyan Huang
- Department of Nephrology and Rheumatology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Qingshan Ma
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, China
| | - Xiaorong Liu
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Chen Ling
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Rong Fu
- Department of Pediatrics, Puyang Oilfield General Hospital, Puyang, China
| | - Xiaojie Gao
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guixia Ding
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huandan Yang
- Department of Nephrology, Xuzhou Children's Hospital, Xuzhou, China
| | - Mei Han
- Department of Nephrology, Children's Hospital of Dalian Medical University, Dalian, China
| | - Zhimin Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Li
- Department of Pediatric Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Qiuye Zhang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Lin
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
54
|
Chen J, Lin F, Zhai Y, Wang C, Wu B, Ma D, Rao J, Liu J, Liu J, Yu M, Shen Q, Xu H. Diagnostic and clinical utility of genetic testing in children with kidney failure. Pediatr Nephrol 2021; 36:3653-3662. [PMID: 34031707 DOI: 10.1007/s00467-021-05141-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Genetic kidney disease is well established as an important cause of pediatric kidney failure, and genetic testing might increase diagnostic accuracy, but evidence is limited. This study was conducted to determine the diagnostic yield and clinical impact of genetic testing for children with kidney failure. METHODS Patients who were diagnosed with kidney failure before 19 years of age at Children's Hospital of Fudan University from 2009 to 2018 and received next-generation sequencing (NGS) were enrolled. The results for likely pathogenic variants in genes known to cause chronic kidney disease (CKD) were analyzed. RESULTS A molecular diagnosis was identified in 39.9% (75/188) of children with kidney failure. Specific subtype of clinical category was discerned in 54 (72.0%) patients, kidney disease was reclassified in 7 (9.3%) patients, the unknown etiology of 5 (6.7%) patients was molecularly diagnosed, and the clinical diagnoses of the other 9 (12.0%) patients were confirmed. In addition, genetic diagnosis was considered to have contributed to clinical management, including negating the need for kidney biopsy (26/75, 34.7%), avoiding immunosuppressive therapy (24/75, 32.0%), changing surveillance (48/75, 64.0%), guiding specific treatment (21/75, 28.0%), and guiding peri-transplant management and options for kidney transplantation (12/75, 16.0%). Furthermore, cascade testing was subsequently offered to 34.7% (26/75) of families. CONCLUSIONS Genetic testing identified a molecular diagnosis in nearly 40% of children with kidney failure. Our results confirm that in children with kidney failure, genetic testing can not only establish a specific molecular diagnosis, but has a significant impact on clinical management.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Fang Lin
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yihui Zhai
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chunyan Wang
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Bingbing Wu
- Clinical Genetic Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jiaojiao Liu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jialu Liu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
55
|
Acharya R, Upadhyay K. End-stage renal disease in a child with focal segmental glomerulosclerosis associated with a homozygous NUP93 variant. Clin Case Rep 2021; 9:e05111. [PMID: 34815884 PMCID: PMC8593884 DOI: 10.1002/ccr3.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
This report highlights that the genetic causes of FSGS, including NUP93 gene variant, such as the one described in this report, progress to end-stage renal disease rapidly and that the risk of recurrence post-renal transplantation is less likely.
Collapse
Affiliation(s)
- Ratna Acharya
- Division of General PediatricsDepartment of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Kiran Upadhyay
- Division of Pediatric NephrologyDepartment of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
56
|
Primary coenzyme Q10 nephropathy, a potentially treatable form of steroid-resistant nephrotic syndrome. Pediatr Nephrol 2021; 36:3515-3527. [PMID: 33479824 PMCID: PMC8295399 DOI: 10.1007/s00467-020-04914-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/28/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a genetically heterogeneous kidney disease that is the second most frequent cause of kidney failure in the first 2 decades of life. Despite the identification of mutations in more than 39 genes as causing SRNS, and the localization of its pathogenesis to glomerular podocytes, the disease mechanisms of SRNS remain poorly understood and no universally safe and effective therapy exists to treat patients with this condition. Recently, genetic research has identified a subgroup of SRNS patients whose kidney pathology is caused by primary coenzyme Q10 (CoQ10) deficiency due to recessive mutations in genes that encode proteins in the CoQ10 biosynthesis pathway. Clinical and preclinical studies show that primary CoQ10 deficiency may be responsive to treatment with CoQ10 supplements bypassing the biosynthesis defects. Coenzyme Q10 is an essential component of the mitochondrial respiratory chain, where it transports electrons from complexes I and II to complex III. Studies in yeast and mammalian model systems have recently identified the molecular functions of the individual CoQ10 biosynthesis complex proteins, validated these findings, and provided an impetus for developing therapeutic compounds to replenish CoQ10 levels in the tissues/organs and thus prevent the destruction of tissues due to mitochondrial OXPHOS deficiencies. In this review, we will summarize the clinical findings of the kidney pathophysiology of primary CoQ10 deficiencies and discuss recent advances in the development of therapies to counter CoQ10 deficiency in tissues.
Collapse
|
57
|
Parikh RV, Tan TC, Fan D, Law D, Salyer AS, Yankulin L, Wojcicki JM, Zheng S, Ordonez JD, Chertow GM, Khoshniat-Rad F, Yang J, Go AS. Population-based identification and temporal trend of children with primary nephrotic syndrome: The Kaiser Permanente nephrotic syndrome study. PLoS One 2021; 16:e0257674. [PMID: 34648518 PMCID: PMC8516311 DOI: 10.1371/journal.pone.0257674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Limited population-based data exist about children with primary nephrotic syndrome (NS). METHODS We identified a cohort of children with primary NS receiving care in Kaiser Permanente Northern California, an integrated healthcare delivery system caring for >750,000 children. We identified all children <18 years between 1996 and 2012 who had nephrotic range proteinuria (urine ACR>3500 mg/g, urine PCR>3.5 mg/mg, 24-hour urine protein>3500 mg or urine dipstick>300 mg/dL) in laboratory databases or a diagnosis of NS in electronic health records. Nephrologists reviewed health records for clinical presentation and laboratory and biopsy results to confirm primary NS. RESULTS Among 365 cases of confirmed NS, 179 had confirmed primary NS attributed to presumed minimal change disease (MCD) (72%), focal segmental glomerulosclerosis (FSGS) (23%) or membranous nephropathy (MN) (5%). The overall incidence of primary NS was 1.47 (95% Confidence Interval:1.27-1.70) per 100,000 person-years. Biopsy data were available in 40% of cases. Median age for patients with primary NS was 6.9 (interquartile range:3.7 to 12.9) years, 43% were female and 26% were white, 13% black, 17% Asian/Pacific Islander, and 32% Hispanic. CONCLUSION This population-based identification of children with primary NS leveraging electronic health records can provide a unique approach and platform for describing the natural history of NS and identifying determinants of outcomes in children with primary NS.
Collapse
MESH Headings
- Adolescent
- Biopsy
- Child
- Child, Preschool
- Cohort Studies
- Female
- Glomerulonephritis, Membranous/diagnosis
- Glomerulonephritis, Membranous/epidemiology
- Glomerulonephritis, Membranous/pathology
- Glomerulosclerosis, Focal Segmental/diagnosis
- Glomerulosclerosis, Focal Segmental/epidemiology
- Glomerulosclerosis, Focal Segmental/pathology
- Humans
- Male
- Nephrosis, Lipoid/diagnosis
- Nephrosis, Lipoid/epidemiology
- Nephrosis, Lipoid/pathology
- Nephrotic Syndrome/diagnosis
- Nephrotic Syndrome/epidemiology
- Nephrotic Syndrome/pathology
- Proteinuria/diagnosis
- Proteinuria/epidemiology
- Proteinuria/pathology
Collapse
Affiliation(s)
- Rishi V. Parikh
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States of America
| | - Thida C. Tan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States of America
| | - Dongjie Fan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States of America
| | - David Law
- Department of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States of America
| | - Anne S. Salyer
- Department of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States of America
| | - Leonid Yankulin
- Department of Nephrology, Kaiser Permanente San Francisco Medical Center, San Francisco, CA, United States of America
| | - Janet M. Wojcicki
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States of America
| | - Sijie Zheng
- Department of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States of America
| | - Juan D. Ordonez
- Department of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States of America
| | - Glenn M. Chertow
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine (Nephrology) and Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Farzien Khoshniat-Rad
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States of America
| | - Jingrong Yang
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States of America
| | - Alan S. Go
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States of America
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine (Nephrology) and Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Health System Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, United States of America
- * E-mail:
| |
Collapse
|
58
|
Miao J, Pinto E Vairo F, Hogan MC, Erickson SB, El Ters M, Bentall AJ, Kukla A, Greene EL, Hernandez LH, Sethi S, Lazaridis KN, Pichurin PN, Lisi E, Prochnow CA, Zand L, Fervenza FC. Identification of Genetic Causes of Focal Segmental Glomerulosclerosis Increases With Proper Patient Selection. Mayo Clin Proc 2021; 96:2342-2353. [PMID: 34120753 DOI: 10.1016/j.mayocp.2021.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To increase the likelihood of finding a causative genetic variant in patients with a focal segmental glomerulosclerosis (FSGS) lesion, clinical and histologic characteristics were analyzed. PATIENTS AND METHODS Individuals 18 years and older with an FSGS lesion on kidney biopsy evaluated at Mayo Clinic from November 1, 1999, through October 31, 2019, were divided into 4 groups based on clinical and histologic characteristics: primary FSGS, secondary FSGS with known cause, secondary FSGS without known cause, and undetermined FSGS. A targeted gene panel and a customized gene panel retrieved from exome sequencing were performed. RESULTS The overall rate of detection of a monogenic cause was 42.9% (21/49). Individuals with undetermined FSGS had the highest rate of positivity (87.5%; 7/8) followed by secondary FSGS without an identifiable cause (61.5%; 8/13) and secondary FSGS with known cause (33.3%; 5/15). Four of 5 (80%) individuals in the latter group who had positive genetic testing results also had a family history of kidney disease. Univariate analysis showed that family history of kidney disease (odds ratio [OR], 13.8; 95% CI, 3.7 to 62.4; P<.001), absence of nephrotic syndrome (OR, 8.2; 95% CI, 1.9 to 58.1; P=.004), and female sex (OR, 5.1; 95% CI, 1.5 to 19.9; P=.01) were strong predictors of finding a causative genetic variant in the entire cohort. The most common variants were in the collagen genes (52.4%; 11/21), followed by the podocyte genes (38.1%; 8/21). CONCLUSION In adults with FSGS lesions, proper selection of patients increases the rate of positive genetic testing significantly. The majority of individuals with undetermined FSGS in whom the clinical presentation and histologic parameters are discordant had a genetic diagnosis.
Collapse
Affiliation(s)
- Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Filippo Pinto E Vairo
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Mireille El Ters
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Andrew J Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Aleksandra Kukla
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Eddie L Greene
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Sanjeev Sethi
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Emily Lisi
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
59
|
Myette RL, Burger D, Geier P, Feber J. Diastolic hypertension is associated with proteinuria in pediatric patients. Health Sci Rep 2021; 4:e346. [PMID: 34401524 PMCID: PMC8351612 DOI: 10.1002/hsr2.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND AIMS Blood pressure lability has been observed in certain cohorts of pediatric patients with variable degrees of proteinuria; however, the impact of proteinuria on blood pressure is not fully elucidated. The objective of our study was to analyze blood pressure and heart rate in pediatric patients with proteinuria. METHODS We performed a retrospective chart review of patients (age 1-18) diagnosed with idiopathic nephrotic syndrome, with varying degrees of proteinuria. Blood pressure and heart rate data were analyzed in relation to anthropometric and biochemical parameters. A total of 72 urine sample analyses, along with associated blood pressure measurements, were obtained from the charts of 33 children (males = 25). RESULTS Diastolic blood pressure Z-scores were significantly higher in proteinuric patients (urine protein/creatinine >0.02 g/mmol) compared to non-proteinuric patients (P = .006; Cohen-d 0.97 [0.41; 1.53]). Systolic blood pressure was also significantly higher in proteinuric patients (P = .04), but with a less significant effect size (Cohen-d 0.54 [-0.002; 1.08]). Proteinuria (>0.02 g/mmol) was the most significant predictor of diastolic (β = .79, P = .04), but not systolic blood pressure elevation on multivariate analysis. CONCLUSIONS We observed a disproportionate increase in diastolic blood pressure vs systolic blood pressure in patients with proteinuria.
