51
|
Rigacci S, Miceli C, Nediani C, Berti A, Cascella R, Pantano D, Nardiello P, Luccarini I, Casamenti F, Stefani M. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 2016; 6:35344-57. [PMID: 26474288 PMCID: PMC4742109 DOI: 10.18632/oncotarget.6119] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2015] [Indexed: 01/21/2023] Open
Abstract
The healthy effects of plant polyphenols, some of which characterize the so-called Mediterranean diet, have been shown to arise from epigenetic and biological modifications resulting, among others, in autophagy stimulation. Our previous work highlighted the beneficial effects of oleuropein aglycone (OLE), the main polyphenol found in the extra virgin olive oil, against neurodegeneration both in cultured cells and in model organisms, focusing, in particular, autophagy activation. In this study we investigated more in depth the molecular and cellular mechanisms of autophagy induction by OLE using cultured neuroblastoma cells and an OLE-fed mouse model of amylod beta (Aβ) deposition. We found that OLE triggers autophagy in cultured cells through the Ca2+-CAMKKβ-AMPK axis. In particular, in these cells OLE induces a rapid release of Ca2+ from the SR stores which, in turn, activates CAMKKβ, with subsequent phosphorylation and activation of AMPK. The link between AMPK activation and mTOR inhibition was shown in the OLE-fed animal model in which we found that decreased phospho-mTOR immunoreactivity and phosphorylated mTOR substrate p70 S6K levels match enhanced phospho-AMPK levels, supporting the idea that autophagy activation by OLE proceeds through mTOR inhibition. Our results agree with those reported for other plant polyphenols, suggesting a shared molecular mechanism underlying the healthy effects of these substances against ageing, neurodegeneration, cancer, diabetes and other diseases implying autophagy dysfunction.
Collapse
Affiliation(s)
- Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Caterina Miceli
- Department of Experimental and Clinical Biomedical Sciences, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Ilaria Luccarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
52
|
Yang C, Du W, Yang D. Inhibition of green tea polyphenol EGCG((-)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/β-catenin signalling pathway. Int J Food Sci Nutr 2016; 67:818-27. [PMID: 27338284 DOI: 10.1080/09637486.2016.1198892] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, could affect carcinogenesis and development of many cancers. However, the effects and underlying mechanisms of EGCG on gastric cancer remain unclear. We found that EGCG significantly inhibited proliferation and increased apoptosis of SGC-7901 cells in vitro. The decreased expressions of p-β-catenin(Ser552), p-GSK3β(S9) and β-catenin target genes were detected in SGC-7901 cells after treated by EGCG. XAV939 and β-catenin plasmid were further used to demonstrate the inhibition of EGCG on canonical Wnt/β-catenin signalling. Moreover, EGCG significantly inhibited gastric tumour growth in vivo by inhibiting Wnt/β-catenin signalling. Taken together, our findings establish that EGCG suppressed gastric cancer cell proliferation and demonstrate that this inhibitory effect is related to canonical Wnt/β-catenin signalling. This study raises a new insight into gastric cancer prevention and therapy, and provides evidence that green tea could be used as a nutraceutical beverage.
