51
|
Paauwe M, Schoonderwoerd MJA, Helderman RFCP, Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM, Versteeg HH, Snaar-Jagalska BE, Theuer CP, Hardwick JCH, Sier CFM, Ten Dijke P, Hawinkels LJAC. Endoglin Expression on Cancer-Associated Fibroblasts Regulates Invasion and Stimulates Colorectal Cancer Metastasis. Clin Cancer Res 2018; 24:6331-6344. [PMID: 29945992 DOI: 10.1158/1078-0432.ccr-18-0329] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-associated fibroblasts (CAF) are a major component of the colorectal cancer tumor microenvironment. CAFs play an important role in tumor progression and metastasis, partly through TGF-β signaling pathway. We investigated whether the TGF-β family coreceptor endoglin is involved in CAF-mediated invasion and metastasis. EXPERIMENTAL DESIGN CAF-specific endoglin expression was studied in colorectal cancer resection specimens using IHC and related to metastases-free survival. Endoglin-mediated invasion was assessed in vitro by transwell invasion, using primary colorectal cancer-derived CAFs. Effects of CAF-specific endoglin expression on tumor cell invasion were investigated in a colorectal cancer zebrafish model, whereas liver metastases were assessed in a mouse model. RESULTS CAFs specifically at invasive borders of colorectal cancer express endoglin and increased expression intensity correlated with increased disease stage. Endoglin-expressing CAFs were also detected in lymph node and liver metastases, suggesting a role in colorectal cancer metastasis formation. In stage II colorectal cancer, CAF-specific endoglin expression at invasive borders correlated with poor metastasis-free survival. In vitro experiments revealed that endoglin is indispensable for bone morphogenetic protein (BMP)-9-induced signaling and CAF survival. Targeting endoglin using the neutralizing antibody TRC105 inhibited CAF invasion in vitro. In zebrafish, endoglin-expressing fibroblasts enhanced colorectal tumor cell infiltration into the liver and decreased survival. Finally, CAF-specific endoglin targeting with TRC105 decreased metastatic spread of colorectal cancer cells to the mouse liver. CONCLUSIONS Endoglin-expressing CAFs contribute to colorectal cancer progression and metastasis. TRC105 treatment inhibits CAF invasion and tumor metastasis, indicating an additional target beyond the angiogenic endothelium, possibly contributing to beneficial effects reported during clinical evaluations.See related commentary by Becker and LeBleu, p. 6110.
Collapse
Affiliation(s)
- Madelon Paauwe
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Thrombosis & Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark J A Schoonderwoerd
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roxan F C P Helderman
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom J Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosalie Bor
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Danielle M Hemmer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri H Versteeg
- Department of Thrombosis & Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - James C H Hardwick
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands. .,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
52
|
Chang KK, Yoon C, Yi BC, Tap WD, Simon MC, Yoon SS. Platelet-derived growth factor receptor-α and -β promote cancer stem cell phenotypes in sarcomas. Oncogenesis 2018; 7:47. [PMID: 29915281 PMCID: PMC6006341 DOI: 10.1038/s41389-018-0059-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
Sarcomas are malignant tumors derived from mesenchymal tissues and may harbor a subset of cells with cancer stem-like cell (CSC) properties. Platelet-derived growth factor receptors α and β (PDGFR-α/β) play an important role in the maintenance of mesenchymal stem cells. Here we examine the role of PDGFR-α/β in sarcoma CSCs. PDGFR-α/β activity and the effects of PDGFR-α/β inhibition were examined in 3 human sarcoma cell lines using in vitro assays and mouse xenograft models. In all three cell lines, PDGFR-α/β activity was significantly higher in cells grown as spheroids (to enrich for CSCs) and in cells sorted for CD133 expression (a marker of sarcoma CSCs). Self-renewal transcription factors Nanog, Oct4, and Slug and epithelial-to-mesenchymal transition (EMT) proteins Snail, Slug, and Zeb1 were also significantly higher in spheroids cells and CD133(+) cells. Spheroid cells and CD133(+) cells demonstrated 2.9- to 4.2-fold greater migration and invasion and resistance to doxorubicin chemotherapy. Inhibition of PDGFR-α/β in CSCs using shRNA or pharmacologic inhibitors reduced expression of certain self-renewal and EMT proteins, reduced spheroid formation by 74-82%, reduced migration and invasion by 73-80%, and reversed chemotherapy resistance. In mouse xenograft models, combining PDGFR-α/β inhibition (using shRNA or imatinib) with doxorubicin had a more-than-additive effect in blocking tumor growth, with enhanced apoptosis, especially in CD133(+) cells. These results indicate that PDGFR-α/β activity is upregulated in sarcoma CSCs and promote CSC phenotypes including migration, invasion, and chemotherapy resistance. Thus, the PDGFR-α/β pathway represents a new potential therapeutic target to reduce metastatic potential and increase chemosensitivity.
Collapse
Affiliation(s)
- Kevin K Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brendan C Yi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
53
|
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, Bonneau C, Kondratova M, Kuperstein I, Zinovyev A, Givel AM, Parrini MC, Soumelis V, Vincent-Salomon A, Mechta-Grigoriou F. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018; 33:463-479.e10. [PMID: 29455927 DOI: 10.1016/j.ccell.2018.01.011] [Citation(s) in RCA: 1022] [Impact Index Per Article: 170.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/16/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Carcinoma-associated fibroblasts (CAF) are key players in the tumor microenvironment. Here, we characterize four CAF subsets in breast cancer with distinct properties and levels of activation. Two myofibroblastic subsets (CAF-S1, CAF-S4) accumulate differentially in triple-negative breast cancers (TNBC). CAF-S1 fibroblasts promote an immunosuppressive environment through a multi-step mechanism. By secreting CXCL12, CAF-S1 attracts CD4+CD25+ T lymphocytes and retains them by OX40L, PD-L2, and JAM2. Moreover, CAF-S1 increases T lymphocyte survival and promotes their differentiation into CD25HighFOXP3High, through B7H3, CD73, and DPP4. Finally, in contrast to CAF-S4, CAF-S1 enhances the regulatory T cell capacity to inhibit T effector proliferation. These data are consistent with FOXP3+ T lymphocyte accumulation in CAF-S1-enriched TNBC and show how a CAF subset contributes to immunosuppression.
