51
|
Hu Y, Nishimura T, Zhang A, Notkins AL. Comment on: Torii et al. (2009) Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes 58:682-692. Diabetes 2009; 58:e8. [PMID: 19401431 DOI: 10.2337/db09-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
52
|
Loss of the transcriptional repressor PAG-3/Gfi-1 results in enhanced neurosecretion that is dependent on the dense-core vesicle membrane protein IDA-1/IA-2. PLoS Genet 2009; 5:e1000447. [PMID: 19343207 PMCID: PMC2657203 DOI: 10.1371/journal.pgen.1000447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/06/2009] [Indexed: 01/09/2023] Open
Abstract
It is generally accepted that neuroendocrine cells regulate dense core vesicle (DCV) biogenesis and cargo packaging in response to secretory demands, although the molecular mechanisms of this process are poorly understood. One factor that has previously been implicated in DCV regulation is IA-2, a catalytically inactive protein phosphatase present in DCV membranes. Our ability to directly visualize a functional, GFP-tagged version of an IA-2 homolog in live Caenorhabditis elegans animals has allowed us to capitalize on the genetics of the system to screen for mutations that disrupt DCV regulation. We found that loss of activity in the transcription factor PAG-3/Gfi-1, which functions as a repressor in many systems, results in a dramatic up-regulation of IDA-1/IA-2 and other DCV proteins. The up-regulation of DCV components was accompanied by an increase in presynaptic DCV numbers and resulted in phenotypes consistent with increased neuroendocrine secretion. Double mutant combinations revealed that these PAG-3 mutant phenotypes were dependent on wild type IDA-1 function. Our results support a model in which IDA-1/IA-2 is a critical element in DCV regulation and reveal a novel genetic link to PAG-3-mediated transcriptional regulation. To our knowledge, this is the first mutation identified that results in increased neurosecretion, a phenotype that has clinical implications for DCV-mediated secretory disorders. Within secretory cells, hormones are packaged into vesicles (called DCVs) that are released upon stimulation. The number of DCVs is regulated to meet the secretory demands of the cell by a mechanism that is poorly understood, although a protein in the membrane of DCVs, called IA-2, is thought to play a role. A genetic screen in the nematode C. elegans is used, here, to find mutations that mis-regulate the corresponding worm protein called IDA-1. Capitalizing on the simple neuroanatomy of the nematode and its transparency, we visualize IDA-1 protein levels directly in the animal using a fluorescent tag. We find that mutations in the transcription factor PAG-3/Gfi-1 result in elevated levels of IDA-1 protein, increased numbers of presynaptic DCVs, and behaviors consistent with increased neurosecretion. Our results demonstrate that IDA-1/IA-2 protein levels correlate with the biogenesis, utilization, or stability of DCVs. We propose that PAG-3 normally down regulates the production of IDA-1, thus serving as part of the mechanism underlying DCV regulation. This is the first reported mutation that increases DCV numbers and secretion, offering insight into DCV homeostasis and a potential therapeutic target for diseases that would benefit from a boost in neuroendocrine secretion.
Collapse
|
53
|
Torii S, Saito N, Kawano A, Hou N, Ueki K, Kulkarni RN, Takeuchi T. Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes 2009; 58:682-92. [PMID: 19073770 PMCID: PMC2646067 DOI: 10.2337/db08-0970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic beta-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in beta-cells by an RNA interference technique. RESEARCH DESIGN AND METHODS Adenovirus-mediated expression of short hairpin RNA specific for phogrin (shPhogrin) was conducted using cultured beta-cell lines and mouse islets. Both glucose-stimulated insulin secretion and cell proliferation rate were determined in the phogrin-knockdown cells. Furthermore, protein expression was profiled in these cells. To see the binding partner of phogrin in beta-cells, coimmunoprecipitation analysis was carried out. RESULTS Adenoviral expression of shPhogrin efficiently decreased its endogenous expression in pancreatic beta-cells. Silencing of phogrin in beta-cells abrogated the glucose-mediated mitogenic effect, which was accompanied by a reduction in the level of insulin receptor substrate 2 (IRS2) protein, without any changes in insulin secretion. Phogrin formed a complex with insulin receptor at the plasma membrane, and their interaction was promoted by high-glucose stimulation that in turn led to stabilization of IRS2 protein. Corroboratively, phogrin knockdown had no additional effect on the proliferation of beta-cell line derived from the insulin receptor-knockout mouse. CONCLUSIONS Phogrin is involved in beta-cell growth via regulating stability of IRS2 protein by the molecular interaction with insulin receptor. We propose that phogrin and IA-2 function as an essential regulator of autocrine insulin action in pancreatic beta-cells.
