51
|
Prognostic Value of Cancer Stem Cells Markers in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:158682. [PMID: 26504780 PMCID: PMC4609334 DOI: 10.1155/2015/158682] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/01/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) has a significant clinical relevance of being associated with a shorter median time to relapse and death and does not respond to endocrine therapy or other available targeted agents. Increased aggressiveness of this tumor, as well as resistance to standard drug therapies, may be associated with the presence of stem cell populations within the tumor. Several stemness markers have been described for the various histological subtypes of breast cancer, such as CD44, CD24, CD133, ALDH1, and ABCG2. The role of these markers in breast cancer is not clear yet and above all there are conflicting opinions about their real prognostic value. To investigate the role of CSCs markers in TNBC cancerogenesis and tumor progression, we selected 160 TNBCs samples on which we detected protein expression of CD44, CD24, CD133, ALDH1, and ABCG2 by immunohistochemistry. Our results highlighted a real prognostic role only for CD44 in TNBCs. All other CSCs markers do not appear to be related to the survival of TNBC patients. In conclusion, despite the fact that the presence of the cancer stem cells in the tumor provides important information on its potential aggressiveness, today their detection by immunohistochemistry is not sufficient to confirm their role in carcinogenesis, because specific markers probably are not yet identified.
Collapse
|
52
|
LOH TIINGJEN, MOON HEEGYUM, CHO SUNGHEE, JANG HANA, LIU YONGCHAO, TAI HONGMEI, JUNG DAWOON, WILLIAMS DARRENR, KIM HEYRAN, SHIN MYUNGGEUN, LIAO DJOSHUA, ZHOU JIANHUA, SHI WEI, ZHENG XUEXIU, SHEN HAIHONG. CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncol Rep 2015; 34:1231-8. [DOI: 10.3892/or.2015.4110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/20/2015] [Indexed: 11/06/2022] Open
|
53
|
Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, Li J, Zhang J, Sheng W, Zhao Y, Wu Y, Chen C. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. NANOSCALE 2015; 7:8607-8618. [PMID: 25898852 DOI: 10.1039/c5nr01084e] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.
Collapse
Affiliation(s)
- Kelei Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 2015; 151:501-13. [DOI: 10.1007/s10549-015-3414-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023]
|
55
|
Zhang C, Xu Y, Hao Q, Wang S, Li H, Li J, Gao Y, Li M, Li W, Xue X, Wu S, Zhang Y, Zhang W. FOXP3 suppresses breast cancer metastasis through downregulation of CD44. Int J Cancer 2015; 137:1279-90. [PMID: 25683728 DOI: 10.1002/ijc.29482] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/31/2014] [Accepted: 02/09/2015] [Indexed: 01/09/2023]
Abstract
Forkhead box protein 3 (FOXP3) plays an important role in breast cancer as an X-linked tumor suppressor gene. However, the biological functions and significance of FOXP3 in breast cancer metastasis remain unclear. Here, we find that, clinically, nuclear FOXP3 expression is inversely correlated with breast cancer metastasis. Moreover, we demonstrate that FOXP3 significantly inhibits adhesion, invasion and metastasis of breast cancer cells in vivo and in vitro. In addition, the adhesion molecule CD44 is found to be suppressed by FOXP3 through transcriptome sequence analysis (RNA-seq). A luciferase reporter assay, chromatin immunoprecipitation and electrophoretic mobility shift assay identify CD44 as a direct target of FOXP3. The expression of CD44 is downregulated by FOXP3 in breast cancer cells. Importantly, anti-CD44 antibody reverses the FOXP3 siRNA-induced effects on the breast cancer cells in vitro and FOXP3 expression level in the nucleus of breast cancer cells is inversely correlated with CD44 expression level in clinic breast cancer tissues. Taken together, the results from the present study suggest that FOXP3 is a suppressor of breast cancer metastasis. FOXP3 directly binds to the promoter of CD44 and inhibits its protein expression, thereby suppressing adhesion and invasion of human breast cancer cells. This finding highlights the therapeutic potential of FOXP3-CD44 signaling to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Yujin Xu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Hong Li
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jialin Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Shouzhen Wu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, the Fourth Military Medical University, 710032, Xi'an, People's Republic of China
| |
Collapse
|
56
|
Ma R, Feng Y, Lin S, Chen J, Lin H, Liang X, Zheng H, Cai X. Mechanisms involved in breast cancer liver metastasis. J Transl Med 2015; 13:64. [PMID: 25885919 PMCID: PMC4440291 DOI: 10.1186/s12967-015-0425-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/30/2015] [Indexed: 12/25/2022] Open
Abstract
Liver metastasis is a frequent occurrence in patients with breast cancer; however, the available treatments are limited and ineffective. While liver-specific homing of breast cancer cells is an important feature of metastasis, the formation of liver metastases is not random. Indeed, breast cancer cell factors contribute to the liver microenvironment. Major breakthroughs have been achieved recently in understanding breast cancer liver metastasis (BCLM). The process of liver metastasis consists of multiple steps and involves various factors from breast cancer cells and the liver microenvironment. A further understanding of the roles of breast cancer cells and the liver microenvironment is crucial to guide future work in clinical treatments. In this review we discuss the contribution of breast cancer cells and the liver microenvironment to liver metastasis, with the aim to improve therapeutic efficacy for patients with BCLM.