Collapse
Affiliation(s)
- Chenggang Yang
- a Department of Gastrointestinal Surgery , Liaocheng People's Hospital , Liaocheng , Shandong , China
| | - Wenfeng Du
- a Department of Gastrointestinal Surgery , Liaocheng People's Hospital , Liaocheng , Shandong , China
| | - Daogui Yang
- a Department of Gastrointestinal Surgery , Liaocheng People's Hospital , Liaocheng , Shandong , China
| |
Collapse
|
53
|
The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2568635. [PMID: 27294112 PMCID: PMC4887632 DOI: 10.1155/2016/2568635] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Collapse
|
54
|
Wang Q, Wang B, Zhang YM, Wang W. The association between CDH1 promoter methylation and patients with ovarian cancer: a systematic meta-analysis. J Ovarian Res 2016; 9:23. [PMID: 27067410 PMCID: PMC4827236 DOI: 10.1186/s13048-016-0231-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Background The down-regulation of E-cadherin gene (CDH1) expression has been regarded as an important event in cancer invasion and metastasis. However, the association between CDH1 promoter methylation and ovarian cancer remains unclear. A meta-analysis was conducted to evaluate the potential role of CDH1 promoter methylation in ovarian cancer. Methods Relevant articles were identified by searches of PubMed, EMBASE, Cochrane Library, CNKI and Wanfang databases. The pooled odds ratio (OR) and corresponding 95 % confidence interval (CI) were calculated to assess the strength of association. Results Nine studies were performed using the fixed-effects model in this study, including 485 cancer tissues and 255 nonmalignant tissues. The findings showed that CDH1 promoter methylation had an increased risk of ovarian cancer in cancer tissues (OR = 8.71, P < 0.001) in comparison with nonmalignant tissues. Subgroup analysis of the ethnicity showed that the OR value of CDH1 methylation in Asian population subgroup (OR = 13.20, P < 0.001) was higher than that in Caucasian population subgroup (OR = 3.84, P = 0.005). No significant association was found between ovarian cancer and low malignant potential (LMP) tumor (P = 0.096) among 2 studies, and between CDH1 promoter methylation and tumor stage and tumor histology (all P > 0.05). There was not any evidence of publication bias by Egger’s test (all P > 0.05). Conclusions CDH1 promoter methylation can be a potential biomarker in ovarian cancer risk prediction, especially Asians can be more susceptible to CDH1 methylation. However, more studies are still done in the future.
Collapse
Affiliation(s)
- Qiang Wang
- Obstetrics and Gynecology Department, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bing Wang
- Plastic Surgery Department, China-Japan Friendship Hospital Affiliated Jilin University, Changchun, 130033, China
| | - Yun-Mei Zhang
- Obstetrics and Gynecology Department, The Second People's Hospital of Dunhua, Dunhua, 133700, China
| | - Wei Wang
- Radiology Department, The First Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
55
|
Anti-cancer efficacy of dietary polyphenols is mediated through epigenetic modifications. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
56
|
Meyskens FL, Mukhtar H, Rock CL, Cuzick J, Kensler TW, Yang CS, Ramsey SD, Lippman SM, Alberts DS. Cancer Prevention: Obstacles, Challenges and the Road Ahead. J Natl Cancer Inst 2016; 108:djv309. [PMID: 26547931 PMCID: PMC4907357 DOI: 10.1093/jnci/djv309] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/18/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022] Open
Abstract
Approaches to reduce the global burden of cancer include two major strategies: screening and early detection and active preventive intervention. The latter is the topic of this Commentary and spans a broad range of activities. The genetic heterogeneity and complexity of advanced cancers strongly support the rationale for early interruption of the carcinogenic process and an enhanced focus on prevention as a priority strategy to reduce the burden of cancer; however, the focus of cancer prevention management should be on individuals at high risk and on primary localized disease in which screening and detection should also play a vital role. The timing and dose of (chemo-)preventive intervention also affects response. The intervention may be ineffective if the target population is very high risk or already presenting with preneoplastic lesions with cellular changes that cannot be reversed. The field needs to move beyond general concepts of carcinogenesis to targeted organ site prevention approaches in patients at high risk, as is currently being done for breast and colorectal cancers. Establishing the benefit of new cancer preventive interventions will take years and possibly decades, depending on the outcome being evaluated. We also propose that comparative effectiveness research designs and the value of information obtained from large-scale prevention studies are necessary in order for preventive interventions to become a routine part of cancer management.