Collapse
Affiliation(s)
- Ana Costa
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Alix Scholer-Dahirel
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France; Institut Curie, Integrative Biology of Human Dendritic Cells and T Cells Laboratory, PSL Research University, Inserm, U932, 26, rue d'Ulm, 75005 Paris, France
| | - Floriane Pelon
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Brigitte Bourachot
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Melissa Cardon
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Philemon Sirven
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France; Institut Curie, Integrative Biology of Human Dendritic Cells and T Cells Laboratory, PSL Research University, Inserm, U932, 26, rue d'Ulm, 75005 Paris, France
| | - Ilaria Magagna
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Laetitia Fuhrmann
- Department of Pathology, Institut Curie Hospital Group, 26, rue d'Ulm, 75248 Paris, France
| | - Charles Bernard
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Claire Bonneau
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Maria Kondratova
- Institut Curie, PSL Research University, Inserm, U900, Mines Paris Tech, Paris 75005, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Inserm, U900, Mines Paris Tech, Paris 75005, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Inserm, U900, Mines Paris Tech, Paris 75005, France
| | - Anne-Marie Givel
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Maria-Carla Parrini
- Analysis of Transduction Pathway, Institut Curie, Inserm, U830, PSL Research University, 26 rue d'Ulm, Paris 75005, France
| | - Vassili Soumelis
- Institut Curie, Integrative Biology of Human Dendritic Cells and T Cells Laboratory, PSL Research University, Inserm, U932, 26, rue d'Ulm, 75005 Paris, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie Hospital Group, 26, rue d'Ulm, 75248 Paris, France
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France.
| |
Collapse
|
54
|
Pilskog M, Bostad L, Edelmann RJ, Akslen LA, Beisland C, Straume O. Tumour cell expression of interleukin 6 receptor α is associated with response rates in patients treated with sunitinib for metastatic clear cell renal cell carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 4:114-123. [PMID: 29665322 PMCID: PMC5903692 DOI: 10.1002/cjp2.96] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, and anti‐angiogenic treatment is currently first line therapy for metastatic ccRCC (mccRCC). Response rates and duration of response show considerable variation, and adverse events have a major influence on patient quality of life. The need for predictive biomarkers to select responders to receptor tyrosine kinase inhibitors upfront is urgent. We investigated the predictive value of immunohistochemical biomarkers associated with angiogenesis and systemic inflammation in mccRCC. Forty‐six patients with metastatic or non‐resectable ccRCC treated with sunitinib were included. Metastatic and/or primary tumour tissue was stained by immunohistochemistry for selected markers related to angiogenesis [vascular endothelial growth factor A (VEGF‐A), VEGF receptor 2 (VEGFR2), platelet‐derived growth factor receptor β (PDGFRβ), and heat shock protein 27 (HSP27)] and immune responses [Interleukin 6 receptor α (IL6Rα), interleukin‐6 (IL6), and jagged1 (JAG1)]. The predictive potential of the candidate markers was assessed by correlations with response rates (RECIST). In addition, progression free survival (PFS) and overall survival (OS) were analysed. Low tumour cell expression of IL6Rα was significantly associated with improved response to sunitinib (Fisher's exact test, p = 0.03), but not with PFS or OS. Median/high expression of IL6Rα showed significant association with median/high expression of VEGF‐A and HSP27. Furthermore, low expression of IL6 was significantly associated with improved PFS, but not OS or response rates. High expression of IL6 was significantly associated with high expression of JAG1, VEGF‐A, VEGFR2, and PDGFRβ. Loss of tumour cell expression of IL6Rα in mccRCC patients treated with sunitinib predicts improved treatment response, and might represent a candidate predictive marker.
Collapse
Affiliation(s)
- Martin Pilskog
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Leif Bostad
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Reidunn J Edelmann
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Christian Beisland
- Department of Urology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Oddbjørn Straume
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
55
|
Prediction of novel target genes and pathways involved in bevacizumab-resistant colorectal cancer. PLoS One 2018; 13:e0189582. [PMID: 29342159 PMCID: PMC5771567 DOI: 10.1371/journal.pone.0189582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Bevacizumab combined with cytotoxic chemotherapy is the backbone of metastatic colorectal cancer (mCRC) therapy; however, its treatment efficacy is hampered by therapeutic resistance. Therefore, understanding the mechanisms underlying bevacizumab resistance is crucial to increasing the therapeutic efficacy of bevacizumab. The Gene Expression Omnibus (GEO) database (dataset, GSE86525) was used to identify the key genes and pathways involved in bevacizumab-resistant mCRC. The GEO2R web tool was used to identify differentially expressed genes (DEGs). Functional and pathway enrichment analyses of the DEGs were performed using the Database for Annotation, Visualization, and Integrated Discovery(DAVID). Protein–protein interaction (PPI) networks were established using the Search Tool for the Retrieval of Interacting Genes/Proteins database(STRING) and visualized using Cytoscape software. A total of 124 DEGs were obtained, 57 of which upregulated and 67 were downregulated. PPI network analysis showed that seven upregulated genes and nine downregulated genes exhibited high PPI degrees. In the functional enrichment, the DEGs were mainly enriched in negative regulation of phosphate metabolic process and positive regulation of cell cycle process gene ontologies (GOs); the enriched pathways were the phosphoinositide 3-kinase-serine/threonine kinase signaling pathway, bladder cancer, and microRNAs in cancer. Cyclin-dependent kinase inhibitor 1A(CDKN1A), toll-like receptor 4 (TLR4), CD19 molecule (CD19), breast cancer 1, early onset (BRCA1), platelet-derived growth factor subunit A (PDGFA), and matrix metallopeptidase 1 (MMP1) were the DEGs involved in the pathways and the PPIs. The clinical validation of the DEGs in mCRC (TNM clinical stages 3 and 4) revealed that high PDGFA expression levels were associated with poor overall survival, whereas high BRCA1 and MMP1 expression levels were associated with favorable progress free survival(PFS). The identified genes and pathways can be potential targets and predictors of therapeutic resistance and prognosis in bevacizumab-treated patients with mCRC.