Collapse
Affiliation(s)
- Rui Ma
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yili Feng
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Shuang Lin
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Jiang Chen
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Hui Lin
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Xiao Liang
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Heming Zheng
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
57
|
Haakenson JK, Khokhlatchev AV, Choi YJ, Linton SS, Zhang P, Zaki PM, Fu C, Cooper TK, Manni A, Zhu J, Fox TE, Dong C, Kester M. Lysosomal degradation of CD44 mediates ceramide nanoliposome-induced anoikis and diminished extravasation in metastatic carcinoma cells. J Biol Chem 2015; 290:8632-43. [PMID: 25681441 DOI: 10.1074/jbc.m114.609677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ceramide nanoliposome (CNL) has shown promise in being able to treat a variety of primary tumors. However, its potential for treating metastatic cancer remains unknown. In this study, we demonstrate that CNL increases anoikis while preventing cancer cell extravasation under both static and physiological fluid flow conditions. Mechanistically, CNL limits metastases by decreasing CD44 protein levels in human breast and pancreatic cancer cells via lysosomal degradation of CD44, independent of palmitoylation or proteasome targeting. siRNA down-regulation of CD44 mimics CNL-induced anoikis and diminished extravasation of cancer cells. Taken together, our data indicate that ceramide limits CD44-dependent cancer cell migration, suggesting that CNL could be used to prevent and treat solid tumor metastasis.
Collapse
Affiliation(s)
| | - Andrei V Khokhlatchev
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, and
| | - Younhee J Choi
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, and
| | | | - Pu Zhang
- the Department of Bioengineering, Pennsylvania State University, State College, Pennsylvania 16801
| | - Peter M Zaki
- the Department of Bioengineering, Pennsylvania State University, State College, Pennsylvania 16801
| | - Changliang Fu
- the Department of Bioengineering, Pennsylvania State University, State College, Pennsylvania 16801
| | | | | | - Junjia Zhu
- Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Todd E Fox
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, and
| | - Cheng Dong
- the Department of Bioengineering, Pennsylvania State University, State College, Pennsylvania 16801
| | - Mark Kester
- From the Departments of Pharmacology, the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, and
| |
Collapse
|
58
|
Kim S, Kil WH, Lee J, Oh SJ, Han J, Jeon M, Jung T, Lee SK, Bae SY, Lee HC, Lee JH, Yi HW, Kim SW, Nam SJ, Lee JE. Zerumbone suppresses EGF-induced CD44 expression through the inhibition of STAT3 in breast cancer cells. Oncol Rep 2014; 32:2666-72. [PMID: 25269647 DOI: 10.3892/or.2014.3514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/29/2014] [Indexed: 11/05/2022] Open
Abstract
Expression of the CD44 gene is upregulated in breast cancer cells and is correlated with patient survival. Aberrant CD44 expression promotes tumor progression and metastasis. In the present study, we investigated the role of zerumbone (ZER) on regulatory mechanisms of CD44 expression in breast cancer cells. Our results showed that CD44 expression was significantly increased by epidermal growth factor receptor (EGFR) ligands in SKBR3 breast cancer cells. In contrast, EGF-induced CD44 expression was decreased by a MEK1/2 inhibitor, UO126, or STAT3 inhibitor, STAT3 VI, respectively. Notably, ZER downregulated the basal level of CD44 expression in CD44+ breast cancer cells. In addition, the induction of CD44 expression by EGFR ligands, EGF or TGF-α, was markedly decreased by ZER treatment. Finally, we investigated the inhibitory mechanism of ZER on EGF-induced CD44 expression. Our results showed that EGF-induced phosphorylation of STAT3 was completely suppressed by ZER. Collectively, ZER suppressed EGF-induced CD44 expression through inhibition of the STAT3 pathway. Therefore, we suggested that ZER may act as a promising therapeutic drug for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Won Ho Kil
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Jeongmin Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Soo-Jin Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Jeonghun Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Myeongjin Jeon