Collapse
Affiliation(s)
- Frank L Meyskens
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY).
| | - Hasan Mukhtar
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - Cheryl L Rock
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - Jack Cuzick
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - Thomas W Kensler
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - Chung S Yang
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - Scott D Ramsey
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - Scott M Lippman
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| | - David S Alberts
- Biological Chemistry, Public Health, and Epidemiology, Chao Family Comprehensive Cancer Center, School of Medicine - University of California, Irvine, Irvine, CA (FLMJr); Arizona Board of Regents Professor of Medicine, Pharmacology, Public Health, Nutritional Sciences & BIO5, University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ (DSA); Wolfson Institute of Preventive Medicine and Head, Centre for Cancer Prevention; Centre for Cancer Prevention, Queen Mary University of London, Mile End Road, London, UK (JC); Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA (TWK); Moores Cancer Center (SML) and Department of Family Medicine and Public Health, Cancer Prevention and Control Program (CLR), UC San Diego, San Diego, CA (SML); Dermatology Research Laboratories, University of Wisconsin; Madison, WI (HM); Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (SDR); Center for Cancer Prevention Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (CSY)
| |
Collapse
|
57
|
Thomopoulos TP, Ntouvelis E, Diamantaras AA, Tzanoudaki M, Baka M, Hatzipantelis E, Kourti M, Polychronopoulou S, Sidi V, Stiakaki E, Moschovi M, Kantzanou M, Petridou ET. Maternal and childhood consumption of coffee, tea and cola beverages in association with childhood leukemia: a meta-analysis. Cancer Epidemiol 2015; 39:1047-59. [PMID: 26329264 DOI: 10.1016/j.canep.2015.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To systematically review studies and meta-analyze the literature on the association of maternal and/or index child's coffee, tea, and cola consumption with subsequent development of childhood leukemia and its major subtypes. METHODS Eligible studies were identified through a detailed algorithm and hand-search of eligible articles' references; thereafter, summary-effect estimates were calculated by leukemia subtype and dose-response meta-analyses were performed. RESULTS Twelve case-control studies, comprising a total of 3649 cases and 5705 controls, were included. High maternal coffee consumption was positively associated with acute lymphoblastic leukemia (ALL; OR: 1.43, 95%CI: 1.22-1.68) and acute myeloid leukemia (AML; OR: 2.52, 95%CI: 1.59-3.57). Any or low to moderate maternal cola consumption was also positively associated with overall leukemia (AL) and ALL, A linear trend between coffee and cola consumption and childhood leukemia was observed in the dose-response analyses. On the contrary, low to moderate tea consumption was inversely associated with AL (OR: 0.85, 95%CI: 0.75-0.97), although the trend was non-significant. A null association between offspring's cola consumption and leukemia was noted. CONCLUSIONS Our findings confirm the detrimental association between maternal coffee consumption and childhood leukemia risk and provide indications for a similar role of maternal cola intake. In contrast, an inverse association with tea was found, implying that other micronutrients contained in this beverage could potentially counterbalance the deleterious effects of caffeine. Further research should focus on the intake of specific micronutrients, different types of coffee and tea, specific immunophenotypes of the disease, and the modifying effect of genetic polymorphisms.
Collapse
Affiliation(s)
- Thomas P Thomopoulos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece
| | - Evangelos Ntouvelis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece
| | | | - Marianna Tzanoudaki
- Department of Immunology and Histocompatibility "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Margarita Baka
- Department of Pediatric Hematology-Oncology, "Pan.& Agl. Kyriakou" Children's Hospital, Athens, Greece
| | - Emmanuel Hatzipantelis
- 2nd Department of Pediatrics, Aristotelion University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Maria Kourti
- Department of Pediatric Hematology and Oncology, Hippokration Hospital, Thessaloniki, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Haematology-Oncology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasiliki Sidi
- Department of Pediatric Hematology and Oncology, Hippokration Hospital, Thessaloniki, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Maria Moschovi
- Haematology-Oncology Unit, First Department of Pediatrics, Athens University Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece.
| |
Collapse
|
58
|
Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:363827. [PMID: 26180585 PMCID: PMC4477242 DOI: 10.1155/2015/363827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022]
Abstract
Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16INK4a and p21Cip1/Waf1 in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy.