Collapse
Affiliation(s)
- Robert L. Myette
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Eastern OntarioUniversity of OttawaOttawaOntarioCanada
- Kidney Research Center, Department of Cellular and Molecular Medicine, The Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
| | - Dylan Burger
- Kidney Research Center, Department of Cellular and Molecular Medicine, The Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
| | - Pavel Geier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Eastern OntarioUniversity of OttawaOttawaOntarioCanada
| | - Janusz Feber
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Eastern OntarioUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
60
|
Jean Paul A, Louis D, Desravines AJ, Jean RM, Jean Baptiste A, Buteau JH, Andre W. Suspicion of Frasier's Syndrome in the Nephrology Unit of the State University Hospital of Haiti: Case Study and Review of Literature. Int Med Case Rep J 2021; 14:533-538. [PMID: 34408503 PMCID: PMC8367082 DOI: 10.2147/imcrj.s325619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Frasier syndrome is a rare genetic nephropathy characterized by the presence of progressive glomerulopathy with proteinuria associated with male pseudo hermaphroditism. This case study described a picture of a young boy where the clinical suspicion context reminded the Frasier syndrome. To our knowledge, this case is the first described in Haiti. Case Study This is a 19-year-old young phenotypically male, born with a genital anomaly, was seen on referral at the nephrology/dialysis unit of the internal medicine department of the State University Hospital of Haiti for evaluation and follow-up. Insidious progression of symptoms had occurred over 3 years. Over three months of outpatient follow-up, he had four sets of renal labs drawn, and all showed impaired renal function. At the ultrasound, a bilateral cryptorchidism is described in the inguinal, and presence of functional ovaries with follicles of variable size scattered in the parenchyma. So, in the light of these anamnestic, clinical and paraclinical findings, we concluded to the diagnosis of end-stage renal failure by progressive glomerulopathy in a context of Frasier's syndrome. Conclusion With any clinical picture consisting of genital anomalies at birth, renal symptomatology during childhood and the diagnosis of renal failure during adolescence, rare genetic nephropathies, such as Frasier syndrome must be considered.
Collapse
Affiliation(s)
- Axler Jean Paul
- General Medicine, State University Hospital of Haiti, Port-au-Prince, West, Haiti
| | - Dieuguens Louis
- Internal Medicine, State University Hospital of Haiti, Port-au-Prince, West, Haiti
| | | | - Raema Mimrod Jean
- General Medicine, State University Hospital of Haiti, Port-au-Prince, West, Haiti
| | | | - Jean Henold Buteau
- Internal Medicine, State University Hospital of Haiti, Port-au-Prince, West, Haiti
| | - Wislet Andre
- Internal Medicine, State University Hospital of Haiti, Port-au-Prince, West, Haiti
| |
Collapse
|
61
|
Sinha R, Sarkar S, Mandal K, Tse Y. Uptake of next-generation sequencing in children with end-stage renal disease secondary to focal segmental glomerulosclerosis and parental decision for kidney transplantation-Experience from a low resource setting: A Retrospective Cohort Study. Pediatr Transplant 2021; 25:e13960. [PMID: 33368894 DOI: 10.1111/petr.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Transplantation is the optimal modality for children with ESRD. High risk of disease recurrence and graft loss with FSGS, and its financial implications, may result in families refusing transplantation. Deceased donation is often preferred for FSGS, but access is limited in many low- and middle-income group countries (LMIC; per capita gross national income between $1026 and $3995). As FSGS secondary to an underlying genetic etiology has low recurrence risk, we hypothesized that in LMIC such as India, families with children in ESRD secondary to FSGS with proven pathogenic mutation are more likely to consent for transplantation than those with unknown etiology. METHODS Prospective cross-sectional study with retrospective chart review was undertaken (March 2011 and February 2019) to identify children with ESRD from FSGS. The objective was to ascertain NGS uptake and findings, parental decision for transplantation, and transplant outcome. RESULTS 28 children with FSGS started transplant workup, and 15 (54%) families agreed for NGS testing. Pathogenic mutation (NPHS1 x 2, WT1 x 2, COL4A3 x 2, CD2AP, CRB2, COL4A5, INF 2, ACTN4, NPHP4: 1 each) was identified in 12 (80%). 92% (11/12) agreed to proceed with transplantation in contrast to 13% (2/16) who either did not undergo NGS testing or had no pathogenic mutation identified (P = .001). No disease recurrences were noted in those with a known pathogenic mutation. CONCLUSION In LMIC, NGS results are useful in transplant discussions with families for children with ESRD secondary to FSGS.
Collapse
Affiliation(s)
- Rajiv Sinha
- Institute of Child Health, Kolkata, India.,Fortis Hospital, Kolkata, India.,Apollo Gleneagles Hospital, Kolkata, India
| | | | - Kausik Mandal
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Yincent Tse
- Great North Children's Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
62
|
Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, Lipska-Ziętkiewicz BS, Noris M, Remuzzi G, Vargas-Poussou R, Schaefer F. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transplant 2021; 37:239-254. [PMID: 34264297 PMCID: PMC8788237 DOI: 10.1093/ndt/gfab218] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The overall diagnostic yield of massively parallel sequencing–based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6–30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing–based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.
Collapse
Affiliation(s)
- Nine Knoers
- Department of Genetics, University Medical Centre Groningen, The Netherlands
| | - Corinne Antignac
- Institut Imagine (Inserm U1163) et Département de Génétique, 24 bd du Montparnasse, 75015, Paris, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Karin Dahan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200, Brussels, Belgium.,Center of Human Genetics, Institut de Pathologie et de Génétique, Avenue Lemaître, 25, B-6041, Gosselies, Belgium
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75743, Paris, Cedex 15, France
| | - Beata S Lipska-Ziętkiewicz
- BSL-Z - ORCID 0000-0002-4169-9685, Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland.,Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75908, Paris, Cedex 15, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Germany
| | | |
Collapse
|
63
|
Lane BM, Murray S, Benson K, Bierzynska A, Chryst-Stangl M, Wang L, Wu G, Cavalleri G, Doyle B, Fennelly N, Dorman A, Conlon S, Vega-Warner V, Fermin D, Vijayan P, Qureshi MA, Shril S, Barua M, Hildebrandt F, Pollak M, Howell D, Sampson MG, Saleem M, Conlon PJ, Spurney R, Gbadegesin R. A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 ( RCAN1) Gene Confers Enhanced Calcineurin Activity and May Cause FSGS. J Am Soc Nephrol 2021; 32:1682-1695. [PMID: 33863784 PMCID: PMC8425665 DOI: 10.1681/asn.2020081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3β, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3β, in the treatment of FSGS.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Murray
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Katherine Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Agnieszka Bierzynska
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Megan Chryst-Stangl
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Guanghong Wu
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Brendan Doyle
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Neil Fennelly
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Shane Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | | | - Damian Fermin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Poornima Vijayan
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Mohammad Azfar Qureshi
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Moumita Barua
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Martin Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Hospital and Harvard University Medical School, Boston, Massachusetts
| | - David Howell
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Moin Saleem
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Peter J. Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
- Division of Nephrology, Department of Medicine, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Robert Spurney
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
64
|
Malakasioti G, Iancu D, Tullus K. Calcineurin inhibitors in nephrotic syndrome secondary to podocyte gene mutations: a systematic review. Pediatr Nephrol 2021; 36:1353-1364. [PMID: 32651716 DOI: 10.1007/s00467-020-04695-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Calcineurin inhibitor (CNI) use in genetic steroid-resistant nephrotic syndrome (SRNS) is controversial as response rate is reported to be lower than non-genetic disease and no plausible mechanism of action is known. METHODS We reviewed PubMed for publications on CNI use in hereditary SRNS to determine (1) CNI response rate; (2) impact of response on renal outcome; and (3) clinical and molecular predictors of response. Variant pathogenicity was assessed according to American College of Medical Genetics criteria and patients were assigned to 1 of 4 categories based on estimated genotype contribution to phenotype. Cases with non-existing phenotype-to-genotype contribution were excluded. Subgroup analysis was performed for the possible and confirmed genetic cases. RESULTS Data of 178 genetic SRNS cases from 22 studies were analyzed; 35% responded (fully or partially) to CNI with minimal change being the commonest biopsy pattern among responders. Full responders had superior kidney survival compared with partial and non-responders (log-rank test χ2 = 10.7; P < 0.01). WT1 variant carriers were most likely to respond to CNI compared with any other mutation [OR 4.7 (2.0-11.3); P < 0.01]. CONCLUSIONS These findings support the current recommendation for using CNI as first-line treatment for children with SRNS whilst genetic analyses are pending. This would allow assessment of treatment response even in cases later established as genetic ensuring that benefits on kidney function are balanced with treatment toxicity.
Collapse
Affiliation(s)
- Georgia Malakasioti
- Renal Unit, P. & A. Kyriakou Children's Hospital, Thivon & Levadeias, 11527, Athens, Greece.
| | - Daniela Iancu
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Kjell Tullus
- Department of Pediatric Nephrology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
65
|
Ying D, Liu W, Chen L, Rong L, Lin Z, Wen S, Zhuang H, Li J, Jiang X. Long-Term Outcome of Secondary Steroid-Resistant Nephrotic Syndrome in Chinese Children. Kidney Int Rep 2021; 6:2144-2150. [PMID: 34386663 PMCID: PMC8343794 DOI: 10.1016/j.ekir.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Secondary steroid-resistant nephrotic syndrome (SRNS) refers to the condition when patients with initial steroid-sensitive nephrotic syndrome develop steroid resistance in subsequent relapses. Long-term outcomes of secondary SRNS in children are uncertain. Methods This was a single-center retrospective study of 56 children with secondary SRNS between 2006 and 2016. The survival curve was estimated using the Kaplan-Meier method. Independent risk factors for end-stage renal disease (ESRD) were determined using Cox proportional hazards model. Results The median time from nephrotic syndrome onset to secondary SRNS was 7.8 months. Biopsy results at diagnosis secondary SRNS showed that 64.3% of cases were minimal change disease (MCD). No remission was observed in seven (12.5%) patients within the first year. The mean follow-up time was 7.8 ± 3.2 years. Eight patients were clinically cured, one died before ESRD, 10 reached ESRD, and 75.0% (3 of 4) of patients recurred post-transplantation. The 10-year ESRD-free survival rate was 85.8%. No response to intensified immunosuppression (IIS) in the first year was the independent predictor for ESRD. Repeat biopsies were performed in 20 cases, revealing that the reclassification from MCD to mesangial hypercellularity and focal segmental glomerulosclerosis (FSGS) in two when secondary steroid resistance appeared, from MCD and mesangial hypercellularity to FSGS in seven who developed multidrug resistance, and from FSGS to MCD and mesangial hypercellularity in two with favorable outcomes. Conclusions The long-term outcome in children with secondary SRNS was heterogeneous, and no response to IIS in the first year was the independent predictor for ESRD. In patients with repeat biopsy, changes in histological appearance to FSGS were associated with multidrug resistance.
