51
|
Screening of Molecular Targets of Action of Atractylodin in Cholangiocarcinoma by Applying Proteomic and Metabolomic Approaches. Metabolites 2019; 9:metabo9110260. [PMID: 31683902 PMCID: PMC6918361 DOI: 10.3390/metabo9110260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is cancer of the bile duct and the highest incidence of CCA in the world is reported in Thailand. Our previous in vitro and in vivo studies identified Atractylodes lancea (Thunb) D.C. as a promising candidate for CCA treatment. The present study aimed to examine the molecular targets of action of atractylodin, the bioactive compound isolated from A. lancea, in CCA cell line by applying proteomic and metabolomic approaches. Intra- and extracellular proteins and metabolites were identified by LC-MS/MS following exposure of CL-6, the CCA cell line, to atractylodin for 24 and 48 h. Analysis of the protein functions and pathways involved was performed using a Venn diagram, PANTHER, and STITCH software. Analysis of the metabolite functions and pathways involved, including the correlation between proteins and metabolites identified was performed using MetaboAnalyst software. Results suggested the involvement of atractylodin in various cell biology processes. These include the cell cycle, apoptosis, DNA repair, immune response regulation, wound healing, blood vessel development, pyrimidine metabolism, the citrate cycle, purine metabolism, arginine and proline metabolism, glyoxylate and dicarboxylate metabolism, the pentose phosphate pathway, and fatty acid biosynthesis. Therefore, it was proposed that the action of atractylodin may involve the destruction of the DNA of cancer cells, leading to cell cycle arrest and cell apoptosis.
Collapse
|
52
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
53
|
Zhang H, Zhao B, Wang X, Zhang F, Yu W. LINC00511 knockdown enhances paclitaxel cytotoxicity in breast cancer via regulating miR-29c/CDK6 axis. Life Sci 2019; 228:135-144. [DOI: 10.1016/j.lfs.2019.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
|
54
|
Priyadarshini R, Raj GM, Kayal S, Ramesh A, Shewade DG. Influence of ABCB1 C3435T and C1236T gene polymorphisms on tumour response to docetaxel-based neo-adjuvant chemotherapy in locally advanced breast cancer patients of South India. J Clin Pharm Ther 2019; 44:188-196. [PMID: 30637776 DOI: 10.1111/jcpt.12797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Variable response to docetaxel-based neo-adjuvant chemotherapy (NACT) in breast cancer patients had been reported. Genetic polymorphisms in the ABCB1 gene coding for the efflux transporter MDR1 (P-glycoprotein, P-gp) could result in altered tumour response. Hence, this study was proposed to assess the effect of single nucleotide polymorphisms (SNPs) of ABCB1 gene on tumour response in locally advanced breast cancer patients (LABC) of South India who have a distinct genetic makeup. METHODS Out of 162 LABC patients recruited, 129 patients were included for the final analysis. DNA was extracted by "phenol-chloroform extraction method" from the WBCs, and genotyping for SNPs rs1045642 (C3435T) and rs1128503 (C1236T) in ABCB1 gene was performed with real-time PCR system using validated TaqMan® SNP genotyping assay method. Tumour response was assessed by RECIST criteria based on the MRIs taken before and after completion of four cycles of docetaxel therapy. RESULTS AND DISCUSSION A total of 102 (79.1%) patients were found to be responders and 27 (20.9%) patients were found to be non-responders to docetaxel therapy. Patients with "CT/TT" genotypes (response rate: 83.3%) of ABCB1 (C1236T) gene showed better tumour response than those with "CC" genotype (response rate: 16.6%) [OR = 2.94 (CI: 1.15-7.52); P = 0.03]. However, on performing binary logistic regression, neither the studied SNPs nor the non-genetic factors like age, BMI, postmenopausal status, laterality of the tumour, ER status, PR status and Her-2/neu status were found to be associated with tumour response to docetaxel (P > 0.05). WHAT IS NEW AND CONCLUSION The tumour response to docetaxel was significantly influenced by the SNP C1236T of ABCB1 gene coding for the P-gp. However, when adjusted for other non-genetic factors, neither of the ABCB1 variants were found to be associated with tumour response to docetaxel-based NACT in LABC patients of South India.
Collapse
Affiliation(s)
- Rekha Priyadarshini
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Gerard Marshall Raj
- Department of Pharmacology, Sri Venkateshwaraa Medical College Hospital and Research Centre (SVMCH & RC), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Ananthakrishnan Ramesh
- Department of Radio-diagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
55
|
Personalized prediction of genes with tumor-causing somatic mutations based on multi-modal deep Boltzmann machine. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.02.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
56
|
Use of Germline Genetic Variability for Prediction of Chemoresistance and Prognosis of Breast Cancer Patients. Cancers (Basel) 2018; 10:cancers10120511. [PMID: 30545124 PMCID: PMC6316878 DOI: 10.3390/cancers10120511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023] Open
Abstract
The aim of our study was to set up a panel for targeted sequencing of chemoresistance genes and the main transcription factors driving their expression and to evaluate their predictive and prognostic value in breast cancer patients. Coding and regulatory regions of 509 genes, selected from PharmGKB and Phenopedia, were sequenced using massive parallel sequencing in blood DNA from 105 breast cancer patients in the testing phase. In total, 18,245 variants were identified of which 2565 were novel variants (without rs number in dbSNP build 150) in the testing phase. Variants with major allele frequency over 0.05 were further prioritized for validation phase based on a newly developed decision tree. Using emerging in silico tools and pharmacogenomic databases for functional predictions and associations with response to cytotoxic therapy or disease-free survival of patients, 55 putative variants were identified and used for validation in 805 patients with clinical follow up using KASPTM technology. In conclusion, associations of rs2227291, rs2293194, and rs4376673 (located in ATP7A, KCNAB1, and DFFB genes, respectively) with response to neoadjuvant cytotoxic therapy and rs1801160 in DPYD with disease-free survival of patients treated with cytotoxic drugs were validated and should be further functionally characterized.
Collapse
|
57
|
Wong ILK, Zhu X, Chan KF, Law MC, Lo AMY, Hu X, Chow LMC, Chan TH. Discovery of Novel Flavonoid Dimers To Reverse Multidrug Resistance Protein 1 (MRP1, ABCC1) Mediated Drug Resistance in Cancers Using a High Throughput Platform with "Click Chemistry". J Med Chem 2018; 61:9931-9951. [PMID: 30351934 DOI: 10.1021/acs.jmedchem.8b00834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 300-member flavonoid dimer library of multidrug resistance-associated protein 1 (MRP1, ABCC1) modulators was rapidly assembled using "click chemistry". Subsequent high-throughput screening has led to the discovery of highly potent (EC50 ranging from 53 to 298 nM) and safe (selective indexes ranging from >190 to >1887) MRP1 modulators. Some dimers have potency about 6.5- to 36-fold and 64- to 358-fold higher than the well-known MRP1 inhibitors, verapamil, and MK571, respectively. They inhibited DOX efflux and restored intracellular DOX concentration. The most potent modulator, Ac3Az11, was predicted to bind to the bipartite substrate-binding site of MRP1 in a competitive manner. Moreover, it provided sufficient concentration to maintain its plasma level above its in vitro EC50 (53 nM for DOX) for about 90 min. Overall, we demonstrate that "click chemistry" coupled with high throughput screening is a rapid, reliable, and efficient tool in the discovery of compounds having potent MRP1-modualting activity.
Collapse
Affiliation(s)
- Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Kin-Fai Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Aya M Y Lo
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR , China.,Department of Chemistry , McGill University , Montreal , Quebec H3A 2K6 , Canada
| |
Collapse
|
58
|
Osa-Andrews B, Tan KW, Sampson A, Iram SH. Development of Novel Intramolecular FRET-Based ABC Transporter Biosensors to Identify New Substrates and Modulators. Pharmaceutics 2018; 10:pharmaceutics10040186. [PMID: 30322148 PMCID: PMC6321552 DOI: 10.3390/pharmaceutics10040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) can efflux a wide variety of molecules including toxic chemicals, drugs, and their derivatives out of cells. Substrates of MRP1 include anti-cancer agents, antibiotics, anti-virals, anti-human immunodeficiency virus (HIV), and many other drugs. To identify novel substrates and modulators of MRP1 by exploiting intramolecular fluorescence resonance energy transfer (FRET), we genetically engineered six different two-color MRP1 proteins by changing green fluorescent protein (GFP) insertion sites, while keeping the red fluorescent protein (RFP) at the C-terminal of MRP1. Four of six recombinant proteins showed normal expression, localization, and transport activity. We quantified intramolecular FRET using ensemble fluorescence spectroscopy in response to binding of known substrate or ATP alone, substrate/ATP, and trapping of the transporter in closed conformation by vanadate. Recombinant MRP1 proteins GR-881, GR-888, and GR-905 exhibited reproducible and higher FRET changes under all tested conditions and are very promising for use as MRP1 biosensors. Furthermore, we used GR-881 to screen 40 novel anti-cancer drugs and identified 10 hits that potentially directly interact with MRP1 and could be substrates or modulators. Profiling of drug libraries for interaction with MRP1 can provide very useful information to improve the efficacy and reduce the toxicity of various therapies.