Collapse
|
56
|
Abstract
Fibrosis is part of a tissue repair response to injury, defined as increased deposition of extracellular matrix. In some instances, fibrosis is beneficial; however, in the majority of diseases fibrosis is detrimental. Virtually all chronic progressive diseases are associated with fibrosis, representing a huge number of patients worldwide. Fibrosis occurs in all organs and tissues, becomes irreversible with time and further drives loss of tissue function. Various cells types initiate and perpetuate pathological fibrosis by paracrine activation of the principal cellular executors of fibrosis, i.e. stromal mesenchymal cells like fibroblasts, pericytes and myofibroblasts. Multiple pathways are involved in fibrosis, platelet-derived growth factor (PDGF)-signaling being one of the central mediators. Stromal mesenchymal cells express both PDGF receptors (PDGFR) α and β, activation of which drives proliferation, migration and production of extracellular matrix, i.e. the principal processes of fibrosis. Here, we review the role of PDGF signaling in organ fibrosis, with particular focus on the more recently described ligands PDGF-C and -D. We discuss the potential challenges, opportunities and open questions in using PDGF as a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Germany.
| |
Collapse
|
57
|
PDGF Family Expression in Glioblastoma Multiforme: Data Compilation from Ivy Glioblastoma Atlas Project Database. Sci Rep 2017; 7:15271. [PMID: 29127351 PMCID: PMC5681588 DOI: 10.1038/s41598-017-15045-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most frequent and lethal primary brain cancer. Due to its therapeutic resistance and aggressiveness, its clinical management is challenging. Platelet-derived Growth Factor (PDGF) genes have been enrolled as drivers of this tumour progression as well as potential therapeutic targets. As detailed understanding of the expression pattern of PDGF system in the context of GBM intra- and intertumoral heterogeneity is lacking in the literature, this study aims at characterising PDGF expression in different histologically-defined GBM regions as well as investigating correlation of these genes expression with parameters related to poor prognosis. Z-score normalised expression values of PDGF subunits from multiple slices of 36 GBMs, alongside with clinical and genomic data on those GBMs patients, were compiled from Ivy Glioblastoma Atlas Project – Allen Institute for Brain Science data sets. PDGF subunits show differential expression over distinct regions of GBM and PDGF family is heterogeneously expressed among different brain lobes affected by GBM. Further, PDGF family expression correlates with bad prognosis factors: age at GBM diagnosis, Phosphatase and Tensin Homolog deletion and Isocitrate Dehydrogenase 1 mutation. These findings may aid on clinical management of GBM and development of targeted curative therapies against this devastating tumour.
Collapse
|
58
|
Östman A. PDGF receptors in tumor stroma: Biological effects and associations with prognosis and response to treatment. Adv Drug Deliv Rev 2017; 121:117-123. [PMID: 28970051 DOI: 10.1016/j.addr.2017.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/17/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Platelet-derived growth factor (PDGF) ligands and their receptors (PDGFRα and PDGFRβ) regulate mesenchymal cells, such as fibroblasts and pericytes. These cells are important constituents of tumor stroma where they impact on tumor growth, metastasis and drug response. Studies in model systems have demonstrated ability of the PDGF system to regulate the tumor-stimulatory effects of fibroblasts, as well as their ability to promote cancer cell migration and invasion. Animal studies imply PDGFR-signaling as a regulator of tumor drug uptake. Emerging correlative analyses of different tumor collections are identifying clinically relevant variations in stromal PDGFR status, and associations between PDGFR status in tumor stroma and survival. These associations could either relate to effects of stromal PDGFR signaling on the natural course of the disease or response to treatment. The availability of clinically approved PDGFR-inhibitory drugs suggest interesting possibilities for novel clinical studies, performed on selected patient sub-groups, which further exploits tumor stroma-derived PDGFR signaling.
Collapse
|
59
|
Abstract
Recent studies suggest that neuropilin-1 (NRP-1) promotes angiogenesis mainly via VEGF and its receptors. It promotes tumorigenesis via formation of the NRP-1/ VEGF (vascular endothelial growth factor)/VEGFR2 (vascular endothelial growth factor receptor 2) complex. In addition to VEGF and its receptors, NRP-1 also binds with other growth factors such as platelet-derived growth factor (PDGF) and platelet-derived growth factor receptor (PDGFR). PDGF plays important roles in cellular proliferation and, in particular, blood vessel formation. Moreover, recent studies show that NRP-1 promotes angiogenesis via the NRP-1-ABL pathway, but independent of VEGF-VEGFR2. RAD51 is a protein involved in the signaling pathways of NRP1-ABL and PDGF(R), the expression of which is positively associated with cell radioresistance and chemoresistance. NRP-1 activates the signaling pathways of ABL and PDGF(R) to upregulate RAD51, which induces resistance to radiotherapy and chemotherapy in cancer cells. Furthermore, NRP-1 activates the tumor microenvironment by binding with fibronectin and activating ABL, thereby promoting tumor growth. Inhibition of NRP-1 may overcome the limitations of individually inhibiting the VEGF-VEGFR2 pathway in cancer therapy and provide new ideas for cancer treatment. Therefore, we review the role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China
| | - Xiaodong Jiang
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China.