Collapse
Affiliation(s)
- Daojing Ying
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wangkai Liu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Rong
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhilang Lin
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sijia Wen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongjie Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Correspondence: Xiaoyun Jiang, The First Affiliated Hospital of Sun Yat-sen University No.58, Zhong Shan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
66
|
Weber LT, Tönshoff B, Grenda R, Bouts A, Topaloglu R, Gülhan B, Printza N, Awan A, Battelino N, Ehren R, Hoyer PF, Novljan G, Marks SD, Oh J, Prytula A, Seeman T, Sweeney C, Dello Strologo L, Pape L. Clinical practice recommendations for recurrence of focal and segmental glomerulosclerosis/steroid-resistant nephrotic syndrome. Pediatr Transplant 2021; 25:e13955. [PMID: 33378587 DOI: 10.1111/petr.13955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Recurrence of primary disease is one of the major risks for allograft loss after pediatric RTx. The risk of recurrence of FSGS/SRNS after pediatric RTx in particular can be up to 86% in idiopathic cases. There is a need for consensus recommendations on its prevention and treatment. The CERTAIN study group has therefore performed a thorough literature search based on the PICO model of clinical questions to formulate educated statements to guide the clinician in the process of decision-making. A set of educated statements on prevention and treatment of FSGS/SRNS after pediatric RTx has been generated after careful evaluation of available evidence and thorough panel discussion. We do not recommend routine nephrectomy prior to transplantation; neither do we recommend abstaining from living donation. Special attendance needs to be given to those patients who had already experienced graft loss due to FSGS/SRNS recurrence. Early PE or IA with or without high-dose CsA and/or rituximab seems to be most promising to induce remission. The educated statements presented here acknowledge that FSGS/SRNS recurrence after pediatric RTx remains a major concern and is associated with shorter graft survival or even graft loss. The value of any recommendation needs to take into account that evidence is based on cohorts that differ in ethnicity, pre-transplant history, immunosuppressive regimen, definition of recurrence (eg, clinical and/or histological diagnosis) and treatment modalities of recurrence.
Collapse
Affiliation(s)
- Lutz T Weber
- Faculty of Medicine, University Hospital of Cologne, Children's and Adolescents' Hospital, Pediatric Nephrology, University of Cologne, Cologne, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation & Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Antonia Bouts
- Department of Pediatric Nephrology, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Bora Gülhan
- Department of Pediatric Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nikoleta Printza
- 1st Pediatric Department, Pediatric Nephrology Unit, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece
| | - Atif Awan
- Department of Nephrology and Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Nina Battelino
- Pediatric Nephrology Department, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rasmus Ehren
- Faculty of Medicine, University Hospital of Cologne, Children's and Adolescents' Hospital, Pediatric Nephrology, University of Cologne, Cologne, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Gregor Novljan
- Pediatric Nephrology Department, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Stephen D Marks
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Agnieszka Prytula
- Pediatric Nephrology and Rheumatology Department, Ghent University Hospital, Ghent, Belgium
| | - Tomas Seeman
- Department of Pediatrics, 2nd Medical Faculty, Charles University Prague, Prague, Czech Republic.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Clodagh Sweeney
- Department of Nephrology and Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Luca Dello Strologo
- Pediatric Renal Transplant Unit, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Lars Pape
- Department of Pediatrics II, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
67
|
Kaur J, Deepthi B, Dhull RS, Faruq MD, Saha A. Infantile nephrotic syndrome secondary to cytomegalovirus infection in a 7-month-old girl: resolution with ganciclovir. Paediatr Int Child Health 2021; 41:162-165. [PMID: 32990185 DOI: 10.1080/20469047.2020.1823176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Infantile nephrotic syndrome is a rare disorder which is frequently caused by genetic defects. A 7-month-old girl presented with fever, loose stools and anasarca and was diagnosed with nephrotic syndrome. Work-up for a genetic cause was negative. Cytomegalovirus polymerase chain reaction (CMV PCR) was positive and the infant was treated with ganciclovir for 6 weeks, followed by valganciclovir for 10 weeks. All symptoms resolved within 2 weeks of commencing treatment and she attained complete remission within 4 weeks. CMV PCR was negative within 4 weeks of antiviral therapy. At 18 months follow-up she remained well. Appropriate treatment of infantile nephrotic syndrome secondary to CMV should result in recovery.
Collapse
Affiliation(s)
- Jasleen Kaur
- Division of Paediatric Nephrology, Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children Hospital, New Delhi, India
| | - Bobbity Deepthi
- Division of Paediatric Nephrology, Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children Hospital, New Delhi, India
| | - Rachita Singh Dhull
- Division of Paediatric Nephrology, Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children Hospital, New Delhi, India
| | - M D Faruq
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Abhijeet Saha
- Division of Paediatric Nephrology, Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children Hospital, New Delhi, India
| |
Collapse
|
68
|
Hanafusa H, Hidaka Y, Yamaguchi T, Shimojo H, Tsukahara T, Murase T, Matsuoka D, Chiba N, Shimada S, Morokawa H, Omori N, Minoura H, Nagano C, Takano K, Nakamura K, Wakui K, Fukushima Y, Uehara T, Nakazawa Y, Iijima K, Nozu K, Kosho T. Heterozygous missense variant in TRPC6 in a boy with rapidly progressive infantile nephrotic syndrome associated with diffuse mesangial sclerosis. Am J Med Genet A 2021; 185:2175-2179. [PMID: 33884742 DOI: 10.1002/ajmg.a.62216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 11/11/2022]
Abstract
Transient receptor potential channel C6 encoded by TRPC6 is involved in slit diaphragm formation in podocytes, and abnormalities of the TRPC6 protein cause various glomerular diseases. The first identified pathogenic variant of TRPC6 was found to cause steroid-resistant nephrotic syndrome that typically developed in adulthood and then slowly led to end-stage renal disease, along with a renal pathology of focal segmental glomerulosclerosis. Here, we report a patient with rapidly progressing infantile nephrotic syndrome and a heterozygous missense TRPC6 variant. The patient, a 2-year-old Japanese boy, developed steroid-resistant nephrotic syndrome at age 11 months. His renal function deteriorated rapidly, and peritoneal dialysis was introduced at age 1 year and 6 months. His renal pathology, obtained at age 1 year and 1 month, was consistent with diffuse mesangial sclerosis (DMS). Clinical exome analysis and custom panel analysis for hereditary renal diseases revealed a reported heterozygous missense variant in TRPC6 (NM_004621.5:c.523C > T:p.Arg175Trp). This is the first report of a patient with a TRPC6-related renal disorder associated with DMS.
Collapse
Affiliation(s)
- Hiroaki Hanafusa
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan.,Problem-Solving Oriented Training Program for Advanced Medical Personnel: NGSD (Next Generation Super Doctor) Project, Matsumoto, Japan
| | - Yoshihiko Hidaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Tomomi Yamaguchi
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisashi Shimojo
- Department of Laboratory Medicine, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Pathology, Aizawa Hospital, Matsumoto, Japan
| | | | - Tsubasa Murase
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Daisuke Matsuoka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nao Chiba
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun Shimada
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hirokazu Morokawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Norio Omori
- Department of Pediatric Intensive Care, Nagano Children's Hospital, Azumino, Japan
| | - Hironori Minoura
- Department of Pediatric Intensive Care, Nagano Children's Hospital, Azumino, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoko Takano
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Katsuya Nakamura
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
69
|
Zaorska K, Zawierucha P, Świerczewska M, Ostalska-Nowicka D, Zachwieja J, Nowicki M. Prediction of steroid resistance and steroid dependence in nephrotic syndrome children. J Transl Med 2021; 19:130. [PMID: 33785019 PMCID: PMC8011118 DOI: 10.1186/s12967-021-02790-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background Steroid resistant (SR) nephrotic syndrome (NS) affects up to 30% of children and is responsible for fast progression to end stage renal disease. Currently there is no early prognostic marker of SR and studied candidate variants and parameters differ highly between distinct ethnic cohorts. Methods Here, we analyzed 11polymorphic variants, 6 mutations, SOCS3 promoter methylation and biochemical parameters as prognostic markers in a group of 124 Polish NS children (53 steroid resistant, 71 steroid sensitive including 31 steroid dependent) and 55 controls. We used single marker and multiple logistic regression analysis, accompanied by prediction modeling using neural network approach. Results We achieved 92% (AUC = 0.778) SR prediction for binomial and 63% for multinomial calculations, with the strongest predictors ABCB1 rs1922240, rs1045642 and rs2235048, CD73 rs9444348 and rs4431401, serum creatinine and unmethylated SOCS3 promoter region. Next, we achieved 80% (AUC = 0.720) in binomial and 63% in multinomial prediction of SD, with the strongest predictors ABCB1 rs1045642 and rs2235048. Haplotype analysis revealed CD73_AG to be associated with SR while ABCB1_AGT was associated with SR, SD and membranoproliferative pattern of kidney injury regardless the steroid response. Conclusions We achieved prediction of steroid resistance and, as a novelty, steroid dependence, based on early markers in NS children. Such predictions, prior to drug administration, could facilitate decision on a proper treatment and avoid diverse effects of high steroid doses. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02790-w.
Collapse
Affiliation(s)
- Katarzyna Zaorska
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland.
| | - Piotr Zawierucha
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Zygmunta Noskowskiego St 12/14, 61-704, Poznan, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Clinic of Pediatric Nephrology and Hypertension, University of Medical Sciences, Szpitalna St 27/33, 60-572, Poznan, Poland
| | - Jacek Zachwieja
- Clinic of Pediatric Nephrology and Hypertension, University of Medical Sciences, Szpitalna St 27/33, 60-572, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland
| |
Collapse
|
70
|
Zhao B, Chen JY, Liao YB, Li YF, Jiang XM, Bi X, Yang MF, Li L, Cui JJ. Steroid-resistant nephrotic syndrome in infants caused by a novel compound heterozygous mutation of the NUP93: A CARE case report. Medicine (Baltimore) 2021; 100:e24627. [PMID: 33578576 PMCID: PMC7886470 DOI: 10.1097/md.0000000000024627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Steroid-resistant nephrotic syndrome (SRNS) is a special kidney disease. SRNS is characterized by steroid-resistant, clinical variability, and genetic heterogeneity. Patients with SRNS often may eventually need renal transplantation. PATIENT CONCERNS A 10-month-old Chinese male infant presented with oliguria, renal dysfunction, hypertension, and anemia. DIAGNOSES Combined with clinical manifestations, laboratory testing and sequencing results, the patient was diagnosed as SRNS. INTERVENTIONS Combined intravenous methylprednisolone and cefoperazone sulbactam did not improve the patient's condition. Thus, SRNS associated with hereditary nephrotic syndrome was strongly suspected. Genetic testing for hereditary renal disease of the patient revealed 2 novel heterozygous mutations in the Nucleoporin 93 (NUP93) gene, which were predicted pathogenic and harmful by bioinformatic softwares of SIFT, PolyPhen_2 and REVEL. OUTCOMES As general physical health deterioration and renal dysfunction, the patient died of a severe infection. LESSONS The novel NUP93 heterozygous mutations identified in the current study broadened the genetic spectrum of SRNS and further deepened our insight into pathogenic mutations of NUP93 to improve disease diagnosis.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| | | | - Ya-Bin Liao
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| | - Yan-Fang Li
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| | - Xue-Mei Jiang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| | - Xin Bi
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| | - Mi-Feng Yang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Jing-Jing Cui
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming
| |
Collapse
|
71
|
Udagawa T, Matsuyama Y, Okutsu M, Motoyoshi Y, Okada M, Tada N, Kikuchi E, Shimoda M, Kanamori T, Omori T, Takahashi M, Imai K, Endo A, Fujiwara T, Morio T. Association between Immunoglobulin M and Steroid Resistance in Children with Nephrotic Syndrome: A Retrospective Multicenter Study in Japan. KIDNEY360 2021; 2:487-493. [PMID: 35369027 PMCID: PMC8785997 DOI: 10.34067/kid.0004432020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Background The prognosis of steroid-resistant nephrotic syndrome (SRNS) in children is poorer than steroid-sensitive cases. Diagnosis of SRNS is made after observing the response to the initial 4-week corticosteroid therapy, which might be accompanied by side effects. However, predictive indicators at initial diagnosis remain unknown. We aimed to investigate whether selectivity index (SI) and other indicators at initial diagnosis-for example, serum IgM and total serum protein-albumin ratio (TA ratio, total serum protein level over albumin level)-can predict SRNS. Methods A total of 80 children were enrolled from seven hospitals in Japan between January 2008 and December 2019 (mean age, 4.7 years; 65% male). Of the children enrolled, 13 (16%, M/F=5:8) had been diagnosed as steroid resistant after initial treatment with steroids. The association between serum IgM (tertile categories: low, 24-133; middle, 134-169; and high, 169.1-510 mg/dl), SI (<0.2 or ≥0.2), and TA ratio (tertile categories: low, 1.8-2.6; middle, 2.62-3.75; and high, 3.8-15.3) at initial diagnosis and steroid resistance was evaluated with logistic regression, adjusting for age and sex. Results Low levels of serum IgM were significantly associated with steroid resistance (adjusted odds ratio, 6.94; 95% CI, 1.12 to 43.11). TA ratio and SI were not significantly associated with steroid resistance. Conclusions Low levels of serum IgM at initial diagnosis might predict steroid resistance among Japanese children with idiopathic nephrotic syndrome.