Collapse
Affiliation(s)
- Bremansu Osa-Andrews
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Kee W Tan
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Angelina Sampson
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Surtaj H Iram
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
59
|
Pillar N, Polsky AL, Weissglas-Volkov D, Shomron N. Comparison of breast cancer metastasis models reveals a possible mechanism of tumor aggressiveness. Cell Death Dis 2018; 9:1040. [PMID: 30305609 PMCID: PMC6180100 DOI: 10.1038/s41419-018-1094-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
Abstract
In breast cancer patients, the lungs are among the first sites of cancer metastasis, and in nearly one quarter of metastatic patients, the exclusive first event. Two common mouse models mimic breast cancer lung colonization and distal metastasis: an orthotopic model and intravenous (IV) cell injections. Gene expression analysis of pulmonary lesions from these two methods demonstrated high inter-model resemblance. However, microRNA (miRNA) expression profiles were not compared. In this study, we compared the overall miRNA expression profiles (miRNome) of the orthotopic and IV breast cancer metastasis models and identified significant miRNome changes between the two models. Overexpression of the most significant candidate, miR-96 or downregulation of its validated gene-target, ABCE1 reduced cancer cells 2D/3D cell movement and proliferation in vitro, and abated tumor growth and metastasis formation in vivo. Human data analysis further strengthened miR-96/ABCE1 role in breast cancer tumor aggression. Taken together, our results indicate that IV- and orthotopic models differ by their miRNome. Specifically in our study, breast cancer aggressiveness was dictated by miR-96 regulating ABCE1. Overall, miRNome analysis of various metastatic cancer models may lead to the identification of candidate genes critical to metastasis development.
Collapse
Affiliation(s)
- Nir Pillar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
60
|
Wen SH, Su SC, Liou BH, Lin CH, Lee KR. Sulbactam-enhanced cytotoxicity of doxorubicin in breast cancer cells. Cancer Cell Int 2018; 18:128. [PMID: 30202239 PMCID: PMC6123926 DOI: 10.1186/s12935-018-0625-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is a major obstacle in breast cancer treatment. The predominant mechanism underlying MDR is an increase in the activity of adenosine triphosphate (ATP)-dependent drug efflux transporters. Sulbactam, a β-lactamase inhibitor, is generally combined with β-lactam antibiotics for treating bacterial infections. However, sulbactam alone can be used to treat Acinetobacter baumannii infections because it inhibits the expression of ATP-binding cassette (ABC) transporter proteins. This is the first study to report the effects of sulbactam on mammalian cells. METHODS We used the breast cancer cell lines as a model system to determine whether sulbactam affects cancer cells. The cell viabilities in the present of doxorubicin with or without sulbactam were measured by MTT assay. Protein identities and the changes in protein expression levels in the cells after sulbactam and doxorubicin treatment were determined using LC-MS/MS. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was used to analyze the change in mRNA expression levels of ABC transporters after treatment of doxorubicin with or without sulbactam. The efflux of doxorubicin was measures by the doxorubicin efflux assay. RESULTS MTT assay revealed that sulbactam enhanced the cytotoxicity of doxorubicin in breast cancer cells. The results of proteomics showed that ABC transporter proteins and proteins associated with the process of transcription and initiation of translation were reduced. The mRNA expression levels of ABC transporters were also decreased when treated with doxorubicin and sulbactam. The doxorubicin efflux assay showed that sulbactam treatment inhibited doxorubicin efflux. CONCLUSIONS The combination of sulbactam and doxorubicin enhances the cytotoxicity of doxorubicin in the breast cancer cells by inhibiting the expression of ABC transporter proteins and proteins associated with the process of transcription and initiation of translation, and blocking the efflux of doxorubicin. Co-treatment of doxorubicin and sulbactam can be used in breast cancer treatment to decrease the prescribed dose of doxorubicin to avoid the adverse effects of doxorubicin.
Collapse
Affiliation(s)
- Shao-hsuan Wen
- Department of Molecular Medicine and Institute of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan, ROC
| | - Shey-chiang Su
- Department of Internal Medicine, Puli Christian Hospital, No. 1, Tieshan Road, Puli Township, Nantou, 54546 Taiwan, ROC
| | - Bo-huang Liou
- Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, No.690, Section 2, Guangfu Road, East District, Hsinchu, 300 Taiwan, ROC
| | - Cheng-hao Lin
- Department of Molecular Medicine and Institute of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan, ROC
| | - Kuan-rong Lee
- Department of Molecular Medicine and Institute of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan, ROC
| |
Collapse
|
61
|
Mancarella C, Pasello M, Ventura S, Grilli A, Calzolari L, Toracchio L, Lollini PL, Donati DM, Picci P, Ferrari S, Scotlandi K. Insulin-Like Growth Factor 2 mRNA-Binding Protein 3 is a Novel Post-Transcriptional Regulator of Ewing Sarcoma Malignancy. Clin Cancer Res 2018; 24:3704-3716. [DOI: 10.1158/1078-0432.ccr-17-2602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
|
62
|
Tang CY, Zhu LX, Yu JD, Chen Z, Gu MC, Mu CF, Liu Q, Xiong Y. Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism. Eur J Pharm Sci 2018; 120:20-29. [PMID: 29704644 DOI: 10.1016/j.ejps.2018.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/06/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOXFluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOXFluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOXFluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters by two ways, to lessen the ABC protein efflux by weakening their functionality, or to reduce the quantity of ABC gene and protein expression.
Collapse
Affiliation(s)
- Chao-Yuan Tang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Li-Xin Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, China
| | - Jian-Dong Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhi Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Man-Cang Gu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chao-Feng Mu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, NC, USA
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
63
|
Kim JE, Choi J, Park J, Park C, Lee SM, Park SE, Song N, Chung S, Sung H, Han W, Lee JW, Park SK, Kim MK, Noh DY, Yoo KY, Kang D, Choi JY. Associations between genetic polymorphisms of membrane transporter genes and prognosis after chemotherapy: meta-analysis and finding from Seoul Breast Cancer Study (SEBCS). THE PHARMACOGENOMICS JOURNAL 2018; 18:633-645. [PMID: 29618765 DOI: 10.1038/s41397-018-0016-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022]
Abstract
Membrane transporters can be major determinants of the pharmacokinetic profiles of anticancer drugs. The associations between genetic variations of ATP-binding cassette (ABC) and solute carrier (SLC) genes and cancer survival were investigated through a meta-analysis and an association study in the Seoul Breast Cancer Study (SEBCS). Including the SEBCS, the meta-analysis was conducted among 38 studies of genetic variations of transporters on various cancer survivors. The population of SEBCS consisted of 1338 breast cancer patients who had been treated with adjuvant chemotherapy. A total of 7750 SNPs were selected from 453 ABC and/or SLC genes typed by an Affymetrix 6.0 chip. ABCB1 rs1045642 was associated with poor progression-free survival in a meta-analysis (HR = 1.33, 95% CI: 1.07-1.64). ABCB1, SLC8A1, and SLC12A8 were associated with breast cancer survival in SEBCS (Pgene < 0.05). ABCB1 rs1202172 was differentially associated with survival depending on the chemotherapy (Pinteraction = 0.035). Our finding provides suggestive associations of membrane transporters on cancer survival.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jaesung Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - JooYong Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Chulbum Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Se Mi Lee
- College of Pharmacy Chonnam National University, Gwangju, Korea
| | - Seong Eun Park
- College of Pharmacy, Duksung Women's university, Seoul, Korea
| | - Nan Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seokang Chung
- Division for New Health Technology Assessment, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Hyuna Sung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Management, National Cancer Center, Goyang, Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,The Armed Forces Capital Hospital, Seongnam, Korea
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
64
|
Vrana D, Hlavac V, Brynychova V, Vaclavikova R, Neoral C, Vrba J, Aujesky R, Matzenauer M, Melichar B, Soucek P. ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer. Int J Mol Sci 2018; 19:E868. [PMID: 29543757 PMCID: PMC5877729 DOI: 10.3390/ijms19030868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome.