| |
Collapse
|
60
|
Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. Oncogene 2017; 37:160-173. [PMID: 28892046 PMCID: PMC5770601 DOI: 10.1038/onc.2017.319] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/29/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Most anticancer therapies to date focus on druggable features of tumor epithelia. Despite the increasing repertoire of treatment options, patient responses remain varied. Moreover, tumor resistance and relapse remain persistent clinical challenges. These observations imply an incomplete understanding of tumor heterogeneity. The tumor microenvironment is a major determinant of disease progression and therapy outcome. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of tumors. They orchestrate paracrine pro-tumorigenic signaling with adjacent tumor cells, thus exacerbating the hallmarks of cancer and accelerating tumor malignancy. Although CAF-derived soluble factors have been investigated for tumor stroma-directed therapy, the underlying transcriptional programs that enable the oncogenic functions of CAFs remain poorly understood. Nuclear receptors (NRs), a large family of ligand-responsive transcription factors, are pharmacologically viable targets for the suppression of CAF-facilitated oncogenesis. In this study, we defined the expression profiles of NRs in CAFs from clinical cutaneous squamous cell carcinoma (SCC) biopsies. We further identified a cluster of driver NRs in CAFs as important modifiers of CAF function with profound influence on cancer cell invasiveness, proliferation, drug resistance, energy metabolism and oxidative stress status. Importantly, guided by the NR profile of CAFs, retinoic acid receptor β and androgen receptor antagonists were identified for concurrent therapy with cisplatin, resulting in the inhibition of chemoresistance in recurred SCC:CAF xenografts. Our work demonstrates that treatments targeting both the tumor epithelia and the surrounding CAFs can extend the efficacy of conventional chemotherapy.
Collapse
|
61
|
|
62
|
Analysis of Gene Expression Signatures in Cancer-Associated Stroma from Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas. Int J Mol Sci 2017; 18:ijms18051101. [PMID: 28531107 PMCID: PMC5455009 DOI: 10.3390/ijms18051101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated stroma (CAS) plays a key role in cancer initiation and progression. Spontaneously occurring canine mammary carcinomas are viewed as excellent models of human breast carcinomas. Considering the importance of CAS for human cancer, it likely plays a central role in canine tumours as well. So far, however, canine CAS lacks characterisation, and it remains unclear whether the biology between CAS from canine and human tumours is comparable. In this proof-of-principle study, using laser-capture microdissection, we isolated CAS and normal stroma from 13 formalin-fixed paraffin embedded canine simple mammary carcinomas and analysed the expression of seven known human CAS markers by RT-qPCR (Reverse Transcription quantitative PCR) and validated some targets by immunohistochemistry. We found that Col1a1 (Collagen1α1), αSMA (alpha Smooth Muscle Actin), FAP (Fibroblast activation protein), PDGFRβ (Platelet-derived growth factor receptor beta), and Caveolin-1 were significantly upregulated in canine CAS, and the expression of CXCL12 (Stromal cell derived factor 1) significantly decreased, whereas MMP2 (Matrix Metalloproteinase 1) and IL6 (Interleukin 6) did not change. Our results suggest strong similarities in CAS biology in canine and human mammary carcinomas but also reveal some differences. To the best of our knowledge, this is the first report to provide a comprehensive expression analysis of the most important CAS markers in canine simple mammary carcinomas and further supports the validity of the dog as model for human cancer.
Collapse
|
63
|
Yamada S, Imura Y, Nakai T, Nakai S, Yasuda N, Kaneko K, Outani H, Takenaka S, Hamada K, Myoui A, Araki N, Ueda T, Itoh K, Yoshikawa H, Naka N. Therapeutic potential of TAS-115 via c-MET and PDGFRα signal inhibition for synovial sarcoma. BMC Cancer 2017; 17:334. [PMID: 28511645 PMCID: PMC5434537 DOI: 10.1186/s12885-017-3324-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
Abstract
Background The prognosis of synovial sarcoma (SS), an aggressive soft tissue sarcoma, remains poor. We previously reported that c-MET or platelet-derived growth factor receptor α (PDGFRα) signalling pathway is related to SS progression based upon the findings of phospho-receptor tyrosine kinase (RTK) arrays. TAS-115 is a novel c-MET/ vascular endothelial growth factor receptor-targeting tyrosine kinase inhibitor that has been shown to inhibit multiple RTKs. Here we aimed to investigate the therapeutic potential of TAS-115 against SS. Methods We first evaluated which signalling pathway was relevant to the viability of three human SS cell lines: Yamato-SS, SYO-1 and HS-SY-II. Next, we assessed the anticancer activity and mechanism of action of TAS-115 in these SS cell lines. Finally, we compared the ability of TAS-115 to inhibit c-MET and PDGFRα phosphorylation with that of pazopanib. Results We classified the SS cell lines as c-MET-dependent or PDGFRα-dependent based upon the differences in the signalling pathway relevant for growth and/or survival. We also found that c-MET and PDGFRα were the primary activators of both phosphatidylinositol 3-kinase/AKT and mitogen-activated protein kinase pathways in c-MET-dependent and PDGFRα-dependent SS cells, respectively. TAS-115 treatment blocked the phosphorylation of PDGFRα as well as that of c-MET and their downstream effectors, leading to marked growth inhibition in both types of SS cell lines in in vitro and in vivo studies. Furthermore, PDGFRα phosphorylation, on at least four representative autophosphorylation sites, was impeded by TAS-115 equivalently to pazopanib. Conclusions These experimental results have demonstrated the significance of c-MET and PDGFRα signalling for growth and/or survival of SS tumours. TAS-115 monotherapy may benefit SS patients whose tumours are dependent upon either c-MET or PDGFRα signalling by functioning as a multiple tyrosine kinase inhibitor to suppress c-MET as well as PDGFRα pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3324-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shutaro Yamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinori Imura