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Taewoo Jung
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Se Kyung Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Soo Youn Bae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Hyun Chul Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Jun Ho Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Ha Woo Yi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| |
Collapse
|
59
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
60
|
Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul) 2014; 20:256-67. [PMID: 24130921 PMCID: PMC3794521 DOI: 10.4062/biomolther.2012.20.3.256] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 05/29/2012] [Accepted: 04/02/2012] [Indexed: 12/21/2022] Open
Abstract
Tamoxifen is a central component of the treatment of estrogen receptor (ER)-positive breast cancer as a partial agonist of ER. It has been clinically used for the last 30 years and is currently available as a chemopreventive agent in women with high risk for breast cancer. The most challenging issue with tamoxifen use is the development of resistance in an initially responsive breast tumor. This review summarizes the roles of ER as the therapeutic target of tamoxifen in cancer treatment, clinical values and issues of tamoxifen use, and molecular mechanisms of tamoxifen resistance. Emerging knowledge on the molecular mechanisms of tamoxifen resistance will provide insight into the design of regimens to overcome tamoxifen resistance and discovery of novel therapeutic agents with a decreased chance of developing resistance as well as establishing more efficient treatment strategies.
Collapse
Affiliation(s)
- Minsun Chang
- Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
61
|
Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014; 10:1558-70. [PMID: 24361428 PMCID: PMC3960342 DOI: 10.1016/j.actbio.2013.12.019] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/24/2023]
Abstract
Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models.
Collapse
Affiliation(s)
- Kevin T Dicker
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Lisa A Gurski
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Swati Pradhan-Bhatt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA
| | - Robert L Witt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA; Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA; Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
62
|
Takahashi H, Takizawa T, Matsubara S, Ohkuchi A, Kuwata T, Usui R, Matsumoto H, Sato Y, Fujiwara H, Okamoto A, Suzuki M, Takizawa T. Extravillous trophoblast cell invasion is promoted by the CD44-hyaluronic acid interaction. Placenta 2013; 35:163-70. [PMID: 24439029 DOI: 10.1016/j.placenta.2013.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Extravillous trophoblast (EVT) cell invasion plays a crucial role in establishment of successful pregnancy. CD44, a cell-surface receptor for hyaluronic acid (HA), plays a key role in HA-mediated remodeling and degradation that triggers cancer cell invasion. However, few studies have reported on the expression or functions of CD44 in human EVT cells. We hypothesized that CD44-HA interaction was involved in invasion by EVT cells. METHODS To test our hypothesis, we conducted in situ examinations of CD44 and HA expression in the human first-trimester placenta. We also assessed the methylation status of CD44 promoter and exon 1 regions in EVT cells. Finally, we conducted transwell cell invasion assays using EVT cell lines and EVT cells isolated from first-trimester human villous explant cultures. RESULTS AND DISCUSSION EVT cells, but not villous trophoblast cells, in the first-trimester placenta expressed CD44. HA was strongly expressed in adventitia surrounding the spiral uterine arterial walls of the decidua. The extent of demethylation of CD44 promoter and exon 1 CpG islands was increased in EVT cells compared to those of first-trimester chorionic villi (including villous trophoblast cells), suggesting that CD44 expression was, at least in part, associated with methylation status. Data from transwell cell invasion assay with siRNA knockdown of CD44 revealed that CD44 expression significantly promoted invasion by EVT cells in an HA-dependent manner. CONCLUSIONS The discovery of a CD44-HA interaction between EVT cells and the extracellular matrix contributes to our understanding of the mechanism underlying invasion by EVT cells.