Collapse
Affiliation(s)
- Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsuyama
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mika Okutsu
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yaeko Motoyoshi
- Department of Pediatrics, Tokyo Kita Medical Center Hospital, Tokyo, Japan
| | - Mari Okada
- Department of Pediatrics, Musashino Red Cross Hospital, Tokyo, Japan
| | - Norimasa Tada
- Department of Pediatrics, Tsuchiura General Hospital, Ibaraki, Japan
| | - Eriko Kikuchi
- Department of Pediatrics, Nerima Hikarigaoka Hospital, Tokyo, Japan
| | - Masuhiro Shimoda
- Department of Pediatrics, Nerima Hikarigaoka Hospital, Tokyo, Japan
| | - Toru Kanamori
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan,Department of Pediatrics, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Tae Omori
- Department of Pediatrics, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Masaki Takahashi
- Department of Pediatrics, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akifumi Endo
- Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeo Fujiwara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
72
|
Boyer O, Schaefer F, Haffner D, Bockenhauer D, Hölttä T, Bérody S, Webb H, Heselden M, Lipska-Zie˛tkiewicz BS, Ozaltin F, Levtchenko E, Vivarelli M. Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN Working Group. Nat Rev Nephrol 2021; 17:277-289. [PMID: 33514942 PMCID: PMC8128706 DOI: 10.1038/s41581-020-00384-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/30/2023]
Abstract
Congenital nephrotic syndrome (CNS) is a heterogeneous group of disorders characterized by nephrotic-range proteinuria, hypoalbuminaemia and oedema, which manifest in utero or during the first 3 months of life. The main cause of CNS is genetic defects in podocytes; however, it can also be caused, in rare cases, by congenital infections or maternal allo-immune disease. Management of CNS is very challenging because patients are prone to severe complications, such as haemodynamic compromise, infections, thromboses, impaired growth and kidney failure. In this consensus statement, experts from the European Reference Network for Kidney Diseases (ERKNet) and the European Society for Paediatric Nephrology (ESPN) summarize the current evidence and present recommendations for the management of CNS, including the use of renin-angiotensin system inhibitors, diuretics, anticoagulation and infection prophylaxis. Therapeutic management should be adapted to the clinical severity of the condition with the aim of maintaining intravascular euvolaemia and adequate nutrition, while preventing complications and preserving central and peripheral vessels. We do not recommend performing routine early nephrectomies but suggest that they are considered in patients with severe complications despite optimal conservative treatment, and before transplantation in patients with persisting nephrotic syndrome and/or a WT1-dominant pathogenic variant.
Collapse
Affiliation(s)
- Olivia Boyer
- grid.412134.10000 0004 0593 9113Department of Pediatric Nephrology, Reference center for Idiopathic Nephrotic Syndrome in Children and Adults, Imagine Institute, Paris University, Necker Hospital, APHP, Paris, France ,grid.508487.60000 0004 7885 7602Laboratory of Hereditary Kidney Diseases, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
| | - Franz Schaefer
- grid.7700.00000 0001 2190 4373Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Dieter Haffner
- grid.10423.340000 0000 9529 9877Department of Pediatric Kidney, Liver and Metabolic Diseases, Children’s Hospital, Hannover Medical School, Hannover, Germany ,grid.10423.340000 0000 9529 9877Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Detlef Bockenhauer
- grid.424537.30000 0004 5902 9895UCL Department of Renal Medicine and Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tuula Hölttä
- grid.15485.3d0000 0000 9950 5666Department of Pediatric Nephrology and Transplantation, The New Children’s Hospital, HUS Helsinki University Hospital, Helsinki, Finland
| | - Sandra Bérody
- grid.412134.10000 0004 0593 9113Department of Pediatric Nephrology, Reference center for Idiopathic Nephrotic Syndrome in Children and Adults, Imagine Institute, Paris University, Necker Hospital, APHP, Paris, France
| | - Hazel Webb
- grid.424537.30000 0004 5902 9895UCL Department of Renal Medicine and Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Beata S. Lipska-Zie˛tkiewicz
- grid.11451.300000 0001 0531 3426Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland ,grid.11451.300000 0001 0531 3426Centre for Rare Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Fatih Ozaltin
- grid.14442.370000 0001 2342 7339Department of Pediatric Nephrology and Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Elena Levtchenko
- grid.5596.f0000 0001 0668 7884Division of Pediatric Nephrology, Department of Pediatrics, University Hospitals Leuven; Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Marina Vivarelli
- grid.414125.70000 0001 0727 6809Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
73
|
Current Therapies in Nephrotic Syndrome: HDAC inhibitors, an Emerging Therapy for Kidney Diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
74
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
75
|
Murray SL, Fennelly NK, Doyle B, Lynch SA, Conlon PJ. Integration of genetic and histopathology data in interpretation of kidney disease. Nephrol Dial Transplant 2020; 35:1113-1132. [PMID: 32777081 DOI: 10.1093/ndt/gfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.
Collapse
Affiliation(s)
- Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- National Rare Disease Office Mater Hospital Dublin, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
76
|
Becherucci F, Landini S, Cirillo L, Mazzinghi B, Romagnani P. Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8363. [PMID: 33198123 PMCID: PMC7696007 DOI: 10.3390/ijerph17228363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a clinical picture defined by the lack of response to standard steroid treatment, frequently progressing toward end-stage kidney disease. The genetic basis of SRNS has been thoroughly explored since the end of the 1990s and especially with the advent of next-generation sequencing. Genetic forms represent about 30% of cases of SRNS. However, recent evidence supports the hypothesis that "phenocopies" could account for a non-negligible fraction of SRNS patients who are currently classified as non-genetic, paving the way for a more comprehensive understanding of the genetic background of the disease. The identification of phenocopies is mandatory in order to provide patients with appropriate clinical management and to inform therapy. Extended genetic testing including phenocopy genes, coupled with reverse phenotyping, is recommended for all young patients with SRNS to avoid unnecessary and potentially harmful diagnostic procedures and treatment, and for the reclassification of the disease. The aim of this work is to review the main steps of the evolution of genetic testing in SRNS, demonstrating how a paradigm shifting from "forward" to "reverse" genetics could significantly improve the identification of the molecular mechanisms of the disease, as well as the overall clinical management of affected patients.
Collapse
Affiliation(s)
- Francesca Becherucci
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
| | - Samuela Landini
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luigi Cirillo
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Benedetta Mazzinghi
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
| | - Paola Romagnani
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
77
|
Yamada H, Shirata N, Makino S, Miyake T, Trejo JAO, Yamamoto-Nonaka K, Kikyo M, Empitu MA, Kadariswantiningsih IN, Kimura M, Ichimura K, Yokoi H, Mukoyama M, Hotta A, Nishimori K, Yanagita M, Asanuma K. MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes. Kidney Int 2020; 99:382-395. [PMID: 33144214 DOI: 10.1016/j.kint.2020.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
Podocytes are highly specialized cells within the glomerulus that are essential for ultrafiltration. The slit diaphragm between the foot processes of podocytes functions as a final filtration barrier to prevent serum protein leakage into urine. The slit-diaphragm consists mainly of Nephrin and Neph1, and localization of these backbone proteins is essential to maintaining the integrity of the glomerular filtration barrier. However, the mechanisms that regulate the localization of these backbone proteins have remained elusive. Here, we focused on the role of membrane-associated guanylate kinase inverted 2 (MAGI-2) in order to investigate mechanisms that orchestrate localization of slit-diaphragm backbone proteins. MAGI-2 downregulation coincided with a reduced expression of slit-diaphragm backbone proteins in human kidneys glomerular disease such as focal segmental glomerulosclerosis or IgA nephropathy. Podocyte-specific deficiency of MAGI-2 in mice abrogated localization of Nephrin and Neph1 independently of other scaffold proteins. Although a deficiency of zonula occuldens-1 downregulated the endogenous Neph1 expression, MAGI-2 recovered Neph1 expression at the cellular edge in cultured podocytes. Additionally, overexpression of MAGI-2 preserved Nephrin localization to intercellular junctions. Co-immunoprecipitation and pull-down assays also revealed the importance of the PDZ domains of MAGI-2 for the interaction between MAGI-2 and slit diaphragm backbone proteins in podocytes. Thus, localization and stabilization of Nephrin and Neph1 in intercellular junctions is regulated mainly via the PDZ domains of MAGI-2 together with other slit-diaphragm scaffold proteins. Hence, these findings may elucidate a mechanism by which the backbone proteins are maintained.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naritoshi Shirata
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Shinichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Miyake
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kanae Yamamoto-Nonaka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Kikyo
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Maiko Kimura
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
78
|
Saeed B. Genetic screening in children with challenging nephrotic syndrome. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2020; 31:1189-1197. [PMID: 33565430 DOI: 10.4103/1319-2442.308327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genetic screening paradigms for the nephrotic syndrome (NS) in the developed world are well established; however, screening in developing countries has received only minor attention. We retrospectively analyzed a cohort of all children who underwent genetic testing for challenging NS from our registry in the 10-year interval from 2000 to 2010 and based on 58 patients aged 0-12 years with at least one of the following clinical diagnosis: Nonsyndromic steroid-resistant nephrotic syndrome (SRNS), familial NS, and congenital NS. Of these, 23 patients (~40%) had a history of familial disease occurrence. All cases were screened for NPHS2 and WT1 mutations by direct sequencing of all exons of the genes. In addition, all patients who were diagnosed during the first three months of life were screened for NPHS1 mutations too. A genetic disease cause was identified in 12 patients (20.7%); of these, five novel mutations, all in NPHS2 accounting for 42% of all mutations and 9% of the cohort. Nine patients were found to have NPHS2 mutations. Only one case with SRNS had a mutation in WT1. Of the five congenital NS, two cases were found to have NPHS1 mutations and one case with NPHS2 mutation. Therefore, mutations in NPHS2 were the most commonly identified and explained in 15.5% of the screened patients and WT1 mutation in 1.7% of cases, whereas NPHS1 mutations were found in 40% of congenital NS cases. A genetic disease cause was identified in 20.7% of the screened patients. Among 12 identified mutations, abnormalities in NPHS2 (n = 9) were most commonly identified.