Collapse
Affiliation(s)
- David Vrana
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Veronika Brynychova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Radka Vaclavikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Cestmir Neoral
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Jiri Vrba
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Rene Aujesky
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Marcel Matzenauer
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty Hospital Pilsen, Alej Svobody 80, 30460 Pilsen, Czech Republic.
| |
Collapse
|
65
|
Dréan A, Rosenberg S, Lejeune FX, Goli L, Nadaradjane AA, Guehennec J, Schmitt C, Verreault M, Bielle F, Mokhtari K, Sanson M, Carpentier A, Delattre JY, Idbaih A. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma. J Neurooncol 2018. [PMID: 29520610 DOI: 10.1007/s11060-018-2819-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM-PDCL. ABCA13 expression is an independent prognostic factor in newly diagnosed GBM patients. Further prospective studies are warranted to investigate whether ABCA13 expression can be used to further personalize treatments for GBM.
Collapse
Affiliation(s)
- Antonin Dréan
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- Equipe de recherche CarThera, Institut du Cerveau et de la Moelle épinière, Ipeps ICM, 75013, Paris, France
| | - Shai Rosenberg
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - François-Xavier Lejeune
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Larissa Goli
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Aravindan Arun Nadaradjane
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Jérémy Guehennec
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Charlotte Schmitt
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Maïté Verreault
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Franck Bielle
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
- OncoNeuroTek, Hôpitaux Universitaires La Pitié Salpêtrière, Paris, France
| | - Karima Mokhtari
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
- OncoNeuroTek, Hôpitaux Universitaires La Pitié Salpêtrière, Paris, France
| | - Marc Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
- OncoNeuroTek, Hôpitaux Universitaires La Pitié Salpêtrière, Paris, France
| | - Alexandre Carpentier
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, 75013, Paris, France
| | - Jean-Yves Delattre
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
- OncoNeuroTek, Hôpitaux Universitaires La Pitié Salpêtrière, Paris, France
| | - Ahmed Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 04 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France.
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
66
|
Topcagic J, Feldman R, Ghazalpour A, Swensen J, Gatalica Z, Vranic S. Comprehensive molecular profiling of advanced/metastatic olfactory neuroblastomas. PLoS One 2018; 13:e0191244. [PMID: 29324814 PMCID: PMC5764485 DOI: 10.1371/journal.pone.0191244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactory neuroblastoma (ONB) is a rare, locally aggressive, malignant neoplasm originating in the olfactory epithelium in the nasal vault. The recurrence rate of ONB remains high and there are no specific treatment guidelines for recurrent/metastatic ONBs. This study retrospectively evaluated 23 ONB samples profiled at Caris Life Sciences (Phoenix, Arizona) using DNA sequencing (Sanger/NGS [Illumina], n = 15) and gene fusions (Archer FusionPlex, n = 6), whole genome RNA microarray (HumanHT-12 v4 beadChip, Illumina, n = 4), gene copy number assays (chromogenic and fluorescent in situ hybridization), and immunohistochemistry. Mutations were detected in 63% ONBs including TP53, CTNNB1, EGFR, APC, cKIT, cMET, PDGFRA, CDH1, FH, and SMAD4 genes. Twenty-one genes were over-expressed and 19 genes under-expressed by microarray assay. Some of the upregulated genes included CD24, SCG2, and IGFBP-2. None of the cases harbored copy number variations of EGFR, HER2 and cMET genes, and no gene fusions were identified. Multiple protein biomarkers of potential response or resistance to classic chemotherapy drugs were identified, such as low ERCC1 [cisplatin sensitivity in 10/12], high TOPO1 [irinotecan sensitivity in 12/19], high TUBB3 [vincristine resistance in 13/14], and high MRP1 [multidrug resistance in 6/6 cases]. None of the cases (0/10) were positive for PD-L1 in tumor cells. Overexpression of pNTRK was observed in 67% (4/6) of the cases without underlying genetic alterations. Molecular alterations detected in our study (e.g., Wnt and cKIT/PDGFRA pathways) are potentially treatable using novel therapeutic approaches. Identified protein biomarkers of response or resistance to classic chemotherapy could be useful in optimizing existing chemotherapy treatment(s) in ONBs.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA Copy Number Variations
- DNA, Neoplasm/genetics
- Esthesioneuroblastoma, Olfactory/genetics
- Esthesioneuroblastoma, Olfactory/metabolism
- Esthesioneuroblastoma, Olfactory/secondary
- Female
- Gene Expression Profiling
- Gene Fusion
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Middle Aged
- Molecular Targeted Therapy
- Mutation
- Nasal Cavity
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/therapy
- Nose Neoplasms/genetics
- Nose Neoplasms/metabolism
- Nose Neoplasms/therapy
- Retrospective Studies
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jasmina Topcagic
- Association of Basic Medical Sciences of Federation of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| | - Rebecca Feldman
- Caris Life Sciences, Phoenix, Arizona, United States of America
| | | | - Jeffrey Swensen
- Caris Life Sciences, Phoenix, Arizona, United States of America
| | - Zoran Gatalica
- Caris Life Sciences, Phoenix, Arizona, United States of America
| | - Semir Vranic
- Association of Basic Medical Sciences of Federation of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
- Department of Pathology, Clinical Center and School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- College of Medicine, Qatar University, Doha, Qatar
- * E-mail: ,
| |
Collapse
|
67
|
Krøigård AB, Larsen MJ, Lænkholm AV, Knoop AS, Jensen JD, Bak M, Mollenhauer J, Thomassen M, Kruse TA. Identification of metastasis driver genes by massive parallel sequencing of successive steps of breast cancer progression. PLoS One 2018; 13:e0189887. [PMID: 29293529 PMCID: PMC5749725 DOI: 10.1371/journal.pone.0189887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer results from alterations at essential genomic sites and is characterized by uncontrolled cell proliferation, invasion and metastasis. Identification of driver genes of metastatic progression is essential, as metastases, not primary tumors, are fatal. To gain insight into the mutational concordance between different steps of malignant progression we performed exome sequencing and validation with targeted deep sequencing of successive steps of malignant progression from pre-invasive stages to asynchronous distant metastases in six breast cancer patients. Using the ratio of non-synonymous to synonymous mutations, a surprisingly large number of cancer driver genes, ranging between 3 and 145, were estimated to confer a selective advantage in the studied primary tumors. We report a substantial amount of metastasis specific mutations and a number of novel putative metastasis driver genes. Most notable are the DCC, ABCA13, TIAM2, CREBBP, BCL6B and ZNF185 genes, mainly mutated exclusively in metastases and highly likely driver genes of metastatic progression. We find different genes and pathways to be affected at different steps of malignant progression. The Adherens junction pathway is affected in four of the six studied patients and this pathway most likely plays a vital role in the metastatic process.
Collapse
Affiliation(s)
- Anne Bruun Krøigård
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Martin Jakob Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Ann S. Knoop
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark
- Molecular Oncology Group, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
68
|
Wu Q, Sharma S, Cui H, LeBlanc SE, Zhang H, Muthuswami R, Nickerson JA, Imbalzano AN. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells. Oncotarget 2017; 7:27158-75. [PMID: 27029062 PMCID: PMC5053639 DOI: 10.18632/oncotarget.8384] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Soni Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Hang Cui
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Abace Biotech Co Ltd., Yi Zhuang Biomedical Park, BDA, Beijing, China
| | - Scott E LeBlanc
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rohini Muthuswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
69
|
Elsnerova K, Bartakova A, Tihlarik J, Bouda J, Rob L, Skapa P, Hruda M, Gut I, Mohelnikova-Duchonova B, Soucek P, Vaclavikova R. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis. J Cancer 2017; 8:3598-3606. [PMID: 29151946 PMCID: PMC5687176 DOI: 10.7150/jca.20766] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/11/2017] [Indexed: 01/31/2023] Open
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality among gynecological carcinomas. The lack of specific markers for prognostic determination of EOC progression hinders the search for novel effective therapies. The aim of the present study was (i) to explore differences in expressions of ATP-binding cassette (ABC) and solute carrier (SLC) transporter genes, genes associated with drug metabolism and cell cycle regulation between control ovarian tissues (n = 14), primary EOCs (n = 44) and intraperitoneal metastases (n = 29); (ii) to investigate associations of gene expression levels with prognosis of patients with intraperitoneal metastases. In all tissue samples, transcript levels of the above target genes were assessed using quantitative real-time PCR. Gene expression levels were compared between particular tissue types and evaluated with regard to progression-free survival (PFS) and drug-resistance status of patients with metastases. Gene expression of ABCA7 significantly increased and that of ESR2 decreased in the order control ovarian tissues - primary EOCs - metastases. High expressions of ABCA2/8/9/10, ABCB1, ABCC9, ABCG2, ATP7A, SLC16A14, and SOD3 genes were significantly associated with longer progression-free survival of patients. In intraperitoneal metastases, expression of all of these genes highly correlated and indicated prognostic profile. Transporters from the ABCA family, ABCG2, and ESR2 are involved mainly in lipid metabolism, membrane transport, and cell proliferation. These processes are thus probably the most important for EOC progression. Based on these results, we have proposed novel markers of ovarian carcinoma progression and metastatic spread which might be potentially useful as therapeutic targets. Their significance should be further explored on a larger independent set of patients.