Collapse
|
59
|
Khan MA, Hussain A, Sundaram MK, Alalami U, Gunasekera D, Ramesh L, Hamza A, Quraishi U. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 2015; 33:1976-84. [PMID: 25682960 DOI: 10.3892/or.2015.3802] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
There has been increasing evidence that numerous bioactive dietary agents can hamper the process of carcinogenesis by targeting epigenetic alterations including DNA methylation. This therapeutic approach is considered as a significant goal for cancer therapy due to the reversible nature of epigenetic-mediated gene silencing and warrants further attention. One such dietary agent, green tea catechin, (-)-epigallocatechin-3-gallate (EGCG) has been shown to modulate many cancer-related pathways. Thus, the present study was designed to investigate the role of EGCG as an epigenetic modifier in HeLa cells. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition assays were conducted, and the transcription levels of DNMT3B and HDAC1 were assessed by enzymatic activity assay and RT-PCR, respectively. Furthermore, we studied the binding interaction of EGCG with DNMT3B and HDAC1 by molecular modeling as well as promoter DNA methylation and expression of retinoic acid receptor-β (RARβ), cadherin 1 (CDH1) and death-associated protein kinase-1 (DAPK1) in EGCG-treated HeLa cells by RT-PCR and MS-PCR. In the present study, time-dependent EGCG-treated HeLa cells were found to have a significant reduction in the enzymatic activity of DNMT and HDAC. However, the expression of DNMT3B was significantly decreased in a time-dependent manner whereas there was no significant change in HDAC1 expression. Molecular modeling data also supported the EGCG-mediated DNMT3B and HDAC1 activity inhibition. Furthermore, time-dependent exposure to EGCG resulted in reactivation of known tumor-suppressor genes (TSGs) in HeLa cells due to marked changes in the methylation of the promoter regions of these genes. Overall, the present study suggests that EGCG may have a significant impact on the development of novel epigenetic-based therapy.
Collapse
Affiliation(s)
- Munawwar Ali Khan
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | | | - Usama Alalami
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Dian Gunasekera
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Laveena Ramesh
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Amina Hamza
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Uzma Quraishi
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| |
Collapse
|
60
|
HE ZHIPING, LI BO, RANKIN GARYO, ROJANASAKUL YON, CHEN YICHARLIE. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncol Lett 2015; 9:1444-1450. [PMID: 25663929 PMCID: PMC4314987 DOI: 10.3892/ol.2014.2818] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer is a disease that continues to cause mortality in female individuals worldwide. Ovarian cancer is challenging to treat due to emerging resistance to chemotherapy, therefore, the identification of effective novel chemotherapeutic agents is important. Polyphenols have demonstrated potential in reducing the risk of developing numerous types of cancer, as well reducing the risk of cancer progression, due to their ability to reduce cell viability and vascular endothelial growth factor (VEGF) expression. In the present study, eight phenolic compounds were screened in two human ovarian cancer cell lines (OVCAR-3 and A2780/CP70) to determine their effect on proliferation suppression and VEGF protein secretion inhibition, in comparison to cisplatin, a conventional chemotherapeutic agent. The current study identified that 40 μM gallic acid (GA) exhibited the greatest inhibitory effect on OVCAR-3 cell viability, compared with all of the phenolic compounds investigated. Similarly to cisplatin, baicalein, GA, nobiletin, tangeretin and baicalin were all identified to exhibit significant VEGF inhibitory effects from ELISA results. Furthermore, western blot analysis indicated that GA effectively decreased the level of the VEGF-binding protein hypoxia-inducible factor-1α in the ovarian cancer cell line. Considering the results of the present study, GA appears to inhibit cell proliferation and, thus, is a potential agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- ZHIPING HE
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculure and Food Science, Zhejiang A & F University, Lin’an, Zhejiang 311300, P.R. China
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - BO LI
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - GARY O. RANKIN
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - YON ROJANASAKUL
- Department of Basic Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - YI CHARLIE CHEN
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculure and Food Science, Zhejiang A & F University, Lin’an, Zhejiang 311300, P.R. China
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
61
|
Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 2015; 11:333-48. [DOI: 10.2217/fon.14.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Based on the pivotal importance of epigenetics for transcription regulation, it is not surprising that cancer is characterized by several epigenetic abnormalities. Conversely to genetic alterations, epigenetic changes are not permanent, thus represent opportunities for therapeutic strategies designed to reverse transcriptional abnormalities, and cancer is the first disease in which epigenetic therapies with chromatin remodeling agents were introduced. The role of miRNAs in gene regulation supports their potential as innovative therapeutic strategy. Recent evidences have proven that the environment can profoundly influence the epigenome: diet, smoking and alcohol consumption can negatively impact the expression profile. Given the plasticity of epigenetic marks, it is challenging the idea that the epigenetic alterations are ‘druggable’ sites using specific food components.