Collapse
Affiliation(s)
- Bassam Saeed
- Farah Association for Child with Kidney Disease, Damascus, Syria
| |
Collapse
|
79
|
Mild electrical stimulation with heat shock attenuates renal pathology in adriamycin-induced nephrotic syndrome mouse model. Sci Rep 2020; 10:18719. [PMID: 33128027 PMCID: PMC7603347 DOI: 10.1038/s41598-020-75761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022] Open
Abstract
Nephrotic syndrome (NS) is a renal disorder that is characterized by massive proteinuria, hypoalbuminemia and edema. One of the main causes of NS is focal segmental glomerulosclerosis (FSGS), which has extremely poor prognosis. Although steroids and immunosuppressants are the first line of treatment, some FSGS cases are refractory, prompting the need to find new therapeutic strategies. We have previously demonstrated that an optimized combination treatment of mild electrical stimulation (MES) and heat shock (HS) has several biological benefits including the amelioration of the pathologies of the genetic renal disorder Alport syndrome. Here, we investigated the effect of MES + HS on adriamycin (ADR)-induced NS mouse model. MES + HS suppressed proteinuria and glomerulosclerosis induced by ADR. The expressions of pro-inflammatory cytokines and pro-fibrotic genes were also significantly downregulated by MES + HS. MES + HS decreased the expression level of cleaved caspase-3 and the number of TUNEL-positive cells, indicating that MES + HS exerted anti-apoptotic effect. Moreover, MES + HS activated the Akt signaling and induced the phosphorylation and inhibition of the apoptotic molecule BAD. In in vitro experiment, the Akt inhibitor abolished the MES + HS-induced Akt-BAD signaling and anti-apoptotic effect in ADR-treated cells. Collectively, our study suggested that MES + HS modulates ADR-induced pathologies and has renoprotective effect against ADR-induced NS via regulation of Akt-BAD axis.
Collapse
|
80
|
Lipska-Ziętkiewicz BS, Ozaltin F, Hölttä T, Bockenhauer D, Bérody S, Levtchenko E, Vivarelli M, Webb H, Haffner D, Schaefer F, Boyer O. Genetic aspects of congenital nephrotic syndrome: a consensus statement from the ERKNet-ESPN inherited glomerulopathy working group. Eur J Hum Genet 2020; 28:1368-1378. [PMID: 32467597 PMCID: PMC7608398 DOI: 10.1038/s41431-020-0642-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/23/2023] Open
Abstract
Congenital nephrotic syndrome (CNS) is a heterogeneous group of disorders presenting with massive proteinuria within the first 3 months of life almost inevitably leading to end-stage kidney disease. The Work Group for the European Reference Network for Kidney Diseases (ERKNet) and the European Society for Pediatric Nephrology (ESPN) has developed consensus statement on genetic aspects of CNS diagnosis and management. The presented expert opinion recommends genetic diagnostics as the key diagnostic test to be ordered already during the initial evaluation of the patient, discusses which phenotyping workup should be performed and presents known genotype-phenotype correlations.
Collapse
Affiliation(s)
- Beata Stefania Lipska-Ziętkiewicz
- Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.
- Centre for Rare Diseases, Medical University of Gdańsk, Gdańsk, Poland.
| | - Fatih Ozaltin
- Department of Pediatric Nephrology and Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Tuula Hölttä
- Department of Pediatric Nephrology and Transplantation, The New Children's Hospital, HUS Helsinki University Hospital, Helsinki, Finland
| | - Detlef Bockenhauer
- UCL Department of Renal Medicine and Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sandra Bérody
- Department of Pediatric Nephrology, Reference Center for Hereditary Kidney Diseases (MARHEA), Necker Hospital, APHP, 75015, Paris, France
| | - Elena Levtchenko
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospitals Leuven; Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital and Research Center, Rome, Italy
| | - Hazel Webb
- UCL Department of Renal Medicine and Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany.
| | - Olivia Boyer
- Department of Pediatric Nephrology, Reference Center for Hereditary Kidney Diseases (MARHEA), Necker Hospital, APHP, 75015, Paris, France
- Laboratory of Hereditary Kidney Diseases, Imagine Institute, INSERM, Paris Descartes University, U1163, Paris, France
| |
Collapse
|
81
|
Braunisch MC, Riedhammer KM, Herr PM, Draut S, Günthner R, Wagner M, Weidenbusch M, Lungu A, Alhaddad B, Renders L, Strom TM, Heemann U, Meitinger T, Schmaderer C, Hoefele J. Identification of disease-causing variants by comprehensive genetic testing with exome sequencing in adults with suspicion of hereditary FSGS. Eur J Hum Genet 2020; 29:262-270. [PMID: 32887937 PMCID: PMC7868362 DOI: 10.1038/s41431-020-00719-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
In about 30% of infantile, juvenile, or adolescent patients with steroid-resistant nephrotic syndrome (SRNS), a monogenic cause can be identified. The histological finding in SRNS is often focal segmental glomerulosclerosis (FSGS). Genetic data on adult patients are scarce with low diagnostic yields. Exome sequencing (ES) was performed in patients with adult disease onset and a high likelihood for hereditary FSGS. A high likelihood was defined if at least one of the following criteria was present: absence of a secondary cause, ≤25 years of age at initial manifestation, kidney biopsy with suspicion of a hereditary cause, extrarenal manifestations, and/or positive familial history/reported consanguinity. Patients were excluded if age at disease onset was <18 years. In 7/24 index patients with adult disease onset, a disease-causing variant could be identified by ES leading to a diagnostic yield of 29%. Eight different variants were identified in six known genes associated with monogenic kidney diseases. Six of these variants had been described before as disease-causing. In patients with a disease-causing variant, the median age at disease onset and end-stage renal disease was 26 and 38 years, respectively. The overall median time to a definite genetic diagnosis was 9 years. In 29% of patients with adult disease onset and suspected hereditary FSGS, a monogenic cause could be identified. The long delay up to the definite genetic diagnosis highlights the importance of obtaining an early genetic diagnosis to allow for personalized treatment options including weaning of immunosuppressive treatment, avoidance of repeated renal biopsy, and provision of accurate genetic counseling.
Collapse
Affiliation(s)
- Matthias Christoph Braunisch
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Korbinian Maria Riedhammer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pierre-Maurice Herr
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sarah Draut
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marc Weidenbusch
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
82
|
Kang E, Kim Y, Kim YC, Kim E, Lee N, Kim Y, Lee S, Han S, Choe M, Hwang JH, Lee S, Park JI, Park JT, Lim BJ, Lee JP, An JN, Ryu DR, Kim JH, Kang HG, Lee HS, Moon KC, Joo KW, Oh KH, Han SS, Lee H, Kim DK. Biobanking for glomerular diseases: a study design and protocol for KOrea Renal biobank NEtwoRk System TOward NExt-generation analysis (KORNERSTONE). BMC Nephrol 2020; 21:367. [PMID: 32842999 PMCID: PMC7448429 DOI: 10.1186/s12882-020-02016-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/12/2020] [Indexed: 11/24/2022] Open
Abstract
Backgrounds Glomerular diseases, a set of debilitating and complex disease entities, are related to mortality and morbidity. To gain insight into pathophysiology and novel treatment targets of glomerular disease, various types of biospecimens linked to deep clinical phenotyping including clinical information, digital pathology, and well-defined outcomes are required. We provide the rationale and design of the KOrea Renal biobank NEtwoRk System TOward Next-generation analysis (KORNERSTONE). Methods The KORNERSTONE, which has been initiated by Korea Centres for Disease Control and Prevention, is designed as a multi-centre, prospective cohort study and biobank for glomerular diseases. Clinical data, questionnaires will be collected at the time of kidney biopsy and subsequently every 1 year after kidney biopsy. All of the clinical data will be extracted from the electrical health record and automatically uploaded to the web-based database. High-quality digital pathologies are obtained and connected in the database. Various types of biospecimens are collected at baseline and during follow-up: serum, urine, buffy coat, stool, glomerular complementary DNA (cDNA), tubulointerstitial cDNA. All data and biospecimens are processed and stored in a standardised manner. The primary outcomes are mortality and end-stage renal disease. The secondary outcomes will be deterioration renal function, remission of proteinuria, cardiovascular events and quality of life. Discussion Ethical approval has been obtained from the institutional review board of each participating centre and ethics oversight committee. The KORNERSTONE is designed to deliver pioneer insights into glomerular diseases. The study design allows comprehensive, integrated and high-quality data collection on baseline laboratory findings, clinical outcomes including administrative data and digital pathologic images. This may provide various biospecimens and information to many researchers, establish the rationale for future more individualised treatment strategies for glomerular diseases. Trial registration NCT03929887.