Collapse
Affiliation(s)
- Katerina Elsnerova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.,Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Alena Bartakova
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Josef Tihlarik
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and Vinohrady University Hospital, Charles University, Srobarova 50, 100 34 Prague 10, Czech Republic
| | - Petr Skapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine and Motol University Hospital, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and Vinohrady University Hospital, Charles University, Srobarova 50, 100 34 Prague 10, Czech Republic
| | - Ivan Gut
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.,Department of Oncology, Palacky University Medical School and University Hospital, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
70
|
Aberuyi N, Rahgozar S, Khosravi Dehaghi Z, Moafi A, Masotti A, Paolini A. The translational expression of ABCA2 and ABCA3 is a strong prognostic biomarker for multidrug resistance in pediatric acute lymphoblastic leukemia. Onco Targets Ther 2017; 10:3373-3380. [PMID: 28744141 PMCID: PMC5513879 DOI: 10.2147/ott.s140488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose The aim of this work was to study the correlation between the expressions of the ABCA2 and ABCA3 genes at the mRNA and protein levels in children with acute lymphoblastic leukemia (ALL) and the effects of this association on multidrug resistance (MDR). Materials and methods Sixty-nine children with de novo ALL and 25 controls were enrolled in the study. Mononuclear cells were isolated from the bone marrow. The mRNA levels of ABCA2 and ABCA3 were measured by real-time polymerase chain reaction (PCR). Samples with high mRNA levels were assessed for respective protein levels by Western blotting. Following the first year of treatment, persistent monoclonality of T-cell gamma receptors or immunoglobulin H (IgH) gene rearrangement was assessed and considered as the MDR. The tertiary structure of ABCA2 was predicted using Phyre2 and I-TASSER web systems and compared to that of ABCA3, which has been previously reported. Molecular docking was performed using DOCK 6.7. Results Real-time quantitative PCR (qRT-PCR) showed high levels of ABCA2 and ABCA3 mRNAs in 13 and 17 samples, respectively. Among them, five and eight individuals demonstrated high levels of ABCA2 and ABCA3, respectively. Response to chemotherapy was significantly decreased (P=0.001) when the mRNA and protein of both genes were overexpressed compared to individuals with high transcriptional levels of either ABCA2 or ABCA3 alone. Close similarity between ABCA2 and ABCA3 structures was revealed by protein tertiary structure prediction, whereas molecular docking analysis suggested similar binding of chemotherapy drugs and therefore a potentially similar role in determining the MDR. Conclusion Our findings suggested, for the first time, that quantification of the protein level of ABCA2 and ABCA3 transporters had a prognostic impact on pediatric ALL MDR. Furthermore, the tertiary structure of ABCA2 was predicted for the first time, and docking analysis revealed a possible compensatory effect between ABCA2 and ABCA3 transporters, which may contribute to the efflux of cytotoxic drugs and, ultimately, to chemoresistance.
Collapse
Affiliation(s)
- Narges Aberuyi
- Department of Biology, Faculty of Science, University of Isfahan
| | - Soheila Rahgozar
- Department of Biology, Faculty of Science, University of Isfahan
| | | | - Alireza Moafi
- Department of Pediatric-Hematology-Oncology, Sayed-ol-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Paolini
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
71
|
Dvorak P, Hlavac V, Mohelnikova-Duchonova B, Liska V, Pesta M, Soucek P. Downregulation of ABC Transporters in Non-neoplastic Tissues Confers Better Prognosis for Pancreatic and Colorectal Cancer Patients. J Cancer 2017; 8:1959-1971. [PMID: 28819395 PMCID: PMC5559956 DOI: 10.7150/jca.19364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Transport of a wide variety of substrates, including xenobiotics, is one of the main functions attributed to human ATP-binding cassette (ABC) proteins. Overexpression of ABC genes is considered to be an important mechanism facilitating the development of chemoresistance. Relationships between the expression levels of ABC genes in tumor tissues and established clinicopathological features were extensively studied previously. The current study tested our hypothesis that the expression levels of ABC genes in non-neoplastic (control) tissues also provide important information in relation to the relevant tumor progression. Expression levels of all human ABC genes (48 protein coding and one pseudogene), measured by qRT-PCR, were bioinformatically analyzed. The data originated from four independently collected cohorts covering three types of tumors - breast, colorectal and pancreatic carcinomas. ABC gene expression profiles (signatures) in non-neoplastic tissues (matched to tumor samples from three different tumor types) were characteristically clustered into three main types - those with the vast majority of the genes downregulated, upregulated or heterogeneously regulated. The clusters with mostly downregulated and upregulated genes were shown to possess significant relations to good and poor prognostic markers, respectively, in pancreatic and colorectal cancers. The present findings support the theory that the expression of ABC genes in non-neoplastic tissues can significantly contribute to tumor pathogenesis. Suggested multi-gene panels, consisting of the reduced number of ABC genes, have the potential to be implemented as new prognostic markers, which are especially urgent in pancreatic cancer. The results can also stimulate further primary research in carcinogenesis.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, IP Pavlova 6, 77520, Olomouc, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 30460, Pilsen, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| |
Collapse
|
72
|
Kloudova A, Brynychova V, Vaclavikova R, Vrana D, Gatek J, Mrhalova M, Kodet R, Soucek P. Expression of oxysterol pathway genes in oestrogen-positive breast carcinomas. Clin Endocrinol (Oxf) 2017; 86:852-861. [PMID: 28342201 DOI: 10.1111/cen.13337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study investigated whether gene expression levels of key modulators of the oxysterol signalling pathway modify the prognosis of patients with oestrogen receptor-positive (ER+) breast carcinomas via interaction with endocrine therapy. CONTEXT The prognosis of patients with ER+ breast carcinoma depends on several factors. Previous studies have suggested that some oxygenated forms of cholesterol (oxysterols) bind to oestrogen receptor and anti-oestrogen binding site which may deregulate cholesterol homoeostasis and influence effect of therapy. DESIGN The expression levels of 70 oxysterol pathway genes were evaluated in a test set of breast carcinomas differing in ER expression. The genes differentially expressed in ER+ tumours were assessed in a comprehensive set of ER+ tumours to evaluate their clinical significance. PATIENTS A total of 193 primary patients with breast carcinoma were included. MEASUREMENTS The transcript levels were determined by quantitative real-time polymerase chain reaction. RESULTS The expression levels of 23 genes were found to be specifically dysregulated in ER+ tumours compared to ER- tumours of the test set. The expression levels of ABCG2, CYP7B1, CYP24A1, CYP39A1 and CH25H genes were found to be strongly associated with disease stage; however, none of the gene expression levels were associated with disease-free survival in patients treated with endocrine therapy. CONCLUSIONS The expression of a number of oxysterol pathway genes is significantly modulated by ER expression and associated with the clinical stage of patients. However, the expression of oxysterol pathway genes was not found to modify the prognosis of ER+ patients with breast carcinoma treated with endocrine therapy.
Collapse
Affiliation(s)
- Alzbeta Kloudova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Brynychova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - David Vrana
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Jiri Gatek
- Department of Surgery, Hospital Atlas, Zlin, Czech Republic
- University of Tomas Bata in Zlin, Zlin, Czech Republic
| | - Marcela Mrhalova
- Department of Pathology & Molecular Medicine, Second Faculty of Medicine, Charles University & Motol University Hospital, Prague, Czech Republic
| | - Roman Kodet
- Department of Pathology & Molecular Medicine, Second Faculty of Medicine, Charles University & Motol University Hospital, Prague, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
73
|
Cerovska E, Elsnerova K, Vaclavikova R, Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin Drug Metab Toxicol 2017; 13:741-753. [PMID: 28511565 DOI: 10.1080/17425255.2017.1332179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ovarian cancer has the highest mortality rate of all cancers in women. There is currently no effective method for early diagnosis, limiting the precision of clinical expectations. Predictions of therapeutic efficacy are currently not available either. Specifically, the development of chemoresistance against conventional chemotherapy poses a fundamental complication. Some membrane transporters have been reported to influence chemoresistance, which is often associated with a poor prognosis. Areas covered: The aim of this article is to review the existing information about membrane transporters and their role in both ovarian cancer chemoresistance and its outcomes. We then highlight limitations of current methodologies and suggest alternatives providing avenues for future research. Expert opinion: Membrane transporters play an important role in development of chemoresistance and affect prognosis of ovarian cancer patients; however, due to variations in methodology and in patient populations, their specific roles have yet to be clarified. For further evaluation of the clinical utility of membrane transporters, it is essential to validate results and improve methods for marker assessment across laboratories. A promising area for future research is to identify the genetic variability in potential markers in peripheral blood. These markers would then stratify patients into defined groups for optimal intervention.