Collapse
Affiliation(s)
- Seiji Torii
- Secretion Biology Lab, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
54
|
Torii S. Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr J 2009; 56:639-48. [PMID: 19550073 DOI: 10.1507/endocrj.k09e-157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IA-2 (also known as islet cell antigen ICA-512) and IA-2 beta (also known as phogrin, phosphatase homologue in granules of insulinoma) are major autoantigens in insulin-dependent diabetes mellitus (IDDM). Autoantibodies against both proteins are expressed years before clinical onset, and they become predictive markers for high-risk subjects. However, the role of these genes in the IDDM pathogenesis has been reported fairly negative by recent studies. IA-2 and IA-2 beta are type I transmembrane proteins that possess one inactive protein-tyrosine phosphatase (PTP) domain in the cytoplasmic region, and act as one of the constituents of regulated secretory pathways in various neuroendocrine cell types including pancreatic beta-cells. Existence of IA-2 homologues in different species suggests a fundamental role in neuroendocrine function. Studies of knockout animals have shown their involvement in maintaining hormone content, however, their specific steps in the secretory pathway IA-2 functions as well as their molecular mechanisms in the hormone content regulation are still unknown. More recent studies have suggested a novel function showing that they contribute to pancreatic beta-cell growth. This review attempts to show the possible biological functions of IA-2 family, focusing on their expression and localization in the neuroendocrine cells.
Collapse
Affiliation(s)
- Seiji Torii
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| |
Collapse
|
55
|
Kim SM, Theilig F, Qin Y, Cai T, Mizel D, Faulhaber-Walter R, Hirai H, Bachmann S, Briggs JP, Notkins AL, Schnermann J. Dense-core vesicle proteins IA-2 and IA-2{beta} affect renin synthesis and secretion through the {beta}-adrenergic pathway. Am J Physiol Renal Physiol 2008; 296:F382-9. [PMID: 19019914 DOI: 10.1152/ajprenal.90543.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
IA-2 and IA-2beta, major autoantigens in type 1 diabetes, are transmembrane proteins in dense-core vesicles, and their expression influences the secretion of hormones and neurotransmitters. The present experiments were performed to examine whether IA-2 and IA-2beta modulate the release of renin from dense-core vesicles of juxtaglomerular granular cells in the kidney. Plasma renin concentration (PRC; ng angiotensin I.ml(-1).h(-1)) was significantly reduced in mice with null mutations in IA-2, IA-2beta, or both IA-2 and IA-2beta compared with wild-type mice (876 +/- 113, 962 +/- 130, and 596 +/- 82 vs. 1,367 +/- 93; P < 0.01, P < 0.02, and P < 0.001). Renin mRNA levels were reduced to 26.4 +/- 5.1, 39 +/- 5.4, and 35.3 +/- 5.5% of wild-type in IA-2-/-, IA-2beta-/-, and IA-2/IA-2beta-/- mice. Plasma aldosterone levels were not significantly different among genotypes. The regulation of PRC by furosemide and salt intake, and of aldosterone by salt intake, was maintained in all genotypes. IA-2 and IA-2beta expression did not colocalize with renin but showed overlapping immunoreactivity with tyrosine hydroxylase. While propranolol reduced PRC in wild-type mice, it had no effect on PRC in IA-2/ IA-2beta-/- mice. Renal tyrosine hydroxylase mRNA and immunoreactivity were reduced in IA-2/IA-2beta-/- mice as was the urinary excretion of catecholamines. We conclude that IA-2 and IA-2beta are required to maintain normal levels of renin expression and renin release, most likely by permitting normal rates of catecholamine release from sympathetic nerve terminals.