Collapse
Affiliation(s)
- Eunjeong Kang
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Eunyoung Kim
- Seoul National University Hospital Clinical Trial Centre, Seoul, South Korea
| | - Nankyoung Lee
- Seoul National University Hospital Human Biobank, Seoul, South Korea
| | - Yeonghui Kim
- Division of Nephrology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, South Korea
| | - Soojin Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Misun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Sunhwa Lee
- Division of Nephrology, Department of Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, South Korea
| | - Ji In Park
- Division of Nephrology, Department of Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Nam An
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jung-Hyun Kim
- Department of Home Economics Education, Major of Food and Nutrition, Pai Chai University, Daejeon, South Korea
| | - Hee Gyung Kang
- Department of Paediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Soon Lee
- Department of Pathology, Hankook Renal Pathology Lab, Seoul, South Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| | | |
Collapse
|
83
|
Hamasaki Y, Hamada R, Muramatsu M, Matsumoto S, Aya K, Ishikura K, Kaneko T, Iijima K. A cross-sectional nationwide survey of congenital and infantile nephrotic syndrome in Japan. BMC Nephrol 2020; 21:363. [PMID: 32838745 PMCID: PMC7446144 DOI: 10.1186/s12882-020-02010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS) and infantile nephrotic syndrome (INS) cause substantial morbidity and mortality. In Japan, there is a lack of knowledge regarding the characteristics of CNS and INS. This study aimed to clarify the characteristics of CNS and INS in Japan. METHODS This cross-sectional nationwide survey obtained data from 44 institutions in Japan managing 92 patients with CNS or INS, by means of two survey questionnaires sent by postal mail. Patients aged < 16 years by 1 April 2015, with a diagnosis of CNS or INS, were included in this study. The primary outcome was end-stage kidney disease. RESULTS A total of 83 patients with CNS or INS were analyzed. The most frequent disease type was non-Finnish (60.2%); 33 patients (39.8%) had Finnish type. Among those with non-Finnish-type disease, 26 had no syndrome and 24 had a syndrome, of which the most frequent was Denys-Drash syndrome (70.8%). Patients with non-Finnish-type disease with syndrome showed the earliest progression to end-stage kidney disease compared with the other two groups, whereas patients with non-Finnish-type disease without syndrome progressed more slowly compared with the other two groups. In the Finnish-type group, the disease was diagnosed the earliest; a large placenta was reported more frequently; genetic testing was more frequently performed (93.8%); mental retardation was the most frequent extra-renal symptom (21.2%); and thrombosis and infection were more frequent compared with the other groups. Patients with non-Finnish-type disease with syndrome had a higher frequency of positive extra-renal symptoms (79.2%), the most common being urogenital symptoms (54.2%). Treatment with steroids and immunosuppressants was more frequent among patients with non-Finnish-type disease without syndrome. Two patients with non-Finnish-type disease without syndrome achieved complete remission. In all groups, unilateral nephrectomy was performed more often than bilateral nephrectomy and peritoneal dialysis was the most common renal replacement therapy. CONCLUSIONS The present epidemiological survey sheds light on the characteristics of children with CNS and INS in Japan. A high proportion of patients underwent genetic examination, and patient management was in accord with current treatment recommendations and practices. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yuko Hamasaki
- Department of Nephrology, Toho University Faculty of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541 Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561 Japan
| | - Masaki Muramatsu
- Department of Nephrology, Toho University Faculty of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541 Japan
| | - Shinsuke Matsumoto
- Department of Pediatrics, Matsudo City General Hospital, 993-1, Sendabori, Matsudo, Chiba, 270-2296 Japan
| | - Kunihiko Aya
- Department of Pediatrics, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602 Japan
| | - Kenji Ishikura
- Department of Pediatrics, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa 252-0375 Japan
| | - Tetsuji Kaneko
- Division of Clinical Research Support Center, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561 Japan
- Teikyo Academic Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8606 Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-Ku, Kobe, Hyogo 650-0017 Japan
| |
Collapse
|
84
|
Jacobs-Cachá C, Vergara A, García-Carro C, Agraz I, Toapanta-Gaibor N, Ariceta G, Moreso F, Serón D, López-Hellín J, Soler MJ. Challenges in primary focal segmental glomerulosclerosis diagnosis: from the diagnostic algorithm to novel biomarkers. Clin Kidney J 2020; 14:482-491. [PMID: 33623672 PMCID: PMC7886539 DOI: 10.1093/ckj/sfaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Primary or idiopathic focal segmental glomerulosclerosis (FSGS) is a kidney entity that involves the podocytes, leading to heavy proteinuria and in many cases progresses to end-stage renal disease. Idiopathic FSGS has a bad prognosis, as it involves young individuals who, in a considerably high proportion (∼15%), are resistant to corticosteroids and other immunosuppressive treatments as well. Moreover, the disease recurs in 30–50% of patients after kidney transplantation, leading to graft function impairment. It is suspected that this relapsing disease is caused by a circulating factor(s) that would permeabilize the glomerular filtration barrier. However, the exact pathologic mechanism is an unsettled issue. Besides its poor outcome, a major concern of primary FSGS is the complexity to confirm the diagnosis, as it can be confused with other variants or secondary forms of FSGS and also with other glomerular diseases, such as minimal change disease. New efforts to optimize the diagnostic approach are arising to improve knowledge in well-defined primary FSGS cohorts of patients. Follow-up of properly classified primary FSGS patients will allow risk stratification for predicting the response to different treatments. In this review we will focus on the diagnostic algorithm used in idiopathic FSGS both in native kidneys and in disease recurrence after kidney transplantation. We will emphasize those potential confusing factors as well as their detection and prevention. In addition, we will also provide an overview of ongoing studies that recruit large cohorts of glomerulopathy patients (Nephrotic Syndrome Study Network and Cure Glomerulonephropathy, among others) and the experimental studies performed to find novel reliable biomarkers to detect primary FSGS.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Ander Vergara
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Irene Agraz
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Nestor Toapanta-Gaibor
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Gema Ariceta
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Paediatric Nephrology, Hospital Universitari Vall d'Hebron. Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Daniel Serón
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Joan López-Hellín
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Biochemistry, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Biochemistry Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| |
Collapse
|
85
|
Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, Hui NK, Boyer O, Saleem MA, Feltran L, Müller-Deile J, Becker JU, Cano F, Xu H, Lim YN, Smoyer W, Anochie I, Nakanishi K, Hodson E, Haffner D. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2020; 35:1529-1561. [PMID: 32382828 PMCID: PMC7316686 DOI: 10.1007/s00467-020-04519-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic nephrotic syndrome newly affects 1-3 per 100,000 children per year. Approximately 85% of cases show complete remission of proteinuria following glucocorticoid treatment. Patients who do not achieve complete remission within 4-6 weeks of glucocorticoid treatment have steroid-resistant nephrotic syndrome (SRNS). In 10-30% of steroid-resistant patients, mutations in podocyte-associated genes can be detected, whereas an undefined circulating factor of immune origin is assumed in the remaining ones. Diagnosis and management of SRNS is a great challenge due to its heterogeneous etiology, frequent lack of remission by further immunosuppressive treatment, and severe complications including the development of end-stage kidney disease and recurrence after renal transplantation. A team of experts including pediatric nephrologists and renal geneticists from the International Pediatric Nephrology Association (IPNA), a renal pathologist, and an adult nephrologist have now developed comprehensive clinical practice recommendations on the diagnosis and management of SRNS in children. The team performed a systematic literature review on 9 clinically relevant PICO (Patient or Population covered, Intervention, Comparator, Outcome) questions, formulated recommendations and formally graded them at a consensus meeting, with input from patient representatives and a dietician acting as external advisors and a voting panel of pediatric nephrologists. Research recommendations are also given.
Collapse
Affiliation(s)
- Agnes Trautmann
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Marina Vivarelli
- Department of Pediatric Subspecialties, Division of Nephrology and Dialysis, Bambino Gesù Pediatric Hospital and Research Center, Rome, Italy
| | - Susan Samuel
- Department of Pediatrics, Section of Pediatric Nephrology, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Debbie Gipson
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Aditi Sinha
- Department of Pediatrics, Division of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Ng Kar Hui
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Diseases, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
- Department of Pediatric Nephrology, Reference Center for Idiopathic Nephrotic Syndrome in Children and Adults, Necker Hospital, APHP, 75015, Paris, France
| | - Moin A Saleem
- Department of Pediatric Nephrology, Bristol Royal Hospital for Children, University of Bristol, Bristol, UK
| | - Luciana Feltran
- Hospital Samaritano and HRim/UNIFESP, Federal University of São Paulo, São Paulo, Brazil
| | | | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Francisco Cano
- Department of Nephrology, Luis Calvo Mackenna Children's Hospital, University of Chile, Santiago, Chile
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Yam Ngo Lim
- Department of Pediatrics, Prince Court Medical Centre, Kuala Lumpur, Malaysia
| | - William Smoyer
- The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ifeoma Anochie
- Department of Paediatrics, University of Port Harcourt Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Elisabeth Hodson
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead and the Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany.
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Paediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Center for Rare Diseases, Hannover Medical School Children's Hospital, Hannover, Germany.
| |
Collapse
|
86
|
Mason AE, Sen ES, Bierzynska A, Colby E, Afzal M, Dorval G, Koziell AB, Williams M, Boyer O, Welsh GI, Saleem MA. Response to First Course of Intensified Immunosuppression in Genetically Stratified Steroid Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2020; 15:983-994. [PMID: 32317330 PMCID: PMC7341765 DOI: 10.2215/cjn.13371019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Intensified immunosuppression in steroid-resistant nephrotic syndrome is broadly applied, with disparate outcomes. This review of patients from the United Kingdom National Study of Nephrotic Syndrome cohort aimed to improve disease stratification by determining, in comprehensively genetically screened patients with steroid-resistant nephrotic syndrome, if there is an association between response to initial intensified immunosuppression and disease progression and/or post-transplant recurrence. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Pediatric patients with steroid-resistant nephrotic syndrome were recruited via the UK National Registry of Rare Kidney Diseases. All patients were whole-genome sequenced, whole-exome sequenced, or steroid-resistant nephrotic syndrome gene-panel sequenced. Complete response or partial response within 6 months of starting intensified immunosuppression was ascertained using laboratory data. Response to intensified immunosuppression and outcomes were analyzed according to genetic testing results, pattern of steroid resistance, and first biopsy findings. RESULTS Of 271 patients, 178 (92 males, median onset age 4.7 years) received intensified immunosuppression with response available. A total of 4% of patients with monogenic disease showed complete response, compared with 25% of genetic-testing-negative patients (P=0.02). None of the former recurred post-transplantation. In genetic-testing-negative patients, 97% with complete response to first intensified immunosuppression did not progress, whereas 44% of nonresponders developed kidney failure with 73% recurrence post-transplant. Secondary steroid resistance had a higher complete response rate than primary/presumed resistance (43% versus 23%; P=0.001). The highest complete response rate in secondary steroid resistance was to rituximab (64%). Biopsy results showed no correlation with intensified immunosuppression response or outcome. CONCLUSIONS Patients with monogenic steroid-resistant nephrotic syndrome had a poor therapeutic response and no post-transplant recurrence. In genetic-testing-negative patients, there was an association between response to first intensified immunosuppression and long-term outcome. Patients with complete response rarely progressed to kidney failure, whereas nonresponders had poor kidney survival and a high post-transplant recurrence rate. Patients with secondary steroid resistance were more likely to respond, particularly to rituximab.
Collapse
Affiliation(s)
- Anna E. Mason
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ethan S. Sen
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Agnieszka Bierzynska
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Colby
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Maryam Afzal
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Guillaume Dorval
- Department of Pediatric Nephrology, Reference Center for Hereditary Kidney Diseases, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Ania B. Koziell
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Maggie Williams
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Olivia Boyer
- Department of Pediatric Nephrology, Reference Center for Hereditary Kidney Diseases, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Gavin I. Welsh
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Moin A. Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - on behalf of the UK RaDaR/NephroS Study
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Pediatric Nephrology, Reference Center for Hereditary Kidney Diseases, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
87
|
Park E, Lee C, Kim NKD, Ahn YH, Park YS, Lee JH, Kim SH, Cho MH, Cho H, Yoo KH, Shin JI, Kang HG, Ha IS, Park WY, Cheong HI. Genetic Study in Korean Pediatric Patients with Steroid-Resistant Nephrotic Syndrome or Focal Segmental Glomerulosclerosis. J Clin Med 2020; 9:jcm9062013. [PMID: 32604935 PMCID: PMC7355646 DOI: 10.3390/jcm9062013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is one of the major causes of end-stage renal disease (ESRD) in childhood and is mostly associated with focal segmental glomerulosclerosis (FSGS). More than 50 monogenic causes of SRNS or FSGS have been identified. Recently, the mutation detection rate in pediatric patients with SRNS has been reported to be approximately 30%. In this study, genotype-phenotype correlations in a cohort of 291 Korean pediatric patients with SRNS/FSGS were analyzed. The overall mutation detection rate was 43.6% (127 of 291 patients). WT1 was the most common causative gene (23.6%), followed by COQ6 (8.7%), NPHS1 (8.7%), NUP107 (7.1%), and COQ8B (6.3%). Mutations in COQ6, NUP107, and COQ8B were more frequently detected, and mutations in NPHS2 were less commonly detected in this cohort than in study cohorts from Western countries. The mutation detection rate was higher in patients with congenital onset, those who presented with proteinuria or chronic kidney disease/ESRD, and those who did not receive steroid treatment. Genetic diagnosis in patients with SRNS provides not only definitive diagnosis but also valuable information for decisions on treatment policy and prediction of prognosis. Therefore, further genotype-phenotype correlation studies are required.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children’s Hospital, Yangsan 50612, Korea;
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu 41944, Korea;
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Seoul 02841, Korea;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul 03722, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Correspondence: ; Tel.: +82-2-2072-2810
| |
Collapse
|
88
|
Demir E, Caliskan Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatr Nephrol 2020; 35:927-936. [PMID: 31254113 DOI: 10.1007/s00467-019-04282-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS), an important cause of end-stage kidney disease (ESKD), covers a spectrum of clinicopathological syndromes sharing a common glomerular lesion, based on an injury of podocytes caused by diverse insults to glomeruli. Although it is well expressed in many reports that the term FSGS is not useful and applicable to a single disease, particularly in genetic studies, FSGS continues to be used as a single clinical diagnosis. Distinguishing genetic forms of FSGS is important for the treatment and overall prognosis because secondary forms of FSGS, produced by rare pathogenic variations in podocyte genes, are not good candidates for immunosuppressive treatment. Over the past decade, several next generation sequencing (NGS) methods have been used to investigate the patients with steroid resistance nephrotic syndrome (SRNS) or FSGS. Pathogenic variants in COL4A3, COL4A4, or COL4A5 genes have been frequently identified in patients with histologic diagnosis of FSGS. The contribution of these mostly heterozygous genetic variations in FSGS pathogenesis and the clinical course of patients with these variations have not been well characterized. This review emphasizes the importance of appropriate approach in selection and diagnosis of cases and interpretation of the genetic data in these studies and suggests a detailed review of existing clinical variant databases using newly available population genetic data.