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Takaaki Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naohiro Yasuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiko Kaneko
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetatsu Outani
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenichiro Hamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Myoui
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuhito Araki
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Takafumi Ueda
- Department of Orthopaedic Surgery, Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan
| | - Kazuyuki Itoh
- Research Institute, Nozaki Tokushukai, 2-10-50 Tanigawa, Daitou, Osaka, 574-0074, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
64
|
Peng Y, Yan S, Chen D, Cui X, Jiao K. Pdgfrb is a direct regulatory target of TGFβ signaling in atrioventricular cushion mesenchymal cells. PLoS One 2017; 12:e0175791. [PMID: 28426709 PMCID: PMC5398542 DOI: 10.1371/journal.pone.0175791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Cushion formation is the initial step for the development of valvuloseptal structures in mammalian hearts. TGFβ signaling plays critical roles in multiple steps of cushion morphogenesis. We used a newly developed conditional immortal atrioventricular cushion mesenchymal cell line, tsA58-AVM, to identify the TGFβ regulatory target genes through microarray analysis. Expression of ~1350 genes was significantly altered by TGFβ1 treatment. Subsequent bioinformatic analysis of TGFβ activated genes revealed that PDGF-BB signaling is the top hit as the potential upstream regulator. Among the 37 target molecules, 10 genes known to be involved in valve development and hemostasis were selected for quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Our results confirmed that they are all upregulated by TGFβ1 stimulation in tsA58-AVM cells and in primary atrioventricular cushion cells. We focused on examining regulation of Pdgfrb by TGFβ1, which encodes a tyrosine kinase receptor for PDGF-BB. We found that the ~150bp Pdgfrb promoter can respond to TGFβ stimulation and that this response relies on the two SP1 binding sites within the promoter. Co-immunoprecipitation analysis confirmed SP1 interacts with SMAD2 in a TGFβ-dependent fashion. Furthermore, SMAD2 is associated with the Pdgfrb promoter and this association is diminished by knocking down expression of Sp1. Our data therefore collectively suggest that upon TGFβ stimulation, SP1 recruits SMAD2 to the promoter of Pdgfrb to up-regulate its expression and thus Pdgfrb is a direct downstream target of the TGFβ/SMAD2 signaling.
Collapse
Affiliation(s)
- Yin Peng
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shun Yan
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiangqin Cui
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kai Jiao
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
65
|
Abstract
Affibody molecules can be used as tools for molecular recognition in diagnostic and therapeutic applications. There are several preclinical studies reported on diagnostic and therapeutic use of this molecular class of alternative scaffolds, and early clinical evidence is now beginning to accumulate that suggests the Affibody molecules to be efficacious and safe in man. The small size and ease of engineering make Affibody molecules suitable for use in multispecific constructs where AffiMabs is one such that offers the option to potentiate antibodies for use in complex disease.
Collapse
|
66
|
High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci Rep 2017; 7:43378. [PMID: 28233816 PMCID: PMC5324133 DOI: 10.1038/srep43378] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Due to a lack of sufficient diagnostic tools to predict aggressive disease, there is a significant overtreatment of patients with prostate cancer. Platelet derived growth factors (PDGFs) and their receptors (PDGFRs) are key regulators of mesenchymal cells in the tumor microenvironment, and has been associated with unfavorable outcome in several other cancers. Herein, we aimed to investigate the prognostic impact of PDGFR-β and its ligands (PDGF-B and PDGF-D) in a multicenter prostatectomy cohort of 535 Norwegian patients. Using tissue microarrays and immunohistochemistry, the expression of ligands PDGF-B and PDGF-D and their corresponding receptor, PDGFR-β, was assessed in neoplastic tissue and tumor-associated stroma. PDGFR-β was expressed in benign and tumor associated stroma, but not in epithelium. High stromal expression of PDGFR-β was independently associated with clinical relapse (HR = 2.17, p = 0.010) and biochemical failure (HR = 1.58, p = 0.002). This large study highlights the prognostic importance of PDGFR-β expression, implicating its involvement in prostate cancer progression even in early stage disease. Hence, analyses of PDGFR-β may help distinguish which patients will benefit from radical treatment, and since PDGFR-β is associated with relapse and shorter survival, it mandates a focus as a therapeutic target.
Collapse
|
67
|
Abstract
INTRODUCTION Liposarcoma (LS) is one of the most common adult soft tissue sarcomas (STS). For metastatic disease, systemic treatment options were historically represented by standard cytotoxic chemotherapy. More recently, innovative therapies have been introduced and they are currently part of the therapeutic armamentarium, positively impacting disease control and patients' quality of life. Moreover, in the last decade, a better understanding of the molecular characteristics of each STS subtype allowed to detect new potential targets and develop novel, biology-driven compounds at different stages of testing. Areas covered: This review is focused on LS, retracing their pharmacological management, starting with a summary of results achieved with standard chemotherapy, then moving to a deeper analysis on data obtained with new, approved therapies and finally reporting an update on ongoing clinical trials, thus providing an overview on the current scenario and outlining how it might evolve in the coming years. Expert commentary: Important strides have been made in the knowledge and treatment of LS. Peculiar molecular features and fundamental signalling pathways represent nowadays druggable targets for novel therapies. However, predictive biomarkers still need to be identified in order to better select the target population, to possibly test combinations of drugs, with the ultimate goal of improving outcomes.