Collapse
Affiliation(s)
- Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Integrative Biology Unit, Milano, Italy
| | | |
Collapse
|
62
|
Two-step sequential supercritical fluid extracts from rosemary with enhanced anti-proliferative activity. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
63
|
Bilal I, Chowdhury A, Davidson J, Whitehead S. Phytoestrogens and prevention of breast cancer: The contentious debate. World J Clin Oncol 2014; 5:705-712. [PMID: 25302172 PMCID: PMC4129534 DOI: 10.5306/wjco.v5.i4.705] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/26/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Phytoestrogens have multiple actions within target cells, including the epigenome, which could be beneficial to the development and progression of breast cancer. In this brief review the action of phytoestrogens on oestrogen receptors, cell signalling pathways, regulation of the cell cycle, apoptosis, steroid synthesis and epigenetic events in relation to breast cancer are discussed. Phytoestrogens can bind weakly to oestrogen receptors (ERs) and some have a preferential affinity for ERβ which can inhibit the transcriptional growth-promoting activity of ERα. However only saturating doses of phytoestrogens, stimulating both ERα and β, exert growth inhibitory effects. Such effects on growth may be through phytoestrogens inhibiting cell signalling pathways. Phytoestrogens have also been shown to inhibit cyclin D1 expression but increase the expression of cyclin-dependent kinase inhibitors (p21 and p27) and the tumour suppressor gene p53. Again these effects are only observed at high (> 10) µmol/L doses of phytoestrogens. Finally the effects of phytoestrogens on breast cancer may be mediated by their ability to inhibit local oestrogen synthesis and induce epigenetic changes. There are, though, difficulties in reconciling epidemiological and experimental data due to the fact experimental doses, both in vivo and in vitro, far exceed the circulating concentrations of “free” unbound phytoestrogens measured in women on a high phytoestrogen diet or those taking phytoestrogen supplements.
Collapse
|
64
|
Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, la Marca G, Ed Dami T, Berti A, Stefani M, Casamenti F. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 2014; 36:648-63. [PMID: 25293421 DOI: 10.1016/j.neurobiolaging.2014.08.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/12/2023]
Abstract
Amyloid-ß (Aß) fragments, oligomeric Aß aggregates, and pyroglutamylated-Aß peptides, as well as epigenetic mechanisms and autophagy dysfunction all appear to contribute in various ways to Alzheimer's disease progression. We previously showed that dietary supplementation of oleuropein aglycone, a natural phenol abundant in the extra virgin olive oil, can be protective by reducing Aß42 deposits in the brain of young and middle-aged TgCRND8 mice. Here, we extended our study to aged TgCRND8 mice showing increased pE3-Aß in the brain deposits. We report that oleuropein aglycone is active against glutaminylcyclase-catalyzed pE3-Aß generation reducing enzyme expression and interferes both with Aß42 and pE3-Aß aggregation. Moreover, the phenol astonishingly activates neuronal autophagy even in mice at advanced stage of pathology, where it increases histone 3 and 4 acetylation, which matches both a decrease of histone deacetylase 2 expression and a significant improvement of synaptic function. The occurrence of these functional, epigenetic, and histopathologic beneficial effects even at a late stage of the pathology suggests that the phenol could be beneficial at the therapeutic, in addition to the prevention, level.