Collapse
Affiliation(s)
- H Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan; Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | - T Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | - S Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - A Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - T Kuwata
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - R Usui
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - H Matsumoto
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Y Sato
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - H Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medicine Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - A Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-0003, Japan
| | - M Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - T Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan.
| |
Collapse
|
63
|
Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol 2013; 35:1727-38. [PMID: 24163107 DOI: 10.1007/s13277-013-1321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
The wide range of invasive and noninvasive lesion phenotypes associated with high-risk human papillomavirus (HR-HPV) infection in cervical cancer (CC) indicates that not only the virus but also specific cervical epithelial cells in the transformation zone (TZ), such as stem cells (SCs), play an important part in the development of cervical neoplasia. In this review, we focused in an expression signature that is specific to embryonic SCs and to poorly differentiated cervical malignant tumors and we hypothesize that this expression signature may play an important role to promote cell growth, survival, colony formation, lack of adhesion, as well as cell invasion and migration in CC.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, México,
| | | | | |
Collapse
|
64
|
Rahman MM, Veigas JM, Williams PJ, Fernandes G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res Treat 2013; 141:341-52. [PMID: 24062211 DOI: 10.1007/s10549-013-2703-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/14/2013] [Indexed: 12/31/2022]
Abstract
Breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Attenuation of breast cancer metastasis to bone and associated osteolysis by fish oil, rich in EPA and DHA, has been demonstrated previously. However, it was not known whether EPA and DHA differentially or similarly affect breast cancer bone metastasis and associated osteolysis. In vitro culture of parental and luciferase gene encoded MDA-MB-231 human breast cancer cell lines treated with EPA and DHA revealed that DHA inhibits proliferation and invasion of breast cancer cells more potently than EPA. Intra-cardiac injection of parental and luciferase gene encoded MDA-MB-231 cells to athymic NCr nu/nu mice demonstrated that DHA-treated mice had significantly less breast cancer cell burden in bone, and also significantly less osteolytic lesions than EPA-treated mice. In vivo cell migration assay as measured by luciferase intensity revealed that DHA attenuated cell migration specifically to the bone. Moreover, the DHA-treated group showed reduced levels of CD44 and TRAP positive area in bone compared to EPA-treated group. Breast cancer cell burden and osteolytic lesions were also examined in intra-tibially breast cancer cell injected mice and found less breast cancer cell growth and associated osteolysis in DHA-treated mice as compared to EPA-treated mice. Finally, doxorubicin-resistant MCF-7 (MCF-7dox) human breast cancer cell line was used to examine if DHA can improve sensitization of MCF-7dox cells to doxorubicin. DHA improved the inhibitory effect of doxorubicin on proliferation and invasion of MCF-7dox cells. Interestingly, drug resistance gene P-gp was also down-regulated in DHA plus doxorubicin-treated cells. In conclusion, DHA attenuates breast cancer bone metastasis and associated osteolysis more potently than EPA, possibly by inhibiting migration of breast cancer cell to the bone as well as by inhibiting osteoclastic bone resorption.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA,
| | | | | | | |
Collapse
|
65
|
Ouhtit A, Madani S, Gupta I, Shanmuganathan S, Abdraboh ME, Al-Riyami H, Al-Farsi YM, Raj MH. TGF-β2: A Novel Target of CD44-Promoted Breast Cancer Invasion. J Cancer 2013; 4:566-72. [PMID: 23983821 PMCID: PMC3753531 DOI: 10.7150/jca.6638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/18/2013] [Indexed: 01/23/2023] Open
Abstract
We have developed a tetracycline (tet)-off regulated expression of CD44s gene in the breast cancer (BC) cell line MCF-7 (B5 clone) and identified TGF-β2 (Transforming Growth Factor beta-2; 3 fold induction) as a potential CD44-downstream transcriptional target by microarray analysis. To further validate this finding, the same RNA samples, used for microarray analysis and their corresponding protein lysates, collected from the BC cell line MCF-7-B5, were examined for CD44 expression in the presence of HA. Our results showed that TGF-β2 mRNA levels were significantly elevated following the removal of tetracycline at 18, 24, and 48 h post-HA stimulation compared to the parental cells. Furthermore, the TGF-β2 precursor protein increased in a time-dependent pattern upon HA-stimulation and in the absence of tetracycline. More interestingly, inhibition of CD44 gene by RNAi method decreased TGF-β2 expression upon HA-stimulation, and subsequently inhibited BC cell invasion in vitro. In addition to identifying TGF-β2 as a target for HA/CD44 signaling, this data suggests that ATF/CREB might be a potential transcription factor linking HA/CD44 activation to TGF-β2 transcription and additional experiments are required for a better understanding of the molecular mechanisms underpinning the novel function of the CD44/ TGF-β2 signaling pathway in breast cancer metastasis.