Collapse
Affiliation(s)
- Maristella Saponara
- a Department of Specialized, Experimental, and Diagnostic Medicine , Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy.,b Department of Cancer Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Silvia Stacchiotti
- b Department of Cancer Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Alessandro Gronchi
- c Department of Surgery , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
68
|
Espinoza JA, Jabeen S, Batra R, Papaleo E, Haakensen V, Timmermans Wielenga V, Møller Talman ML, Brunner N, Børresen-Dale AL, Gromov P, Helland Å, Kristensen VN, Gromova I. Cytokine profiling of tumor interstitial fluid of the breast and its relationship with lymphocyte infiltration and clinicopathological characteristics. Oncoimmunology 2016; 5:e1248015. [PMID: 28123884 DOI: 10.1080/2162402x.2016.1248015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022] Open
Abstract
The tumor microenvironment is composed of many immune cell subpopulations and is an important factor in the malignant progression of neoplasms, particularly breast cancer (BC). However, the cytokine networks that coordinate various regulatory events within the BC interstitium remain largely uncharacterized. Moreover, the data obtained regarding the origin of cytokine secretions, the levels of secretion associated with tumor development, and the possible clinical relevance of cytokines remain controversial. Therefore, we profiled 27 cytokines in 78 breast tumor interstitial fluid (TIF) samples, 43 normal interstitial fluid (NIF) samples, and 25 matched serum samples obtained from BC patients with Luminex xMAP multiplex technology. Eleven cytokines exhibited significantly higher levels in the TIF samples compared with the NIF samples: interleukin (IL)-7, IL-10, fibroblast growth factor-2, IL-13, interferon (IFN)γ-inducible protein (IP-10), IL-1 receptor antagonist (IL-1RA), platelet-derived growth factor (PDGF)-β, IL-1β, chemokine ligand 5 (RANTES), vascular endothelial growth factor, and IL-12. An immunohistochemical analysis further demonstrated that IL-1RA, IP-10, IL-10, PDGF-β, RANTES, and VEGF are widely expressed by both cancer cells and tumor-infiltrating lymphocytes (TILs), whereas IP-10 and RANTES were preferentially abundant in triple-negative breast cancers (TNBCs) compared to Luminal A subtype cancers. The latter observation corresponds with the high level of TILs in the TNBC samples. IL-1β, IL-7, IL-10, and PDGFβ also exhibited a correlation between the TIF samples and matched sera. In a survival analysis, high levels of IL-5, a hallmark TH2 cytokine, in the TIF samples were associated with a worse prognosis. These findings have important implications for BC immunotherapy research.
Collapse
Affiliation(s)
- Jaime A Espinoza
- SciLifeLab, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Solna, Stockholm, Sweden
| | - Shakila Jabeen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway
| | - Richa Batra
- Danish Cancer Society Research Center, Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Copenhagen, Denmark; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum Munich, Munich, Germany
| | - Elena Papaleo
- Danish Cancer Society Research Center, Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry , Copenhagen, Denmark
| | - Vilde Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital , Oslo, Norway
| | - Vera Timmermans Wielenga
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital , Copenhagen, Denmark
| | - Maj-Lis Møller Talman
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital , Copenhagen, Denmark
| | - Nils Brunner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Pavel Gromov
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group , Copenhagen, Denmark
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway; Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway
| | - Irina Gromova
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group , Copenhagen, Denmark
| |
Collapse
|
69
|
Cordella M, Tabolacci C, Rossi S, Senatore C, Facchiano AM, D'Arcangelo D, Facchiano A, Facchiano F. Transglutaminase type 2 affects cell migration through post-translational modification of platelet-derived growth factor-BB. Amino Acids 2016; 49:473-481. [PMID: 27633721 DOI: 10.1007/s00726-016-2331-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Migration is a key cellular function with important implications in cell physiology. Impairment of such function is observed in angiogenesis, cancer, central nervous system development, and many other physiological and pathological events. Serum is considered among the most potent physiological chemotactic stimuli. Transglutaminase 2 (TG2) is involved in most of the mentioned processes, suggesting the hypothesis that TG2 may modulate cell movement and chemotaxis by acting on serum factors. Cell biology and biochemistry studies confirmed this hypothesis, showing that human serum contains potent chemotactic signals significantly impaired by activated TG2. Bioinformatics studies indicated that one potent serum factor potential substrate of TG2-dependent transamidation is platelet-derived growth factor-BB (PDGF-BB). Cell biology and immunometric experiments carried out with U87MG human glioma cell line showed that human recombinant PDGF-BB pre-incubated with calcium-activated TG2 lost about 70 % of its chemotactic activity and antigenicity. These data indicate that PDGF-BB is a substrate of TG2-transamidating activity, and such modification may play a key role in the modulation of PDGF's chemotactic features. Further, these findings suggest a novel point of view to study the extracellular functions of TG2 and to understand how protein signals, such as growth factors and cytokines, act in the extracellular space to reach their specific targets.