Collapse
Affiliation(s)
- Soo Mi Kim
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Rm. 4D51, 10 Center Dr.-MSC 1370, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Conserved T cell receptor alpha-chain induces insulin autoantibodies. Proc Natl Acad Sci U S A 2008; 105:10090-4. [PMID: 18626021 DOI: 10.1073/pnas.0801648105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A fundamental question is what are the molecular determinants that lead to spontaneous preferential targeting of specific autoantigens in autoimmune diseases, such as the insulin B:9-23 peptide sequence in type 1 diabetes. Anti-insulin B:9-23 T cell clones isolated from prediabetic NOD islets have a conserved Valpha-segment/Jalpha-segment, but no conservation of the alpha-chain N region and no conservation of the Vbeta-chain. Here, we show that the conserved T cell receptor alpha-chain generates insulin autoantibodies when transgenically or retrogenically introduced into mice without its corresponding Vbeta. We suggest that a major part of the mystery as to why islet autoimmunity develops relates to recognition of a primary insulin peptide by a conserved alpha chain T cell receptor.
Collapse
|
57
|
Abstract
T lymphocytes' crucial role in the autoimmune process leading to insulin-dependent type 1 diabetes is now universally recognized. Research focuses on identifying pathogenic and nonpathogenic T cells, understanding how they are primed and expanded, characterizing their antigen specificity, and ultimately on devising strategies to blunt their autoaggressive action. In this review, we focus on recent progress identified in three different areas. Results obtained with transgenic mice acknowledge proinsulin's unique role in triggering autoimmunity and suggest that other beta-cell proteins are recognized as a result of epitope spreading, at least in the nonobese diabetic mouse. Progress has also been achieved by developing and validating reliable CD4+ and CD8+ T-cell tests that may prove valuable for diagnostic and prognostic purposes in the near future. Finally, recent results provide novel and important guidance for manipulating autoreactive T-cell responses against beta-cell antigens.
Collapse
|
58
|
Hendriks WJAJ, Elson A, Harroch S, Stoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 2008; 275:816-30. [DOI: 10.1111/j.1742-4658.2008.06249.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
59
|
|
60
|
Liu E, Li M, Jasinski J, Kobayashi M, Gianani R, Nakayama M, Eisenbarth GS. Deleting islet autoimmunity. Cell Biochem Biophys 2007; 48:177-82. [PMID: 17709887 DOI: 10.1007/s12013-007-0022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Even though there are numerous autoantigens for type 1 diabetes, current evidence suggests that a single autoantigen, namely insulin, is responsible for the key initiating event in autoimmunity. If a single autoantigen is necessary for triggering the autoimmune process, then antigen-specific therapy to block or delete the immune response against that autoantigen before epitope spreading occurs, may become a larger focus of future immunotherapeutic strategies. In this article, we review current literature regarding insulin as an autoantigen and potential approaches to deleting insulin-reactive T cells through the use of peptide vaccines and targeted T cell receptor immunizations.
Collapse
Affiliation(s)
- Edwin Liu
- Barbara Davis Center for Childhood Diabetes, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007; 148:1-16. [PMID: 17349009 PMCID: PMC1868845 DOI: 10.1111/j.1365-2249.2006.03244.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
T cell epitopes represent the molecular code words through which the adaptive immune system communicates. In the context of a T cell-mediated autoimmune disease such as type 1 diabetes, CD4 and CD8 T cell recognition of islet autoantigenic epitopes is a key step in the autoimmune cascade. Epitope recognition takes place during the generation of tolerance, during its loss as the disease process is initiated, and during epitope spreading as islet cell damage is perpetuated. Epitope recognition is also a potentially critical element in therapeutic interventions such as antigen-specific immunotherapy. T cell epitope discovery, therefore, is an important component of type 1 diabetes research, in both human and murine models. With this in mind, in this review we present a comprehensive guide to epitopes that have been identified as T cell targets in autoimmune diabetes. Targets of both CD4 and CD8 T cells are listed for human type 1 diabetes, for humanized [human leucocyte antigen (HLA)-transgenic] mouse models, and for the major spontaneous disease model, the non-obese diabetic (NOD) mouse. Importantly, for each epitope we provide an analysis of the relative stringency with which it has been identified, including whether recognition is spontaneous or induced and whether there is evidence that the epitope is generated from the native protein by natural antigen processing. This analysis provides an important resource for investigating diabetes pathogenesis, for developing antigen-specific therapies, and for developing strategies for T cell monitoring during disease development and therapeutic intervention.