Collapse
Affiliation(s)
- Ela Cerovska
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic
| | - Katerina Elsnerova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,b 3rd Faculty of Medicine , Charles University , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Radka Vaclavikova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Pavel Soucek
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| |
Collapse
|
74
|
Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol 2017; 39:1010428317699800. [PMID: 28468577 DOI: 10.1177/1010428317699800] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.
Collapse
Affiliation(s)
- Pavel Dvorak
- 1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martin Pesta
- 1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- 2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
75
|
Pan X, Yang X, Zang J, Zhang S, Huang N, Guan X, Zhang J, Wang Z, Li X, Lei X. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins. Oncol Lett 2017; 13:4785-4793. [PMID: 28599480 PMCID: PMC5453003 DOI: 10.3892/ol.2017.6049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3′-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.
Collapse
Affiliation(s)
- Xia Pan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jinglei Zang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Si Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Nan Huang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinxin Guan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jianhua Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhihui Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
76
|
Kim S, Jhong JH, Lee J, Koo JY. Meta-analytic support vector machine for integrating multiple omics data. BioData Min 2017; 10:2. [PMID: 28149325 PMCID: PMC5270233 DOI: 10.1186/s13040-017-0126-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Of late, high-throughput microarray and sequencing data have been extensively used to monitor biomarkers and biological processes related to many diseases. Under this circumstance, the support vector machine (SVM) has been popularly used and been successful for gene selection in many applications. Despite surpassing benefits of the SVMs, single data analysis using small- and mid-size of data inevitably runs into the problem of low reproducibility and statistical power. To address this problem, we propose a meta-analytic support vector machine (Meta-SVM) that can accommodate multiple omics data, making it possible to detect consensus genes associated with diseases across studies. RESULTS Experimental studies show that the Meta-SVM is superior to the existing meta-analysis method in detecting true signal genes. In real data applications, diverse omics data of breast cancer (TCGA) and mRNA expression data of lung disease (idiopathic pulmonary fibrosis; IPF) were applied. As a result, we identified gene sets consistently associated with the diseases across studies. In particular, the ascertained gene set of TCGA omics data was found to be significantly enriched in the ABC transporters pathways well known as critical for the breast cancer mechanism. CONCLUSION The Meta-SVM effectively achieves the purpose of meta-analysis as jointly leveraging multiple omics data, and facilitates identifying potential biomarkers and elucidating the disease process.
Collapse
Affiliation(s)
- SungHwan Kim
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea.,Department of Statistics, Keimyung University, Dalseoku, Daegu, 42601 South Korea
| | - Jae-Hwan Jhong
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea
| | - JungJun Lee
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea
| | - Ja-Yong Koo
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea
| |
Collapse
|
77
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
78
|
A novel mechanism governing the transcriptional regulation of ABC transporters in MDR cancer cells. Drug Deliv Transl Res 2017; 7:276-285. [DOI: 10.1007/s13346-016-0353-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
79
|
Zhang Q, Liang Z, Gao Y, Teng M, Niu L. Differentially expressed mitochondrial genes in breast cancer cells: Potential new targets for anti-cancer therapies. Gene 2017; 596:45-52. [DOI: 10.1016/j.gene.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
|
80
|
Brynychova V, Hlavac V, Ehrlichova M, Vaclavikova R, Nemcova-Furstova V, Pecha V, Trnkova M, Mrhalova M, Kodet R, Vrana D, Gatek J, Bendova M, Vernerova Z, Kovar J, Soucek P. Transcript expression and genetic variability analysis of caspases in breast carcinomas suggests CASP9 as the most interesting target. Clin Chem Lab Med 2017; 55:111-122. [PMID: 27327132 DOI: 10.1515/cclm-2016-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Apoptosis plays a critical role in cancer cell survival and tumor development. We provide a hypothesis-generating screen for further research by exploring the expression profile and genetic variability of caspases (2, 3, 7, 8, 9, and 10) in breast carcinoma patients. This study addressed isoform-specific caspase transcript expression and genetic variability in regulatory sequences of caspases 2 and 9. METHODS Gene expression profiling was performed by quantitative real-time PCR in tumor and paired non-malignant tissues of two independent groups of patients. Genetic variability was determined by high resolution melting, allelic discrimination, and sequencing analysis in tumor and peripheral blood lymphocyte DNA of the patients. RESULTS CASP3 A+B and S isoforms were over-expressed in tumors of both patient groups. The CASP9 transcript was down-regulated in tumors of both groups of patients and significantly associated with expression of hormonal receptors and with the presence of rs4645978-rs2020903-rs4646034 haplotype in the CASP9 gene. Patients with a low intratumoral CASP9A/B isoform expression ratio (predicted to shift equilibrium towards anti-apoptotic isoform) subsequently treated with adjuvant chemotherapy had a significantly shorter disease-free survival than those with the high ratio (p=0.04). Inheritance of CC genotype of rs2020903 in CASP9 was associated with progesterone receptor expression in tumors (p=0.003). CONCLUSIONS Genetic variability in CASP9 and expression of its splicing variants present targets for further study.
Collapse
|
81
|
Heng YJ, Lester SC, Tse GM, Factor RE, Allison KH, Collins LC, Chen YY, Jensen KC, Johnson NB, Jeong JC, Punjabi R, Shin SJ, Singh K, Krings G, Eberhard DA, Tan PH, Korski K, Waldman FM, Gutman DA, Sanders M, Reis-Filho JS, Flanagan SR, Gendoo DM, Chen GM, Haibe-Kains B, Ciriello G, Hoadley KA, Perou CM, Beck AH. The molecular basis of breast cancer pathological phenotypes. J Pathol 2016; 241:375-391. [PMID: 27861902 DOI: 10.1002/path.4847] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
The histopathological evaluation of morphological features in breast tumours provides prognostic information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic and predictive information. However, there is limited knowledge of the molecular basis of morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic and protein data to provide a comprehensive molecular profiling of morphological features in breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer Genome Atlas (TCGA). Morphological features were significantly associated with genomic alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene expression and/or reverse-phase protein assay subtype. Marked nuclear pleomorphism, necrosis, inflammation and a high mitotic count were associated with the basal-like subtype, and had a similar molecular basis. Omics-based signatures were constructed to predict morphological features. The association of morphology transcriptome signatures with overall survival in oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed by use of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset; signatures that remained prognostic in the METABRIC multivariate analysis were further evaluated in five additional datasets. The transcriptomic signature of poorly differentiated epithelial tubules was prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative breast cancer. This study provided new insights into the molecular basis of breast cancer morphological phenotypes. The integration of morphological with molecular data has the potential to refine breast cancer classification, predict response to therapy, enhance our understanding of breast cancer biology, and improve clinical management. This work is publicly accessible at www.dx.ai/tcga_breast. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yujing J Heng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Susan C Lester
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Gary Mk Tse
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | - Rachel E Factor
- Department of Pathology, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kimberly H Allison
- Department of Pathology, School of Medicine, Stanford Medical Center, Stanford University, Stanford, CA, USA
| | - Laura C Collins
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yunn-Yi Chen
- Department of Pathology, School of Medicine, University of California, San Francisco, CA, USA
| | - Kristin C Jensen
- Department of Pathology, School of Medicine, Stanford Medical Center, Stanford University, Stanford, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Nicole B Johnson
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jong Cheol Jeong
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rahi Punjabi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandra J Shin
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kamaljeet Singh
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, USA
| | - Gregor Krings
- Department of Pathology, School of Medicine, University of California, San Francisco, CA, USA
| | - David A Eberhard
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore
| | - Konstanty Korski
- Department of Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | - Frederic M Waldman
- Department of Laboratory Medicine, School of Medicine, University of California, San Francisco, CA, USA
| | - David A Gutman
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sydney R Flanagan
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deena Ma Gendoo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - Gregory M Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - Giovanni Ciriello
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Katherine A Hoadley
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew H Beck
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
82
|
Litviakov NV, Cherdyntseva NV, Tsyganov MM, Slonimskaya EM, Ibragimova MK, Kazantseva PV, Kzhyshkowska J, Choinzonov EL. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget 2016; 7:7829-41. [PMID: 26799285 PMCID: PMC4884957 DOI: 10.18632/oncotarget.6953] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/05/2015] [Indexed: 01/10/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is intensively used for the treatment of primary breast cancer. In our previous studies, we reported that clinical tumor response to NAC is associated with the change of multidrug resistance (MDR) gene expression in tumors after chemotherapy. In this study we performed a combined analysis of MDR gene locus deletions in tumor DNA, MDR gene expression and clinical response to NAC in 73 BC patients. Copy number variations (CNVs) in biopsy specimens were tested using high-density microarray platform CytoScanTM HD Array (Affymetrix, USA). 75%–100% persons having deletions of MDR gene loci demonstrated the down-regulation of MDR gene expression. Expression of MDR genes was 2–8 times lower in patients with deletion than in patients having no deletion only in post-NAC tumors samples but not in tumor tissue before chemotherapy. All patients with deletions of ABCB1 ABCB 3 ABCC5 gene loci – 7q21.1, 6p21.32, 3q27 correspondingly, and most patients having deletions in ABCC1 (16p13.1), ABCC2 (10q24), ABCG1 (21q22.3), ABCG2 (4q22.1), responded favorably to NAC. The analysis of all CNVs, including both amplification and deletion showed that the frequency of 13q14.2 deletion was 85% among patients bearing tumor with the deletion at least in one MDR gene locus versus 9% in patients with no deletions. Differences in the frequency of 13q14.2 deletions between the two groups were statistically significant (p = 2.03 ×10−11, Fisher test, Bonferroni-adjusted p = 1.73 × 10−8). In conclusion, our study for the first time demonstrates that deletion MDR gene loci can be used as predictive marker for tumor response to NAC.