Collapse
Affiliation(s)
- Ilaria Luccarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Grossi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giancarlo la Marca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy; Department of NEUROFARBA, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Teresa Ed Dami
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy; Department of NEUROFARBA, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| |
Collapse
|
65
|
Abstract
INTRODUCTION It is assumed that epigenetic modifications are reversible and could potentially be targeted by pharmacological and dietary interventions. Epigenetic drugs are gaining particular interest as potential candidates for the treatment of Alzheimer's disease (AD). AREAS COVERED This article covers relevant information from over 50 different epigenetic drugs including: DNA methyltransferase inhibitors; histone deacetylase inhibitors; histone acetyltransferase modulators; histone methyltransferase inhibitors; histone demethylase inhibitors; non-coding RNAs (microRNAs) and dietary regimes. The authors also review the pharmacoepigenomics and the pharmacogenomics of epigenetic drugs. The readers will gain insight into i) the classification of epigenetic drugs; ii) the mechanisms by which these drugs might be useful in AD; iii) the pharmacological properties of selected epigenetic drugs; iv) pharmacoepigenomics and the influence of epigenetic drugs on genes encoding CYP enzymes, transporters and nuclear receptors; and v) the genes associated with the pharmacogenomics of anti-dementia drugs. EXPERT OPINION Epigenetic drugs reverse epigenetic changes in gene expression and might open future avenues in AD therapeutics. Unfortunately, clinical trials with this category of drugs are lacking in AD. The authors highlight the need for pharmacogenetic and pharmacoepigenetic studies to properly evaluate any efficacy and safety issues.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Professor,Camilo José Cela University, Chair of Genomic Medicine , Madrid , Spain
| | | |
Collapse
|
66
|
Gracia A, Elcoroaristizabal X, Fernández-Quintela A, Miranda J, Bediaga NG, M de Pancorbo M, Rimando AM, Portillo MP. Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. GENES AND NUTRITION 2014; 9:411. [PMID: 24903834 DOI: 10.1007/s12263-014-0411-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022]
Abstract
DNA methylation is an epigenetic mechanism that can inhibit gene transcription. The aim of this study was to assess changes induced by an obesogenic diet in the methylation profile of genes involved in adipose tissue triacylglycerol metabolism, and to determine whether this methylation pattern can be altered by resveratrol and pterostilbene. Rats were divided into four groups. The control group was fed a commercial standard diet, and the other three groups were fed a commercial high-fat, high-sucrose diet (6 weeks): the high-fat, high-sucrose group, the resveratrol-treated group (RSV; 30 mg/kg/day), and the pterostilbene-treated group (PT; 30 mg/kg/day). Gene expression was measured by RT-PCR and gene methylation by pyrosequencing. The obesogenic diet induced a significant increase in adipose tissue weight. Resveratrol and pterostilbene partially prevented this effect. Methylation pattern of ppnla2 and pparg genes was similar among the experimental groups. In fasn, significant hypomethylation in -90-bp position and significant hypermethylation in -62-bp position were induced by obesogenic feeding. Only pterostilbene reversed the changes induced by the obesogenic diet in fasn methylation pattern. By contrast, the addition of resveratrol to the diet did not induce changes. Both phenolic compounds averted fasn up-regulation. These results demonstrate that the up-regulation of fasn gene induced by an obesogenic feeding, based on a high-fat, high-sucrose diet, is related to hypomethylation of this gene in position -90 bp. Under our experimental conditions, both molecules prevent fasn up-regulation, but this change in gene expression seems to be mediated by changes in methylation status only in the case of pterostilbene.
Collapse
Affiliation(s)
- Ana Gracia
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Mazzio EA, Soliman KFA. Epigenetics and nutritional environmental signals. Integr Comp Biol 2014; 54:21-30. [PMID: 24861811 DOI: 10.1093/icb/icu049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| |
Collapse
|