Collapse
Affiliation(s)
- Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Yasar Caliskan
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
89
|
Dufek S, Holtta T, Trautmann A, Ylinen E, Alpay H, Ariceta G, Aufricht C, Bacchetta J, Bakkaloglu SA, Bayazit A, Cicek RY, Dursun I, Duzova A, Ekim M, Iancu D, Jankauskiene A, Klaus G, Paglialonga F, Pasini A, Printza N, Said Conti V, do Sameiro Faria M, Schmitt CP, Stefanidis CJ, Verrina E, Vidal E, Vondrak K, Webb H, Zampetoglou A, Bockenhauer D, Edefonti A, Shroff R. Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol Dial Transplant 2020; 34:1369-1377. [PMID: 30215773 DOI: 10.1093/ndt/gfy165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Management of children with congenital nephrotic syndrome (CNS) is challenging. Bilateral nephrectomies followed by dialysis and transplantation are practiced in most centres, but conservative treatment may also be effective. METHODS We conducted a 6-year review across members of the European Society for Paediatric Nephrology Dialysis Working Group to compare management strategies and their outcomes in children with CNS. RESULTS Eighty children (50% male) across 17 tertiary nephrology units in Europe were included (mutations in NPHS1, n = 55; NPHS2, n = 1; WT1, n = 9; others, n = 15). Excluding patients with mutations in WT1, antiproteinuric treatment was given in 42 (59%) with an increase in S-albumin in 70% by median 6 (interquartile range: 3-8) g/L (P < 0.001). Following unilateral nephrectomy, S-albumin increased by 4 (1-8) g/L (P = 0.03) with a reduction in albumin infusion dose by 5 (2-9) g/kg/week (P = 0.02). Median age at bilateral nephrectomies (n = 29) was 9 (7-16) months. Outcomes were compared between two groups of NPHS1 patients: those who underwent bilateral nephrectomies (n = 25) versus those on conservative management (n = 17). The number of septic or thrombotic episodes and growth were comparable between the groups. The response to antiproteinuric treatment, as well as renal and patient survival, was independent of NPHS1 mutation type. At final follow-up (median age 34 months) 20 (80%) children in the nephrectomy group were transplanted and 1 died. In the conservative group, 9 (53%) remained without dialysis, 4 (24%; P < 0.001) were transplanted and 2 died. CONCLUSION An individualized, stepwise approach with prolonged conservative management may be a reasonable alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations. Further prospective studies are needed to define indications for unilateral nephrectomy.
Collapse
Affiliation(s)
- Stephanie Dufek
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tuula Holtta
- Department of Pediatric Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Agnes Trautmann
- Center for Pediatric & Adolescent Medicine, Heidelberg, Germany
| | - Elisa Ylinen
- Department of Pediatric Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harika Alpay
- School of Medicine, Marmara University, Istanbul, Turkey
| | - Gema Ariceta
- Hospital MaternoInfantil de la Vall d'Hebron, Barcelona, Spain
| | | | | | - Sevcan A Bakkaloglu
- Department of Pediatric Nephrology, Gazi University Hospital, Ankara, Turkey
| | - Aysun Bayazit
- Department of Pediatric Nephrology, Cukurova University, Adana, Turkey
| | | | - Ismail Dursun
- Department of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Turkey
| | | | - Daniela Iancu
- Center for Nephrology, University College London, London, UK
| | | | | | - Fabio Paglialonga
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Pasini
- Azienda Ospedaliero-Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| | - Nikoleta Printza
- Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | | - Enrico Vidal
- Department of Pediatrics, University Hospital of Padova, Padova, Italy
| | - Karel Vondrak
- Pediatric Nephrology, University Hospital Motol, Prague, Czech Republic
| | - Hazel Webb
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Detlef Bockenhauer
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
90
|
Zhao J, Liu Z. Treatment of nephrotic syndrome: going beyond immunosuppressive therapy. Pediatr Nephrol 2020; 35:569-579. [PMID: 30904930 DOI: 10.1007/s00467-019-04225-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/15/2023]
Abstract
It is indisputable that immunosuppressive therapy and pathological diagnosis of renal biopsy have greatly improved the prognosis of childhood nephrotic syndrome. Unfortunately, there is no "one-size-fits-all" approach for precise patient stratification and treatment when facing the huge challenges posed by steroid-resistant nephrotic syndrome (SRNS). But genomic medicine has brought a glimmer of light, and the cognition of SRNS has entered a new stage. Based on this, identification of single genetic variants of SRNS has recognized the key role of podocyte injury in its pathogenesis. Targeted treatment of podocyte injury is paramount, and immunosuppressant with podocyte-targeted therapy seems to be more suitable as the first choice for SRNS, that is, we need to pay attention to their additional non-immunosuppressive effects. In the same way, other effect factors of nephrotic syndrome and the related causes of immunosuppressive therapy resistance require us to select reasonable and targeted non-immunosuppressive therapies, instead of only blindly using steroids and immunosuppressants, which may be ineffective and bring significant side effects. This article provides a summary of the clinical value of identification of genetic variants in podocytes and non-immunosuppressive therapy for nephrotic syndrome in children.
Collapse
Affiliation(s)
- Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
91
|
Cheong HI. Genetic tests in children with steroid-resistant nephrotic syndrome. Kidney Res Clin Pract 2020; 39:7-16. [PMID: 32155690 PMCID: PMC7105627 DOI: 10.23876/j.krcp.20.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 11/05/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a common cause of chronic kidney disease in children, and a considerable number of patients progress to end-stage renal disease. SRNS is a highly heterogeneous disorder, both clinically and genetically, and more than 50 monogenic causes of SRNS, including isolated and syndromic forms, have been identified. Recent large-cohort studies indicate that at least 30% of childhood-onset SRNS cases are genetic. The benefits of definitive molecular diagnosis by genetic testing include the avoidance of unnecessary and potentially harmful diagnostic procedures (e.g., kidney biopsy) and treatment (e.g., steroid and immunosuppressants), detection of rare and potentially treatable mutations (e.g., coenzyme Q10 biosynthesis pathway defect), prediction of prognosis (e.g., posttransplant recurrence), and providing precise genetic counseling. Furthermore, the identification of novel disease-causing genes could provide new insights into the pathogenic mechanisms of SRNS. Therefore, whenever accessible and affordable, genetic testing is recommended for all pediatric patients with SRNS, and should certainly be performed in patients with a higher probability of genetic predisposition based on genotype-phenotype correlation data. The genetic testing approach should be determined for each patient, and clinicians should, therefore, be aware of the advantages and disadvantages of methods currently available, which include Sanger sequencing, gene panel testing, and whole-exome or whole-genome sequencing. Importantly, the need for precise and thorough phenotyping by clinicians, even in the era of genomics, cannot be overemphasized. This review provides an update on recent advances in genetic studies, a suggested approach for the genetic testing of pediatric patients with SRNS.
Collapse
Affiliation(s)
- Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.,Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
92
|
Minamikawa S, Miwa S, Inagaki T, Nishiyama K, Kaito H, Ninchoji T, Yamamura T, Nagano C, Sakakibara N, Ishimori S, Hara S, Yoshikawa N, Hirano D, Harada R, Hamada R, Matsunoshita N, Nagata M, Shima Y, Nakanishi K, Nagase H, Takeda H, Morisada N, Iijima K, Nozu K. Molecular mechanisms determining severity in patients with Pierson syndrome. J Hum Genet 2020; 65:355-362. [PMID: 31959872 DOI: 10.1038/s10038-019-0715-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023]
Abstract
Null variants in LAMB2 cause Pierson syndrome (PS), a severe congenital nephrotic syndrome with ocular and neurological defects. Patients' kidney specimens show complete negativity for laminin β2 expression on glomerular basement membrane (GBM). In contrast, missense variants outside the laminin N-terminal (LN) domain in LAMB2 lead to milder phenotypes. However, we experienced cases not showing these typical genotype-phenotype correlations. In this paper, we report six PS patients: four with mild phenotypes and two with severe phenotypes. We conducted molecular studies including protein expression and transcript analyses. The results revealed that three of the four cases with milder phenotypes had missense variants located outside the LN domain and one of the two severe PS cases had a homozygous missense variant located in the LN domain; these variant positions could explain their phenotypes. However, one mild case possessed a splicing site variant (c.3797 + 5G>A) that should be associated with a severe phenotype. Upon transcript analysis, this variant generated some differently sized transcripts, including completely normal transcript, which could have conferred the milder phenotype. In one severe case, we detected the single-nucleotide substitution of c.4616G>A located outside the LN domain, which should be associated with a milder phenotype. However, we detected aberrant splicing caused by the creation of a novel splice site by this single-base substitution. These are novel mechanisms leading to an atypical genotype-phenotype correlation. In addition, all four cases with milder phenotypes showed laminin β2 expression on GBM. We identified novel mechanisms leading to atypical genotype-phenotype correlation in PS.
Collapse
Affiliation(s)
- Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Saori Miwa
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuji Inagaki
- Department of Pediatric Nephrology, Miyagi Children's Hospital, Sendai, Japan
| | - Kei Nishiyama
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | | | - Daishi Hirano
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Ryoko Harada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | | | - Michio Nagata
- Department of Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Takeda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
93
|
Comprehensive genetic diagnosis of Japanese patients with severe proteinuria. Sci Rep 2020; 10:270. [PMID: 31937884 PMCID: PMC6959278 DOI: 10.1038/s41598-019-57149-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Numerous disease-causing gene mutations have been identified in proteinuric diseases, such as nephrotic syndrome and glomerulosclerosis. This report describes the results of comprehensive genetic diagnosis of Japanese patients with severe proteinuria. In addition, the report describes the clinical characteristics of patients with monogenic disease-causing mutations. We conducted comprehensive gene screening of patients who had either congenital nephrotic syndrome, infantile nephrotic syndrome, steroid-resistant nephrotic syndrome, or focal segmental glomerular sclerosis. Using targeted next-generation sequencing, 60 podocyte-related genes were screened in 230 unrelated patients with proteinuria. A retrospective review of clinical data was conducted for these patients. We detected monogenic disease-causing mutations in 30% (69 of 230) of patients among 19 of the screened genes. Common genes with disease-causing mutations were WT1 (25%), NPHS1 (12%), INF2 (12%), TRPC6 (10%), and LAMB2 (9%). With various immunosuppressive or renoprotective therapies, remission of proteinuria in patients with unknown causative mutations was observed in 26% of patients, whereas only 5% of patients with monogenic disease-causing mutations exhibited complete remission. We assessed the genetic backgrounds of Japanese patients with severe proteinuria. The proportion of patients with gene defects was similar to that of other reports, but the disease-causing gene mutation frequency was considerably different.