Collapse
Affiliation(s)
- Nikolai V Litviakov
- Laboratory of Oncovirology, Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation
| | - Nadezhda V Cherdyntseva
- Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation.,Laboratory of Molecular Oncology and Immunology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Matvey M Tsyganov
- Laboratory of Oncovirology, Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation
| | - Elena M Slonimskaya
- Department of General Oncology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Marina K Ibragimova
- Laboratory of Oncovirology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Polina V Kazantseva
- Department of General Oncology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation.,Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eugeniy L Choinzonov
- Department of Head and Neck Cancer, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| |
Collapse
|
83
|
Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma. BMC Cancer 2016; 16:795. [PMID: 27733154 PMCID: PMC5062913 DOI: 10.1186/s12885-016-2826-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background This study addresses involvement of major 5-fluorouracil (5-FU) pathway genes in the prognosis of colorectal carcinoma patients. Methods Testing set and two validation sets comprising paired tumor and adjacent mucosa tissue samples from 151 patients were used for transcript profiling of 15 5-FU pathway genes by quantitative real-time PCR and DNA methylation profiling by high resolution melting analysis. Intratumoral molecular profiles were correlated with clinical data of patients. Protein levels of two most relevant candidate markers were assessed by immunoblotting. Results Downregulation of DPYD and upregulation of PPAT, UMPS, RRM2, and SLC29A1 transcripts were found in tumors compared to adjacent mucosa in testing and validation sets of patients. Low RRM2 transcript level significantly associated with poor response to the first-line palliative 5-FU-based chemotherapy in the testing set and with poor disease-free interval of patients in the validation set irrespective of 5-FU treatment. UPP2 was strongly methylated while its transcript absent in both tumors and adjacent mucosa. DPYS methylation level was significantly higher in tumor tissues compared to adjacent mucosa samples. Low intratumoral level of UPB1 methylation was prognostic for poor disease-free interval of the patients (P = 0.0002). The rest of the studied 5-FU genes were not methylated in tumors or adjacent mucosa. Conclusions The observed overexpression of several 5-FU activating genes and DPYD downregulation deduce that chemotherapy naïve colorectal tumors share favorable gene expression profile for 5-FU therapy. Low RRM2 transcript and UPB1 methylation levels present separate poor prognosis factors for colorectal carcinoma patients and should be further investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2826-8) contains supplementary material, which is available to authorized users.
Collapse
|
84
|
Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients. Biomed Pharmacother 2016; 83:857-864. [DOI: 10.1016/j.biopha.2016.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/21/2016] [Indexed: 11/23/2022] Open
|
85
|
Soucek P, Hlavac V, Elsnerova K, Vaclavikova R, Kozevnikovova R, Raus K. Whole exome sequencing analysis of ABCC8 and ABCD2 genes associating with clinical course of breast carcinoma. Physiol Res 2016; 64:S549-57. [PMID: 26681085 DOI: 10.33549/physiolres.933212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to introduce methods for exome sequencing of two ATP-binding cassette (ABC) transporters ABCC8 and ABCD2 recently suggested to play a putative role in breast cancer progression and prognosis of patients. We performed next generation sequencing targeted at analysis of all exons in ABCC8 and ABCD2 genes and surrounding noncoding sequences in blood DNA samples from 24 patients with breast cancer. The revealed alterations were characterized by in silico tools. We then compared the most frequent functionally relevant polymorphism rs757110 in ABCC8 with clinical data of patients. In total, the study identified 113 genetic alterations (>70 % novel ones) in both genes. Of these alterations, 83 were noncoding, 13 synonymous, 10 frameshifts and 7 were missense alterations. Four in silico programs predicted pathogenicity of two polymorphisms and four newly identified alterations. Rs757110 polymorphism in ABCC8 did not significantly associate with clinical data of the patients. In conclusion, exome sequencing identified several functionally relevant alterations in ABCC8 and ABCD2 genes that may further be used for a larger follow-up study aiming to assess their clinical significance.
Collapse
Affiliation(s)
- P Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
| | | | | | | | | | | |
Collapse
|
86
|
Němcová-Fürstová V, Kopperová D, Balušíková K, Ehrlichová M, Brynychová V, Václavíková R, Daniel P, Souček P, Kovář J. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharmacol 2016; 310:215-228. [PMID: 27664577 DOI: 10.1016/j.taap.2016.09.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/02/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Abstract
Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100nM and 300nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells.
Collapse
Affiliation(s)
- Vlasta Němcová-Fürstová
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Dana Kopperová
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Ehrlichová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Veronika Brynychová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Petr Daniel
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Jan Kovář
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
87
|
Abstract
ATP-binding cassette (ABC) transporters, belonging to the family D, are expressed in peroxisomes, endoplasmic reticulum or lysosomes. ABCD transporters play a role in transport of lipids, bile acids and vitamin B12 and associate with peroxisomal disorders. ABCD1 performs transport of coenzyme A esters of very-long-chain fatty acids (VLCFA) in peroxisomes and a number of mutations in ABCD1 gene were linked to an X-linked adrenoleucodystrophy (X-ALD). The role of ABCD transporters in tumour growth has not been studied in detail, but there is some evidence that ABCDs levels differ between undifferentiated stem or tumour cells and differentiated cells suggesting a possible link to tumorigenesis. In this mini-review, we discuss the available information about the role of ABCD transporters in cancer.
Collapse
|
88
|
Protein expression of ATP-binding cassette transporters ABCC10 and ABCC11 associates with survival of colorectal cancer patients. Cancer Chemother Pharmacol 2016; 78:595-603. [PMID: 27468921 DOI: 10.1007/s00280-016-3114-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study investigated the prognostic importance of protein expression of ATP-binding cassette (ABC) transporters ABCC10 and ABCC11 in colorectal cancer. METHODS Protein content of ABCC10 and ABCC11 was assessed in tumor tissue blocks of 140 colorectal cancer patients and associated with survival of patients with regard to 5-fluorouracil-based therapy. RESULTS Low ABCC10 protein content in tumors increased hazard ratio of patient's death more than three times in comparison with high ABCC10-expressing tumors (P = 0.004). In contrast, the low ABCC11 content increased the hazard ratio of cancer recurrence in patients almost four times (P = 0.016). Analysis of patients treated with regimens based on 5-fluorouracil revealed that patients with low ABCC11 content in their tumors had shorter disease-free interval than those with higher content (P = 0.024). CONCLUSIONS The present study shows for the first time that the protein expression of ABCC10 significantly associates with overall survival and the expression of ABCC11 with disease-free interval of colorectal cancer patients and provides strong impulse for further validation of their prognostic value in colorectal cancer.