Collapse
Affiliation(s)
- T P Di Lorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | |
Collapse
|
62
|
Faideau B, Lotton C, Lucas B, Tardivel I, Elliott JF, Boitard C, Carel JC. Tolerance to proinsulin-2 is due to radioresistant thymic cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:53-60. [PMID: 16785498 DOI: 10.4049/jimmunol.177.1.53] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proinsulin is a key Ag in type 1 diabetes, but the mechanisms regulating proinsulin immune tolerance are unknown. We have shown that preproinsulin-2 gene-deficient mice (proins-2(-/-)) are intolerant to proinsulin-2. In this study, we analyzed the mechanisms underlying T cell-mediated tolerance to proinsulin-2 in 129/Sv nonautoimmune mice. The expression of one proinsulin-2 allele, whatever its parental origin, was sufficient to maintain tolerance. The site of proinsulin-2 expression relevant to tolerance was evaluated in thymus and bone marrow chimeras. CD4+ T cell reactivity to proinsulin-2 was independent of proinsulin-2 expression in radiation-sensitive bone marrow-derived cells. A wt thymus restored tolerance in proins-2(-/-) mice. Conversely, the absence of the preproinsulin-2 gene in radioresistant thymic cells was sufficient to break tolerance. Although chimeric animals had proinsulin-2-reactive CD4+ T cells in their peripheral repertoire, they displayed no insulitis or insulin Abs, suggesting additional protective mechanisms. In a model involving transfer to immunodeficient (CD3epsilon(-/-)) mice, naive and proinsulin-2-primed CD4+ T cells were not activated, but could be activated by immunization regardless of whether the recipient mice expressed proinsulin-2. Furthermore, we could not identify a role for putative specific T cells regulating proinsulin-2-reactive CD4+ T in transfer experiments. Thus, proinsulin-2 gene expression by radioresistant thymic epithelial cells is involved in the induction of self-tolerance, and additional factors are required to induce islet abnormalities.
Collapse
Affiliation(s)
- Béatrice Faideau
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 561, Groupe Hospitalier Cochin-Saint Vincent de Paul, 82 avenue Denfert Rochereau, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Autoimmune diseases such as the diabetes that develops in NOD mice depend on immunologic recognition of specific autoantigens, but recognition can result in a pathogenic or protective T cell response. A study by Du et al. in this issue of the JCI demonstrates that TGF-beta signaling by T cells recognizing the insulin peptide B:9-23 is essential for such protection and that this inhibitory cytokine functions in both a paracrine and an autocrine manner (see the related article beginning on page 1360). We propose that the insulin peptide B:9-23 and a conserved TCR motif form an "immunologic homunculus" underlying the relatively common targeting of insulin by T cells that, as demonstrated by the study of Du and coworkers, results in a protective T cell response, or diabetes, as shown by other investigators, for related T cell receptors.
Collapse
Affiliation(s)
- Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, USA
| | | |
Collapse
|
64
|
Piquer S, Valera L, Lampasona V, Jardin-Watelet B, Roche S, Granier C, Roquet F, Christie MR, Giordano T, Malosio ML, Bonifacio E, Laune D. Monoclonal antibody 76F distinguishes IA-2 from IA-2beta and overlaps an autoantibody epitope. J Autoimmun 2006; 26:215-22. [PMID: 16503116 DOI: 10.1016/j.jaut.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 11/22/2022]
Abstract
IA-2 and IA-2beta are highly related proteins that are autoantigens in type 1 diabetes, and provide a model for developing reagents and assays that distinguish similar proteins with unique autoantibody epitopes. Monoclonal antibodies (mAb) to IA-2 and IA-2beta were prepared and tested for their ability to bind to the related proteins and their ability to compete for specific autoantibody epitope binding by sera from patients with type 1 diabetes. Monoclonal antibodies that specifically bound IA-2 (76F) or bound both IA-2 and IA-2beta (A9) were isolated and characterized. 76F mAb recognized IA-2 of human, rat and mouse origin in native and denatured forms and had an epitope specificity for residues 626-630 (FEYQD) which are found in the juxtamembrane (JM) region of human and mouse IA-2, but not IA-2beta. This region overlaps with the autoantibody epitope JM2. Binding to the 76F monoclonal antibody was specifically inhibited by sera with antibodies to the JM2 epitope but not with antibodies to the adjacent JM1 epitope, indicating that unique epitopes can be distinguished by this approach. 76F mAb has the unique property to distinguish between the two closely related autoantigens IA-2 and IA-2beta by targeting an IA-2 specific epitope of the juxtamembrane region. The findings define an approach to develop assays for specific antibody epitope measurements which may be relevant for disease prognosis and monitoring intervention therapies.