Collapse
Affiliation(s)
- Martina Cordella
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Claudio Tabolacci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Stefania Rossi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cinzia Senatore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | - Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Francesco Facchiano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
70
|
Kalluri R. The biology and function of fibroblasts in cancer. NATURE REVIEWS. CANCER 2016. [PMID: 27550820 DOI: 10.1038/nrc.2016.73.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
71
|
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
72
|
Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, Hameed MR, Shah GD, Qin A, Shahir A, Cronier DM, Ilaria R, Conti I, Cosaert J, Schwartz GK. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 2016; 388:488-97. [PMID: 27291997 PMCID: PMC5647653 DOI: 10.1016/s0140-6736(16)30587-6] [Citation(s) in RCA: 438] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Treatment with doxorubicin is a present standard of care for patients with metastatic soft-tissue sarcoma and median overall survival for those treated is 12-16 months, but few, if any, novel treatments or chemotherapy combinations have been able to improve these poor outcomes. Olaratumab is a human antiplatelet-derived growth factor receptor α monoclonal antibody that has antitumour activity in human sarcoma xenografts. We aimed to assess the efficacy of olaratumab plus doxorubicin in patients with advanced or metastatic soft-tissue sarcoma. METHODS We did an open-label phase 1b and randomised phase 2 study of doxorubicin plus olaratumab treatment in patients with unresectable or metastatic soft-tissue sarcoma at 16 clinical sites in the USA. For both the phase 1b and phase 2 parts of the study, eligible patients were aged 18 years or older and had a histologically confirmed diagnosis of locally advanced or metastatic soft-tissue sarcoma not previously treated with an anthracycline, an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2, and available tumour tissue to determine PDGFRα expression by immunohistochemistry. In the phase 2 part of the study, patients were randomly assigned in a 1:1 ratio to receive either olaratumab (15 mg/kg) intravenously on day 1 and day 8 plus doxorubicin (75 mg/m(2)) or doxorubicin alone (75 mg/m(2)) on day 1 of each 21-day cycle for up to eight cycles. Randomisation was dynamic and used the minimisation randomisation technique. The phase 1b primary endpoint was safety and the phase 2 primary endpoint was progression-free survival using a two-sided α level of 0.2 and statistical power of 0.8. This study was registered with ClinicalTrials.gov, number NCT01185964. FINDINGS 15 patients were enrolled and treated with olaratumab plus doxorubicin in the phase 1b study, and 133 patients were randomised (66 to olaratumab plus doxorubicin; 67 to doxorubicin alone) in the phase 2 trial, 129 (97%) of whom received at least one dose of study treatment (64 received olaratumab plus doxorubicin, 65 received doxorubicin). Median progression-free survival in phase 2 was 6.6 months (95% CI 4.1-8.3) with olaratumab plus doxorubicin and 4.1 months (2.8-5.4) with doxorubicin (stratified hazard ratio [HR] 0.67; 0.44-1.02, p=0.0615). Median overall survival was 26.5 months (20.9-31.7) with olaratumab plus doxorubicin and 14.7 months (9.2-17.1) with doxorubicin (stratified HR 0.46, 0.30-0.71, p=0.0003). The objective response rate was 18.2% (9.8-29.6) with olaratumab plus doxorubicin and 11.9% (5.3-22.2) with doxorubicin (p=0.3421). Steady state olaratumab serum concentrations were reached during cycle 3 with mean maximum and trough concentrations ranging from 419 μg/mL (geometric coefficient of variation in percentage [CV%] 26.2) to 487 μg/mL (CV% 33.0) and from 123 μg/mL (CV% 31.2) to 156 μg/mL (CV% 38.0), respectively. Adverse events that were more frequent with olaratumab plus doxorubicin versus doxorubicin alone included neutropenia (37 [58%] vs 23 [35%]), mucositis (34 [53%] vs 23 [35%]), nausea (47 [73%] vs 34 [52%]), vomiting (29 [45%] vs 12 [18%]), and diarrhoea (22 [34%] vs 15 [23%]). Febrile neutropenia of grade 3 or higher was similar in both groups (olaratumab plus doxorubicin: eight [13%] of 64 patients vs doxorubicin: nine [14%] of 65 patients). INTERPRETATION This study of olaratumab with doxorubicin in patients with advanced soft-tissue sarcoma met its predefined primary endpoint for progression-free survival and achieved a highly significant improvement of 11.8 months in median overall survival, suggesting a potential shift in the treatment of soft-tissue sarcoma. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- William D Tap
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Robin L Jones
- University Washington, Seattle, WA, USA; The Royal Marsden Hospital, London, UK
| | | | - Bartosz Chmielowski
- UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | - Matthew M Cooney
- University Hospitals Case Medical Center, Seidman Cancer Center, Division of Hematology and Oncology, Cleveland, OH, USA
| | - Michael B Livingston
- Carolinas Healthcare System, The Charlotte-Mecklenburg Hospital Authority, Charlotte, NC, USA
| | | | - Meera R Hameed
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Amy Qin
- Eli Lilly and Company, Bridgewater, NJ, USA
| | | | | | - Robert Ilaria
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Ilaria Conti
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | | |
Collapse
|
73
|
Abstract
Experimental oncology research and preclinical drug development both substantially require specific, clinically relevant in vitro and in vivo tumor models. The increasing knowledge about the heterogeneity of cancer requested a substantial restructuring of the test systems for the different stages of development. To be able to cope with the complexity of the disease, larger panels of patient-derived tumor models have to be implemented and extensively characterized. Together with individual genetically engineered tumor models and supported by core functions for expression profiling and data analysis, an integrated discovery process has been generated for predictive and personalized drug development.Improved “humanized” mouse models should help to overcome current limitations given by xenogeneic barrier between humans and mice. Establishment of a functional human immune system and a corresponding human microenvironment in laboratory animals will strongly support further research.Drug discovery, systems biology, and translational research are moving closer together to address all the new hallmarks of cancer, increase the success rate of drug development, and increase the predictive value of preclinical models.
Collapse
|
74
|
Milovancev M, Helfand SC, Marley K, Goodall CP, Löhr CV, Bracha S. Antiproliferative effects of masitinib and imatinib against canine oral fibrosarcoma in vitro. BMC Vet Res 2016; 12:85. [PMID: 27259510 PMCID: PMC4893279 DOI: 10.1186/s12917-016-0712-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/30/2016] [Indexed: 01/26/2023] Open
Abstract
Background Canine oral fibrosarcoma (COF) is one of the most common oral tumors in dogs and carries a guarded prognosis due to a lack of effective systemic therapeutic options. Mastinib and imatinib are two commonly used tyrosine kinase inhibitors (TKIs) in veterinary oncology but their potential efficacy against COF is uncharacterized. To begin investigating the rationale for use of these TKIs against COF, the present study tested for the presence TKI targets PDGFR-α, PDGFR-β, Kit, and VEGFR-2 and examined the in vitro effects on cell viability after TKI treatment alone or with doxorubicin. Immunohistochemistry for PDGFR-α, PDGFR-β, Kit, and VEGFR-2 was performed in 6 COF tumor biopsies. Presence of these same receptors within 2 COF cell lines was probed by reverse transcription-polymerase chain reaction and, for those with mRNA detected, confirmed via western blot. Effects on cell viability were assessed using an MTS assay after masitinib or imatinib treatment alone (0-100 μM), or in combination with doxorubicin (0-3000 nM doxorubicin). Anti-PDGFRB siRNA knockdown was performed and the effect on cell viability quantified. Results Expression of the TKI targets evaluated was similar between the 2 COF cell lines and the 6 COF tumor biopsies: PDGFR-α and PDGFR-β were detected in neoplastic cells from most COF tumor biopsies (5/6 and 6/6, respectively) and were present in both COF cell lines; KIT and KDR were not detected in any sample. Masitinib and imatinib IC50 values ranged from 7.9–33.4 μM, depending on the specific TKI and cell line tested. The addition of doxorubicin resulted in synergistic cytotoxicity with both TKIs. Anti-PDGFRB siRNA transfection reduced PDGFR-β protein expression by 77 % and 67 % and reduced cell viability by 24 % (p < 0.0001) and 28 % (0 = 0.0003) in the two cell lines, respectively. Conclusions These results provide rationale for further investigation into the use of TKIs, possibly in combination with doxorubicin, as treatment options for COF.