Collapse
|
89
|
Araújo TM, Seabra AD, Lima EM, Assumpção PP, Montenegro RC, Demachki S, Burbano RM, Khayat AS. Recurrent amplification of RTEL1 and ABCA13 and its synergistic effect associated with clinicopathological data of gastric adenocarcinoma. Mol Cytogenet 2016; 9:52. [PMID: 27366209 PMCID: PMC4928298 DOI: 10.1186/s13039-016-0260-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite progression in treatment of gastric cancer, prognosis of patients remains poor, in part due to the low rate of diagnosis during its early stages. This paradigm implies the necessity to identify molecular biomarkers for early gastric cancer diagnosis, as well as for disease monitoring, thus contributing to the development of new therapeutic approaches. In a previous study, performed by array-Comparative Genomic Hybridization, we described for the first time in literature recurrent amplification of RTEL1 and ABCA13 genes in gastric cancer. Thus, the aim of the present study was to validate recurrent amplification of RTEL1 and ABCA13 genes and associate CNV status with clinicopathological data. FINDINGS Results showed RTEL1 and ABCA13 amplification in 38 % of samples. Statistical analysis demonstrated that RTEL amplification is more common in older patients and more associated with intestinal type and ABCA13 amplification increases the risk of lymph node metastasis and is more common in men. Co-amplification of these genes showed a significant association with advanced staging. CONCLUSIONS aCGH is a very useful tool for investigating novel genes associated with carcinogenesis and RTEL1 amplification may be important for the development of gastric cancer in older patients, besides being a probable event contributing for chromosomal instability in intestinal gastric carcinogenesis. ABCA13 amplification may have age-specific function and could be considered a useful marker for predicting lymph node metastasis in resected gastric cancer patients in early stage. Lastly, RTEL1 and ABCA13 synergistic effect may be considered as a putative marker for advanced staging in gastric cancer patients.
Collapse
Affiliation(s)
- T. M. Araújo
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - A. D. Seabra
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - E. M. Lima
- />Molecular Biology Department, Federal University of Paraíba, João Pessoa, 58051-900 Paraíba Brazil
| | - P. P. Assumpção
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - R. C. Montenegro
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - S. Demachki
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - R. M. Burbano
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - A. S. Khayat
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| |
Collapse
|
90
|
Han X, Tian Y, Tian D. Tumor metastatic promoter ABCE1 interacts with the cytoskeleton protein actin and increases cell motility. Oncol Rep 2016; 35:3623-9. [PMID: 27109616 DOI: 10.3892/or.2016.4751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
ABCE1, a member of the ATP-binding cassette (ABC) family, is a candidate tumor metastatic promoter in lung cancer. Overexpression of ABCE1 is correlated with aggressive growth and metastasis in lung cancer cells. However, the exact mechanism remains unclear. In the present study, GST pull-down assay provided evidence of the possible interaction between ABCE1 and β-actin using GST-ABCE1 as a bait protein. Co-immunoprecipitation manifested ABCE1 formed complexes with β-actin in vivo. ABCE1 overexpression significantly increased the migration of lung cancer cells which may be attributed to the promotion of F-actin rearrangements. Taken together, these data suggest that overexpression of ABCE1 produces an obvious effect on the motility of lung cancer cells through cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xu Han
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dali Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
91
|
Karatas OF, Guzel E, Duz MB, Ittmann M, Ozen M. The role of ATP-binding cassette transporter genes in the progression of prostate cancer. Prostate 2016; 76:434-44. [PMID: 26708806 DOI: 10.1002/pros.23137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/30/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most commonly diagnosed neoplasm and the second leading cause of cancer-related death among men in developed countries. There is no clear evidence showing the success of current screening tests in reducing mortality of PCa. In this study, we aimed to profile expressions of nine ABC transporters, ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10, and ABCF2, in recurrent, non-recurrent PCa and normal prostate tissues. METHODS A total of 77 (39 recurrent, 38 non-recurrent) radical prostatectomy and 20 normal prostate samples, obtained from Baylor College of Medicine Prostate Cancer program, were included into the study and divided into two independent groups as test and validation sample sets. Differential expression of selected ABC transporters was assessed using quantitative real-time PCR (qRT-PCR). Pearson's correlation test, receiver operating characteristics (ROC) analysis and Kaplan-Meier test were used for statistical analysis. RESULTS QRT-PCR results demonstrated the elevated expression of ABCA5, ABCB1, ABCB6, ABCC1, and ABCC2 as well as reduced expression of ABCC3 in PCa samples compared to normal prostate tissues. In addition, we found deregulation of ABCB1, ABCB6, ABCC3, and ABCC10 in recurrent PCa samples and validated differential expression of ABCB6, ABCC3, and ABCC10 in recurrent PCa compared to non-recurrent PCa. Pearson's correlation, ROC and Kaplan-Meier analysis revealed the power of these three ABC transporters for estimating prognosis of PCa. CONCLUSIONS We demonstrated differential expression of ABC transporters both in tumor versus normal and recurrent versus non-recurrent comparisons. Our data suggest ABCB6, ABCC3, and ABCC10 as valuable predictors of PCa progression.
Collapse
Affiliation(s)
- Omer F Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Esra Guzel
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey
| | - Mehmet B Duz
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey VAMC, Houston, Texas
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
92
|
Gordillo GM, Biswas A, Khanna S, Spieldenner JM, Pan X, Sen CK. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells. J Biol Chem 2016; 291:10089-103. [PMID: 26961872 DOI: 10.1074/jbc.m115.688879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/28/2022] Open
Abstract
Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics.
Collapse
Affiliation(s)
- Gayle M Gordillo
- From the Department of Plastic Surgery, Davis Heart and Lung Research Institute, and
| | - Ayan Biswas
- From the Department of Plastic Surgery, Davis Heart and Lung Research Institute, and
| | - Savita Khanna
- Davis Heart and Lung Research Institute, and Department of Surgery
| | | | - Xueliang Pan
- Center for Biostatistics, Ohio State University Wexner Medical Center, Columbus, Ohio 43212
| | - Chandan K Sen
- Davis Heart and Lung Research Institute, and Department of Surgery
| |
Collapse
|
93
|
Elsnerova K, Mohelnikova-Duchonova B, Cerovska E, Ehrlichova M, Gut I, Rob L, Skapa P, Hruda M, Bartakova A, Bouda J, Vodicka P, Soucek P, Vaclavikova R. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma. Oncol Rep 2016; 35:2159-70. [PMID: 26820484 DOI: 10.3892/or.2016.4599] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/29/2015] [Indexed: 11/05/2022] Open
Abstract
Membrane transporters (such as ABCs, SLCs and ATPases) act in carcinogenesis and chemoresistance development, but their relevance for prognosis of epithelial ovarian cancer (EOC) remains poorly understood. We evaluated the gene expression profile of 39 ABC and 12 SLC transporters and three ATPases in EOC tissues and addressed their putative role in prognosis and clinical course of EOC patients. Relative gene expression in a set of primary EOC (n=57) and in control ovarian tissues (n=14) was estimated and compared with clinical data and survival of patients. Obtained data were validated in an independent set of patients (n=60). Six ABCs and SLC22A18 gene were significantly overexpressed in carcinomas when compared with controls, while expression of 12 ABCs, five SLCs, ATP7A and ATP11B was decreased. Expression of ABCA12, ABCC3, ABCC6, ABCD3, ABCG1 and SLC22A5 was higher in high grade serous carcinoma compared with other subtypes. ABCA2 gene expression significantly associated with EOC grade in both sets of patients. Notably, expression level of ABCA9, ABCA10, ABCC9 and SLC16A14 significantly associated with progression-free survival (PFS) of the disease in either pilot or validation sets. ABCG2 level associated with PFS in the pooled set of patients. In conclusion, ABCA2, ABCA9, ABCA10, ABCC9, ABCG2 and SLC16A14 present novel putative markers of EOC progression and together with the revealed relationship between ABCA12, ABCC3, ABCC6, ABCD3, ABCG1 and SLC22A5 expression, and high grade serous type of EOC should be further examined by larger follow-up study.