Collapse
Affiliation(s)
- Sandra Piquer
- Immunology of Diabetes Unit, Department of Medicine I, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kubosaki A, Nakamura S, Clark A, Morris JF, Notkins AL. Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2beta causes female infertility. Endocrinology 2006; 147:811-5. [PMID: 16269463 DOI: 10.1210/en.2005-0638] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Female infertility is a worldwide problem affecting 10-15% of the population. The cause of the infertility in many cases is not known. In the present report, we demonstrate that alterations in two transmembrane structural proteins, IA-2 and IA-2beta, located in dense core secretory vesicles (DCV) of many endocrine and neuroendocrine cells, can result in female infertility. IA-2 and IA-2beta are best known as major autoantigens in type 1 diabetes, but their normal function has remained an enigma. Recently we showed in mice that deletion of IA-2 and/or IA-2beta results in impaired insulin secretion and glucose intolerance. We now report that double knockout (DKO), but not single knockout, female mice are essentially infertile. Vaginal smears showed a totally abnormal estrous cycle, and examination of the ovaries revealed normal-appearing oocytes but the absence of corpora lutea. The LH surge that is required for ovulation occurred in wild-type mice but not in DKO mice. Additional studies showed that the LH level in the pituitary of DKO female mice was decreased compared with wild-type mice. Treatment of DKO females with gonadotropins restored corpora lutea formation. In contrast to DKO female mice, DKO male mice were fertile and LH levels in the serum and pituitary were within the normal range. From these studies we conclude that the DCV proteins, IA-2 and IA-2beta, play an important role in LH secretion and that alterations in structural proteins of DCV can result in female infertility.
Collapse
Affiliation(s)
- Atsutaka Kubosaki
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
66
|
Doi A, Shono T, Nishi M, Furuta H, Sasaki H, Nanjo K. IA-2beta, but not IA-2, is induced by ghrelin and inhibits glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 2006; 103:885-90. [PMID: 16418280 PMCID: PMC1347964 DOI: 10.1073/pnas.0502470102] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ghrelin is a newly discovered peptide and an endogenous ligand for growth hormone (GH) secretagogue (GHS) receptor. It has been shown to possess various central and peripheral effects, including GH secretion, food intake, and gastric and cardiac effects. Ghrelin and the GHS receptor are expressed also in pancreatic islets. We have identified several ghrelin-induced genes by PCR-select subtraction methods, among which is a beta-cell autoantigen for type 1 diabetes, IA-2beta. Administration of ghrelin increased IA-2beta mRNA in mouse brain, pancreas, and insulinoma cell lines (MIN6 and betaTC3). However, the expression of IA-2, another structurally related beta-cell autoantigen, was not induced by ghrelin. Administration of ghrelin or overexpression of IA-2beta, but not overexpression of IA-2, inhibited glucose-stimulated insulin secretion in MIN6 insulinoma cells and, moreover, inhibition of IA-2beta expression by the RNA interference technique ameliorated ghrelin's inhibitory effects on glucose-stimulated insulin secretion. These findings strongly suggest that inhibitory effects of ghrelin on glucose-stimulated insulin secretion are at least partly due to increased expression of IA-2beta induced by ghrelin. Our data demonstrate the link among ghrelin, IA-2beta, and glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Asako Doi