Collapse
Affiliation(s)
- Milan Milovancev
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| | - Stuart C Helfand
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Kevin Marley
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Cheri P Goodall
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Christiane V Löhr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Shay Bracha
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
75
|
Majer A, Blanchard AA, Medina S, Booth SA, Myal Y. Claudin 1 Expression Levels Affect miRNA Dynamics in Human Basal-Like Breast Cancer Cells. DNA Cell Biol 2016; 35:328-39. [PMID: 26982264 DOI: 10.1089/dna.2015.3188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deemed a putative tumor suppressor in breast cancer, the tight junction protein claudin 1 has now been shown to be highly expressed in the basal-like molecular subtype. Moreover, recent in vitro studies show that claudin 1 can regulate breast cancer cell motility and proliferation. Herein, we investigated whether microRNA (miRNA) dysregulation is associated with alterations in the level of claudin 1. Using next-generation sequencing (NGS), we identified seven miRNAs (miR-9-5p, miR-9-3p, let-7c, miR-127-3p, miR-99a-5p, miR-129-5p, and miR-146a-5p) that were deregulated as a consequence of claudin 1 overexpression in the MDA-MB231 human breast cancer (HBC) cell line. Most of these miRNAs have been associated with tumor suppression in a variety of cancers, including breast cancer. Moreover, through gene expression profiling analysis, we identified epithelial-mesenchymal transition-related genes, including platelet-derived growth factor receptor-beta (PDGFRB) and cadherin 1 (CDH1, E cadherin), whose downregulation correlated with claudin 1 overexpression. Collectively, we show for the first time that in HBC, claudin 1 can alter the dynamics of a number of miRNAs involved in tumor progression. Our data suggest that the dysregulated expression of these miRNAs, in conjunction with the high claudin 1 levels, could serve as a useful biomarker that identifies a subset of tumors within the poorly characterized basal-like subtype of breast cancer. Further studies are warranted to determine the role of these miRNAs in facilitating the function of claudin 1 in breast cancer.
Collapse
Affiliation(s)
- Anna Majer
- 1 Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg, Manitoba, Canada .,2 Molecular PathoBiology, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada , Winnipeg, Manitoba, Canada
| | - Anne A Blanchard
- 3 Department of Pathology, University of Manitoba , Winnipeg, Manitoba, Canada .,4 Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Manitoba, Canada
| | - Sarah Medina
- 2 Molecular PathoBiology, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada , Winnipeg, Manitoba, Canada
| | - Stephanie A Booth
- 1 Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg, Manitoba, Canada .,2 Molecular PathoBiology, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada , Winnipeg, Manitoba, Canada
| | - Yvonne Myal
- 3 Department of Pathology, University of Manitoba , Winnipeg, Manitoba, Canada .,4 Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Manitoba, Canada
| |
Collapse
|
76
|
GZD856, a novel potent PDGFRα/β inhibitor, suppresses the growth and migration of lung cancer cells in vitro and in vivo. Cancer Lett 2016; 375:172-178. [PMID: 26940138 DOI: 10.1016/j.canlet.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Platelet-derived growth factor receptors (PDGFRα/β) play critical roles in the autocrine-stimulated growth and recruitment of cancer-associated fibroblasts (CAFs) of human lung cancer cells. We have identified GZD856 as a new PDGFR inhibitor that potently inhibits PDGFRα/β kinase activity and blocks this signaling pathway in lung cancer cells both in vitro and in vivo. GZD856 strongly suppresses the proliferation of PDGFRα-amplified H1703 (PDGFRβ(-)) human lung cancer cells and demonstrates significant in vivo antitumor efficacy in a xenograft mouse model. Although GZD856 displays only limited in vitro antiproliferative efficiency against PDGFRα(-)/PDGFRβ(+) A549 lung cancer cells, it efficiently inhibits the in vivo growth and metastasis of A549 cancer cells in xenograft and orthotopic models, respectively. The promising in vivo antitumor activity of GZD856 in A549 models may result from its suppression of PDGFR-related microenvironment factors, such as recruitment of CAFs and collagen content in stromal cells. GZD856 may be considered as a promising new candidate for anti-lung cancer drug development.
Collapse
|
77
|
Iussich S, Maniscalco L, Di Sciuva A, Iotti B, Morello E, Martano M, Gattino F, Buracco P, De Maria R. PDGFRs expression in dogs affected by malignant oral melanomas: correlation with prognosis. Vet Comp Oncol 2016; 15:462-469. [DOI: 10.1111/vco.12190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Affiliation(s)
- S. Iussich
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - L. Maniscalco
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - A. Di Sciuva
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - B. Iotti
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - E. Morello
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - M. Martano
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - F. Gattino
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - P. Buracco
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - R. De Maria
- Department of Veterinary Sciences; University of Turin; Turin Italy
| |
Collapse
|