Collapse
|
94
|
Schaefer F. "It's In Your Genes": Exome Sequencing Enables Precision Diagnostics in Proteinuric Kidney Diseases. Clin J Am Soc Nephrol 2020; 15:10-12. [PMID: 31846934 PMCID: PMC6946064 DOI: 10.2215/cjn.14241119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
95
|
Rovin BH, Caster DJ, Cattran DC, Gibson KL, Hogan JJ, Moeller MJ, Roccatello D, Cheung M, Wheeler DC, Winkelmayer WC, Floege J, Alpers CE, Ayoub I, Bagga A, Barbour SJ, Barratt J, Chan DT, Chang A, Choo JCJ, Cook HT, Coppo R, Fervenza FC, Fogo AB, Fox JG, Glassock RJ, Harris D, Hodson EM, Hogan JJ, Hoxha E, Iseki K, Jennette JC, Jha V, Johnson DW, Kaname S, Katafuchi R, Kitching AR, Lafayette RA, Li PK, Liew A, Lv J, Malvar A, Maruyama S, Mejía-Vilet JM, Mok CC, Nachman PH, Nester CM, Noiri E, O'Shaughnessy MM, Özen S, Parikh SM, Park HC, Peh CA, Pendergraft WF, Pickering MC, Pillebout E, Radhakrishnan J, Rathi M, Ronco P, Smoyer WE, Tang SC, Tesař V, Thurman JM, Trimarchi H, Vivarelli M, Walters GD, Wang AYM, Wenderfer SE, Wetzels JF. Management and treatment of glomerular diseases (part 2): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2020; 95:281-295. [PMID: 30665569 DOI: 10.1016/j.kint.2018.11.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
In November 2017, the Kidney Disease: Improving Global Outcomes (KDIGO) initiative brought a diverse panel of experts in glomerular diseases together to discuss the 2012 KDIGO glomerulonephritis guideline in the context of new developments and insights that had occurred over the years since its publication. During this KDIGO Controversies Conference on Glomerular Diseases, the group examined data on disease pathogenesis, biomarkers, and treatments to identify areas of consensus and areas of controversy. This report summarizes the discussions on primary podocytopathies, lupus nephritis, anti-neutrophil cytoplasmic antibody-associated nephritis, complement-mediated kidney diseases, and monoclonal gammopathies of renal significance.
Collapse
Affiliation(s)
- Brad H Rovin
- Division of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA.
| | - Dawn J Caster
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Daniel C Cattran
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Keisha L Gibson
- University of North Carolina Kidney Center at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan J Hogan
- Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcus J Moeller
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule, University of Aachen, Aachen, Germany
| | - Dario Roccatello
- CMID (Center of Research of Immunopathology and Rare Diseases), and Division of Nephrology and Dialysis (ERK-Net member), University of Turin, Italy
| | | | | | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule, University of Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kamei K, Ishikura K, Sako M, Ito S, Nozu K, Iijima K. Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr Nephrol 2020; 35:17-24. [PMID: 30564879 DOI: 10.1007/s00467-018-4166-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Patients with steroid-resistant nephrotic syndrome (SRNS) who develop resistance to immunosuppressive agents, defined as refractory SRNS, have poor renal outcomes. Although the chimeric anti-CD20 monoclonal antibody rituximab has shown efficacy for frequently relapsing nephrotic syndrome and steroid-dependent nephrotic syndrome, its efficacy for refractory SRNS remains uncertain due to limited data. According to previous case reports, 50.4% of patients with refractory SRNS showed clinical improvements after rituximab treatment. Remission rates in patients with initial steroid resistance and late steroid resistance were 43.9 and 57.7%, respectively, and 41.5 and 63.6% in patients with focal segmental glomerulosclerosis and minor glomerular abnormalities, respectively. However, various factors (race, disease severity, number of rituximab doses, concomitant treatments, and observation period) differed among these observational studies and their consensus may also have been affected by potential publication bias. Rituximab monotherapy may have some degree of efficacy and lead to satisfactory outcomes in a subset of patients with refractory SRNS. However, administration of concomitant treatments during rituximab-mediated B cell depletion, such as methylprednisolone pulse therapy, daily oral prednisolone therapy, and immunosuppressive agents, may lead to better outcomes in these patients. Large-scale, multi-center prospective studies are needed to evaluate the efficacy and safety of such regimens.
Collapse
Affiliation(s)
- Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenji Ishikura
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Mayumi Sako
- Division for Clinical Trials, Department of Clinical Research, Center for Clinical Research and Development, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
97
|
Jacob A, Habeeb SM, Herlitz L, Simkova E, Shekhy JF, Taylor A, Abuhammour W, Abou Tayoun A, Bitzan M. Case Report: CMV-Associated Congenital Nephrotic Syndrome. Front Pediatr 2020; 8:580178. [PMID: 33330277 PMCID: PMC7728737 DOI: 10.3389/fped.2020.580178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Congenital nephrotic syndrome, historically defined by the onset of large proteinuria during the first 3 months of life, is a rare clinical disorder, generally with poor outcome. It is caused by pathogenic variants in genes associated with this syndrome or by fetal infections disrupting podocyte and/or glomerular basement membrane integrity. Here we describe an infant with congenital CMV infection and nephrotic syndrome that failed to respond to targeted antiviral therapy. Case and literature survey highlight the importance of the "tetrad" of clinical, virologic, histologic, and genetic workup to better understand the pathogenesis of CMV-associated congenital and infantile nephrotic syndromes. Case Presentation: A male infant was referred at 9 weeks of life with progressive abdominal distention, scrotal edema, and vomiting. Pregnancy was complicated by oligohydramnios and pre-maturity (34 weeks). He was found to have nephrotic syndrome and anemia, normal platelet and white blood cell count, no splenomegaly, and no syndromic features. Diagnostic workup revealed active CMV infection (positive CMV IgM/PCR in plasma) and decreased C3 and C4. Maternal anti-CMV IgG was positive, IgM negative. Kidney biopsy demonstrated focal mesangial proliferative and sclerosing glomerulonephritis with few fibrocellular crescents, interstitial T- and B-lymphocyte infiltrates, and fibrosis/tubular atrophy. Immunofluorescence was negative. Electron microscopy showed diffuse podocyte effacement, but no cytomegalic inclusions or endothelial tubuloreticular arrays. After 4 weeks of treatment with valganciclovir, plasma and urine CMV PCR were negative, without improvement of the proteinuria. Unfortunately, the patient succumbed to fulminant pneumococcal infection at 7 months of age. Whole exome sequencing and targeted gene analysis identified a novel homozygous, pathogenic variant (2071+1G>T) in NPHS1. Literature Review and Discussion: The role of CMV infection in isolated congenital nephrotic syndrome and the corresponding pathological changes are still debated. A search of the literature identified only three previous reports of infants with congenital nephrotic syndrome and evidence of CMV infection, who also underwent kidney biopsy and genetic studies. Conclusion: Complete workup of congenital infections associated with nephrotic syndrome is warranted for a better understanding of their pathogenesis ("diagnostic triad" of viral, biopsy, and genetic studies). Molecular testing is essential for acute and long-term prognosis and treatment plan.
Collapse
Affiliation(s)
- Anju Jacob
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Shameer M Habeeb
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Kidney Centre of Excellence, Al Jalila Children's Speciality Hospital, Dubai, United Arab Emirates
| | - Leal Herlitz
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, United States
| | - Eva Simkova
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Kidney Centre of Excellence, Al Jalila Children's Speciality Hospital, Dubai, United Arab Emirates
| | - Jwan F Shekhy
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Alan Taylor
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Walid Abuhammour
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Section of Infectious Diseases, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Department of Genetics, Mohammad Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Martin Bitzan
- Department of Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.,Kidney Centre of Excellence, Al Jalila Children's Speciality Hospital, Dubai, United Arab Emirates
| |
Collapse
|
98
|
Braun DA, Warejko JK, Ashraf S, Tan W, Daga A, Schneider R, Hermle T, Jobst-Schwan T, Widmeier E, Majmundar AJ, Nakayama M, Schapiro D, Rao J, Schmidt JM, Hoogstraten CA, Hugo H, Bakkaloglu SA, Kari JA, El Desoky S, Daouk G, Mane S, Lifton RP, Shril S, Hildebrandt F. Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome. Nephrol Dial Transplant 2019. [PMID: 29534211 DOI: 10.1093/ndt/gfy028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. METHODS To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. RESULTS In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. CONCLUSION We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.
Collapse
Affiliation(s)
- Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Hannah Hugo
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatrics Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatrics Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghaleb Daouk
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
99
|
Reynolds BC, Oswald RJA. Diagnostic and Management Challenges in Congenital Nephrotic Syndrome. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2019; 10:157-167. [PMID: 31908565 PMCID: PMC6930517 DOI: 10.2147/phmt.s193684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
Congenital Nephrotic Syndrome (CNS) is defined as nephrotic range proteinuria, hypoalbuminaemia and edema in the first three months of life. CNS is most commonly genetic in cause, with international variance in the incidence of causative mutations. Initially defined by the histopathological appearance, increasingly sophisticated and accessible genetic analyses now provide a body of evidence to suggest that there is a disparity between the histological appearance, the genotype of individuals and the severity of the clinical disease. Through the evolution of management approaches CNS has changed from being an invariably fatal condition to one with appreciable ongoing morbidity and mortality but comparably good outcomes to other causes of paediatric end-stage renal disease, especially following transplantation. This review briefly summarises the more commonly recognised genetic mutations leading to CNS, addresses common management decisions, and concludes with potential therapies for the future.
Collapse
|
100
|
Landini S, Mazzinghi B, Becherucci F, Allinovi M, Provenzano A, Palazzo V, Ravaglia F, Artuso R, Bosi E, Stagi S, Sansavini G, Guzzi F, Cirillo L, Vaglio A, Murer L, Peruzzi L, Pasini A, Materassi M, Roperto RM, Anders HJ, Rotondi M, Giglio SR, Romagnani P. Reverse Phenotyping after Whole-Exome Sequencing in Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2019; 15:89-100. [PMID: 31831576 PMCID: PMC6946071 DOI: 10.2215/cjn.06060519] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Nephrotic syndrome is a typical presentation of genetic podocytopathies but occasionally other genetic nephropathies can present as clinically indistinguishable phenocopies. We hypothesized that extended genetic testing followed by reverse phenotyping would increase the diagnostic rate for these patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS All patients diagnosed with nephrotic syndrome and referred to our center between 2000 and 2018 were assessed in this retrospective study. When indicated, whole-exome sequencing and in silico filtering of 298 genes related to CKD were combined with subsequent reverse phenotyping in patients and families. Pathogenic variants were defined according to current guidelines of the American College of Medical Genetics. RESULTS A total of 111 patients (64 steroid-resistant and 47 steroid-sensitive) were included in the study. Not a single pathogenic variant was detected in the steroid-sensitive group. Overall, 30% (19 out of 64) of steroid-resistant patients had pathogenic variants in podocytopathy genes, whereas a substantial number of variants were identified in other genes, not commonly associated with isolated nephrotic syndrome. Reverse phenotyping, on the basis of a personalized diagnostic workflow, permitted to identify previously unrecognized clinical signs of an unexpected underlying genetic nephropathy in a further 28% (18 out of 64) of patients. These patients showed similar multidrug resistance, but different long-term outcome, when compared with genetic podocytopathies. CONCLUSIONS Reverse phenotyping increased the diagnostic accuracy in patients referred with the diagnosis of steroid-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Samuela Landini
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio,".,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Marco Allinovi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio,".,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and
| | - Aldesia Provenzano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Fiammetta Ravaglia
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio,"
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Sansavini
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Francesco Guzzi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio,".,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Augusto Vaglio
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio,".,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Luisa Murer
- Pediatric Nephrology Dialysis and Transplant Unit, Department of Pediatrics, University of Padua, Padua, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Andrea Pasini
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliero Universitaria, Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Marco Materassi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Rosa Maria Roperto
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Medizinische Klinik and Poliklinik IV, Klinikum der Ludwig Maximilians University (LMU) München, München, Germany; and
| | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Pavia, Pavia, Italy
| | - Sabrina Rita Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio,".,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio," .,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), and.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|