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Kubosaki A, Nakamura S, Notkins AL. Dense core vesicle proteins IA-2 and IA-2beta: metabolic alterations in double knockout mice. Diabetes 2005; 54 Suppl 2:S46-51. [PMID: 16306340 DOI: 10.2337/diabetes.54.suppl_2.s46] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IA-2 and IA-2beta are members of the transmembrane protein tyrosine phosphatase family located in dense core vesicles of neuroendocrine cells, including the beta-cells of pancreatic islets. In the present study, by mating C57BL/6Nci IA-2(+/-) with IA-2beta(+/-) mice, we generated double knockout mice (IA-2(-/-)/IA-2beta(-/-)) to study the effect of the combined deletion of these two proteins on insulin secretion and blood glucose levels. The double knockout mice appeared healthy at birth and showed normal growth and development. Histological examination and immunostaining for insulin, glucagon, somatostatin, and pancreatic polypeptide revealed no difference between the double knockout and wild-type mice. Nonfasting blood glucose and insulin levels also were within the normal range. However, compared with the wild-type mice, the double knockout mice showed glucose intolerance and an absent first-phase insulin release curve. No evidence of insulin resistance was observed nor were there alterations in fasting blood glucose, insulin, or leptin levels in the double knockout mice maintained on a high-fat diet compared with the wild-type mice maintained on the same diet. In addition, to determine whether the combined deletion of IA-2 and IA-2beta played any role in the development of diabetes in NOD mice, we generated double knockout mice on the NOD/LtJ background. The incidence of diabetes in these mice was not significantly different than that in the wild-type mice. Taken together, our experiments show that the dense core vesicle proteins IA-2 and IA-2beta, alone or in combination, are involved in insulin secretion, but neither alone nor in combination are they required for the development of diabetes in NOD mice.
Collapse
Affiliation(s)
- Atsutaka Kubosaki
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30/Room 106, 30 Convent Dr., MSC 4322, Bethesda, Maryland 20892-4322, USA
| | | | | |
Collapse
|
68
|
Cai T. Are IA-2 and RESP18 Involved in Trait of Blood Pressure? Hypertension 2005; 46:e18; author reply e18-9. [PMID: 16216981 DOI: 10.1161/01.hyp.0000188174.83586.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Torii S, Saito N, Kawano A, Zhao S, Izumi T, Takeuchi T. Cytoplasmic Transport Signal is Involved in Phogrin Targeting and Localization to Secretory Granules. Traffic 2005; 6:1213-24. [PMID: 16262730 DOI: 10.1111/j.1600-0854.2005.00353.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phogrin is an integral glycoprotein primarily expressed in neuroendocrine cells. The predominant localization of phogrin is on dense-core secretory granules, and the lumenal domain has been shown to be involved in its efficient sorting to the regulated secretory pathway. Here, we present data showing that a leucine-based sorting signal [EExxxIL] within the cytoplasmic tail contributes its steady-state localization to secretory granules. Deletion mutants in the tail region failed to represent granular distribution in pancreatic beta-cell line, MIN6, and anterior pituitary cell line, AtT-20. A sorting signal mutant with two glutamic acids substituted into alanines (EE/AA) is primarily accumulated in the Golgi area instead of secretory granules, and another mutant (IL/AA) is trapped at the plasma membrane due to a defect in endocytosis. We further demonstrate that the leucine-based sorting signal of phogrin specifically interacts with both adaptor protein (AP)-1 and AP-2 clathrin adaptor complexes in vitro. These observations, along with previous studies, suggest that distinct domains of phogrin mediate proper localization of this transmembrane protein on secretory granules.