Collapse
Affiliation(s)
- Katerina Elsnerova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | | | - Ela Cerovska
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Marie Ehrlichova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Ivan Gut
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Second Faculty of Medicine and Motol University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Petr Skapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine and Motol University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Second Faculty of Medicine and Motol University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Alena Bartakova
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Pavel Vodicka
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
94
|
MRP1 knockdown down-regulates the deposition of collagen and leads to a reduced hypertrophic scar fibrosis. J Mol Histol 2015; 46:357-64. [PMID: 26092470 DOI: 10.1007/s10735-015-9629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/15/2015] [Indexed: 01/06/2023]
Abstract
Multidrug resistance-associated protein 1 (MRP1) belongs to ATP-binding cassette transporters family. The overexpression of MRP1 is predominantly related with the failure of chemo-radiotherapy in various tumors. However, its possible role in hypertrophic scar (HS) is hardly investigated. Here we showed that the mRNA level and protein expression of MRP1 were higher in HS and HS derived fibroblasts (HSFs) than that in normal skin (NS) and NS derived fibroblasts (NSFs). Immunohistochemistry and immunofluorescence showed that the percentage of positive cells was higher in HS and HSFs. Meanwhile, the co-localization of MRP1 and α-SMA was stronger in HS. MRP1 knockdown in HSFs provoked a significant reduction in the protein expressions of collagen 3 and α-SMA in vitro. Moreover, MRP1 siRNA transfection could decrease the deposition of collagen in cultured tissues ex vivo and inhibit the scar formation in rabbit ear scar model in vivo. H&E staining and Masson trichrome staining revealed thinner and more orderly arranged collagen fiber in the MRP1 siRNA transfection group. The appearance of scar was improved as well. All these results indicate that MRP1 plays an important role in the formation of HS, MRP1 knockdown could be a potential method to reduce the accumulation of collagen and to improve the abnormal deposition of extracellular matrix in HS, which indicates that down-regulation of MRP1 has the potential therapeutic effect in the treatment and prophylaxis of HS.
Collapse
|
95
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
96
|
Reznik E, Sander C. Extensive decoupling of metabolic genes in cancer. PLoS Comput Biol 2015; 11:e1004176. [PMID: 25961905 PMCID: PMC4427321 DOI: 10.1371/journal.pcbi.1004176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis requires the re-organization of metabolism to support malignant proliferation. We examine how the altered metabolism of cancer cells is reflected in the rewiring of co-expression patterns among metabolic genes. Focusing on breast and clear-cell kidney tumors, we report the existence of key metabolic genes which act as hubs of differential co-expression, showing significantly different co-regulation patterns between normal and tumor states. We compare our findings to those from classical differential expression analysis, and counterintuitively observe that the extent of a gene's differential co-expression only weakly correlates with its differential expression, suggesting that the two measures probe different features of metabolism. Focusing on this discrepancy, we use changes in co-expression patterns to highlight the apparent loss of regulation by the transcription factor HNF4A in clear cell renal cell carcinoma, despite no differential expression of HNF4A. Finally, we aggregate the results of differential co-expression analysis into a Pan-Cancer analysis across seven distinct cancer types to identify pairs of metabolic genes which may be recurrently dysregulated. Among our results is a cluster of four genes, all components of the mitochondrial electron transport chain, which show significant loss of co-expression in tumor tissue, pointing to potential mitochondrial dysfunction in these tumor types.
Collapse
Affiliation(s)
- Ed Reznik
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
97
|
Nymoen DA, Holth A, Hetland Falkenthal TE, Tropé CG, Davidson B. CIAPIN1 and ABCA13 are markers of poor survival in metastatic ovarian serous carcinoma. Mol Cancer 2015; 14:44. [PMID: 25889687 PMCID: PMC4336750 DOI: 10.1186/s12943-015-0317-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Background The objective of this study was to investigate the expression and clinical role of 14 genes previously shown to be associated with chemotherapy response and/or progression-free survival in a smaller series of ovarian serous carcinoma effusions. Methods Advanced-stage serous ovarian carcinoma effusions (n = 150) were analyzed for mRNA expression of AKR1C1, ABCA4, ABCA13, ABCB10, BIRC6, CASP9, CIAPIN1, FAS, MGMT, MUTYH, POLH, SRC, TBRKB and XPA using quantitative real-time PCR. mRNA expression was studied for association with clinicopathologic parameters, including chemotherapy response and survival. Results ABCA4 mRNA expression was significantly related to better (complete) chemotherapy response at diagnosis in the entire cohort (p = 0.018), whereas higher POLH mRNA levels were significantly related to better chemoresponse at diagnosis in analysis to 58 patients with pre-chemotherapy effusions treated with standard chemotherapy (carboplatin + paclitaxel; p = 0.023). In univariate survival analysis for patients with pre-chemotherapy effusions (n = 77), CIAPIN1 mRNA expression was significantly related to shorter overall (p = 0.007) and progression-free (p = 0.038) survival, whereas ABCA13 mRNA expression was significantly related to shorter OS (p = 0.024). Higher CIAPIN1 mRNA expression was an independent marker of poor overall survival in Cox multivariate analysis (p = 0.044). Conclusions Our data identify ABCA4 and POLH as markers of better chemotherapy response in metastatic serous carcinoma. CIAPIN1 and ABCA13 may be novel markers of poor outcome in pre-chemotherapy serous carcinoma effusions.
Collapse
Affiliation(s)
- Dag Andre Nymoen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway.
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway.
| | | | - Claes G Tropé
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway. .,University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway. .,University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| |
Collapse
|
98
|
Hlaváč V, Brynychová V, Václavíková R, Ehrlichová M, Vrána D, Pecha V, Trnková M, Kodet R, Mrhalová M, Kubáčková K, Gatěk J, Vážan P, Souček P. The role of cytochromes p450 and aldo-keto reductases in prognosis of breast carcinoma patients. Medicine (Baltimore) 2014; 93:e255. [PMID: 25526449 PMCID: PMC4603110 DOI: 10.1097/md.0000000000000255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabolism of anticancer drugs affects their antitumor effects. This study has investigated the associations of gene expression of enzymes metabolizing anticancer drugs with therapy response and survival of breast carcinoma patients. Gene expression of 13 aldo-keto reductases (AKRs), carbonyl reductase 1, and 10 cytochromes P450 (CYPs) was assessed using quantitative real-time polymerase chain reaction in tumors and paired adjacent nonneoplastic tissues from 68 posttreatment breast carcinoma patients. Eleven candidate genes were then evaluated in an independent series of 50 pretreatment patients. Protein expression of the most significant genes was confirmed by immunoblotting. AKR1A1 was significantly overexpressed and AKR1C1-4, KCNAB1, CYP2C19, CYP3A4, and CYP3A5 downregulated in tumors compared with control nonneoplastic tissues after correction for multiple testing. Significant association of CYP2B6 transcript levels in tumors with expression of hormonal receptors was found in the posttreatment set and replicated in the pretreatment set of patients. Significantly higher intratumoral levels of AKR1C1, AKR1C2, or CYP2W1 were found in responders to neoadjuvant chemotherapy compared with nonresponders. Patients with high AKR7A3 or CYP2B6 levels in the pretreatment set had significantly longer disease-free survival than patients with low levels. Protein products of AKR1C1, AKR1C2, AKR7A3, CYP3A4, and carbonyl reductase (CBR1) were found in tumors and those of AKR1C1, AKR7A3, and CBR1 correlated with their transcript levels. Small interfering RNA-directed knockdown of AKR1C2 or vector-mediated upregulation of CYP3A4 in MDA-MB-231 model cell line had no effect on cell proliferation after paclitaxel treatment in vitro. Prognostic and predictive roles of drug-metabolizing enzymes strikingly differ between posttreatment and pretreatment breast carcinoma patients. Mechanisms of action of AKR1C2, AKR7A3, CYP2B6, CYP3A4, and CBR1 should continue to be further followed in breast carcinoma patients and models.
Collapse
Affiliation(s)
- Viktor Hlaváč
- From the Toxicogenomics Unit (VH, VB, RV, ME, DV, PS), National Institute of Public Health; 3rd Faculty of Medicine (VH, VB, ME), Charles University, Prague; Department of Oncology (DV), Palacky University Medical School and Teaching Hospital, Olomouc; Institute for the Care for Mother and Child (VP); Biolab Praha, Ltd (MT); Department of Pathology and Molecular Medicine (RK, MM); Department of Oncology (KK), University Hospital Motol, Prague; Department of Surgery (JG), Hospital Atlas; Tomas Bata University (JG); and Department of Pathology (PV), VELAB Ltd, Zlin, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Cole SPC. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter. J Biol Chem 2014; 289:30880-8. [PMID: 25281745 DOI: 10.1074/jbc.r114.609248] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases.
Collapse
Affiliation(s)
- Susan P C Cole
- From the Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
100
|
Piórkowska K, Ropka-Molik K, Szmatoła T, Zygmunt K, Tyra M. Association of a new mobile element in predicted promoter region of ATP-binding cassette transporter 12 gene (ABCA12) with pig production traits. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|