Collapse
Affiliation(s)
- Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Wasmeier C, Burgos PV, Trudeau T, Davidson HW, Hutton JC. An extended tyrosine-targeting motif for endocytosis and recycling of the dense-core vesicle membrane protein phogrin. Traffic 2005; 6:474-87. [PMID: 15882444 DOI: 10.1111/j.1600-0854.2005.00292.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integral membrane proteins of neuroendocine dense-core vesicles (DCV) appear to undergo multiple rounds of exocytosis; however, their trafficking and site of incorporation into nascent DCVs is unclear. Previous studies with phogrin (IA-2beta) identified sorting signals in the luminal domain that is cleaved post-translationally; we now describe an independent DCV targeting motif in the cytosolic domain that may function at the level of endocytosis and recycling. Pulse-chase radiolabeling and cell surface biotinylation experiments in the pituitary corticotroph cell line AtT20 showed that the mature 60/65 kDa form that resides in the DCV is generated by limited proteolysis in a post-trans Golgi network compartment with similar kinetics to the formation of the principal cargo, ACTH. Phogrin is exposed on the cell surface in response to stimuli and progressively internalized to a perinuclear compartment that overlaps with recycling endosomes marked by transferrin. Chimeric molecules of phogrin transmembrane and cytosolic sequences with the interleukin-2 receptor alpha chain (Tac) were sorted to DCVs through the action of an extended tyrosine-based motif Y(654)QELCRQRMA located in a 27aa sequence adjacent to the membrane-spanning domain. A 36aa domain terminating in this sequence conferred DCV localization to Tac in the absence of any other cytosolic or luminal phogrin components. The endocytosis and DCV targeting of phogrin Y(654) > A mutants correlated with the impaired binding of the phogrin cytosolic tail to the micro-subunit of the AP2 adaptor complex in vitro.
Collapse
Affiliation(s)
- Christina Wasmeier
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, 4200 East 9th Avenue, Box B140, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
71
|
Hassainya Y, Garcia-Pons F, Kratzer R, Lindo V, Greer F, Lemonnier FA, Niedermann G, van Endert PM. Identification of naturally processed HLA-A2--restricted proinsulin epitopes by reverse immunology. Diabetes 2005; 54:2053-9. [PMID: 15983206 DOI: 10.2337/diabetes.54.7.2053] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is thought to result from the destruction of beta-cells by autoantigen-specific T-cells. Observations in the NOD mouse model suggest that CD8+ cytotoxic T-cells play an essential role in both the initial triggering of insulitis and its destructive phase. However, little is known about the epitopes derived from human beta-cell autoantigens and presented by HLA class I molecules. We used a novel reverse immunology approach to identify HLA-A2-restricted, naturally processed epitopes derived from proinsulin, an autoantigen likely to play an important role in the pathogenesis of type 1 diabetes. Recombinant human proinsulin was digested with purified proteasome complexes to establish an inventory of potential COOH-terminals of HLA class I-presented epitopes. Cleavage data were then combined with epitope predictions based on the SYFPEITHI and BIMAS algorithms to select 10 candidate epitopes; 7 of these, including 3 with a sequence identical to murine proinsulin, were immunogenic in HLA-A2 transgenic mice. Moreover, six of six tested peptides were processed and presented by proinsulin-expressing cells. These results demonstrate the power of reverse immunology approaches. Moreover, the novel epitopes may be of significant interest in monitoring autoreactive T-cells in type 1 diabetes.
Collapse
Affiliation(s)
- Yousra Hassainya
- Institut National de la Santé et de la Recherche Médicale Unité 580, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005; 435:220-3. [PMID: 15889095 PMCID: PMC1364531 DOI: 10.1038/nature03523] [Citation(s) in RCA: 568] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 03/08/2005] [Indexed: 12/17/2022]
Abstract
A fundamental question about the pathogenesis of spontaneous autoimmune diabetes is whether there are primary autoantigens. For type 1 diabetes it is clear that multiple islet molecules are the target of autoimmunity in man and animal models. It is not clear whether any of the target molecules are essential for the destruction of islet beta cells. Here we show that the proinsulin/insulin molecules have a sequence that is a primary target of the autoimmunity that causes diabetes of the non-obese diabetic (NOD) mouse. We created insulin 1 and insulin 2 gene knockouts combined with a mutated proinsulin transgene (in which residue 16 on the B chain was changed to alanine) in NOD mice. This mutation abrogated the T-cell stimulation of a series of the major insulin autoreactive NOD T-cell clones. Female mice with only the altered insulin did not develop insulin autoantibodies, insulitis or autoimmune diabetes, in contrast with mice containing at least one copy of the native insulin gene. We suggest that proinsulin is a primary autoantigen of the NOD mouse, and speculate that organ-restricted autoimmune disorders with marked major histocompatibility complex (MHC) restriction of disease are likely to have specific primary autoantigens.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Current literature in diabetes. Diabetes Metab Res Rev 2005; 21:297-308. [PMID: 15858786 DOI: 10.1002/dmrr.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|