Collapse
|
66
|
Saito T, Dai T, Asano R. The hyaluronan synthesis inhibitor 4-methylumbelliferone exhibits antitumor effects against mesenchymal-like canine mammary tumor cells. Oncol Lett 2013; 5:1068-1074. [PMID: 23426189 PMCID: PMC3576365 DOI: 10.3892/ol.2013.1124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/02/2013] [Indexed: 01/06/2023] Open
Abstract
Hyaluronan (HA), a principal constituent of the extracellular matrix (ECM), mediates growth and metastasis of tumor cells. The role of HA in the epithelial-mesenchymal transition (EMT) is well known, and increased ECM remodeling is observed in mesenchymal-like cells. The HA synthesis inhibitor 4-methylumbelliferone (4-MU) is anti-tumorigenic for various malignant tumors. However, the antitumor effect of 4-MU against canine mammary tumor cells that possess a mesenchymal-like phenotype is unclear. We examined the antitumor effect of 4-MU on CF41.Mg mesenchymal-like canine mammary tumor cells. We investigated the influence of 4-MU on the expression of HA synthase (HAS) 1-3 mRNA and observed dose-dependent downregulation of HAS2 mRNA at 24-72 h; in contrast, HAS3 expression was elevated at 24 h. Thus, 4-MU inhibited HA synthesis via HAS2 repression. 4-MU also inhibited cell proliferation and induced apoptosis in the CF41.Mg cells. Our experiments showed that 4-MU-induced apoptosis in CF41.Mg cells involved induction of the pro-apoptotic gene BAX. We also assessed motility and found that 4-MU reduced chemokinesis and chemotaxis in CF41.Mg cells. Our data suggest that 4-MU may serve as a candidate therapeutic agent for the treatment of canine mammary tumors. Since 4-MU exhibits antitumor activity in mesenchymal-like cells, it may also be a useful inhibitor of canine mammary tumor invasion and metastasis.
Collapse
Affiliation(s)
- Teruyoshi Saito
- Laboratory of Veterinary Pharmacology, Nihon University College of Bioresource Science, Fujisawa, Kanagawa 252-0880, Japan
| | | | | |
Collapse
|
67
|
SAITO TERUYOSHI, TAMURA DAI, NAKAMURA TATSURO, MAKITA YUKIHISA, ARIYAMA HITOMI, KOMIYAMA KEIJI, YOSHIHARA TOMOKO, ASANO RYUJI. 4-Methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep 2012; 29:335-42. [DOI: 10.3892/or.2012.2100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/26/2012] [Indexed: 11/05/2022] Open
|
68
|
Hiscox S, Baruha B, Smith C, Bellerby R, Goddard L, Jordan N, Poghosyan Z, Nicholson RI, Barrett-Lee P, Gee J. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer 2012; 12:458. [PMID: 23039365 PMCID: PMC3517483 DOI: 10.1186/1471-2407-12-458] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 09/20/2012] [Indexed: 12/20/2022] Open
Abstract
Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration. Overexpression of CD44 in MCF7 cells, which lack endogenous CD44, generated an HA-sensitive phenotype, with HA-stimulation promoting erbB/EGFR activation and migration. Conclusions These data suggest an important role for CD44 in the context of tamoxifen-resistance where it may augment cellular response to erbB ligands and HA, factors that are reported to be present within the tumour microenvironment in vivo. Thus CD44 may present an important determinant of breast cancer progression in the setting of endocrine resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- Welsh School of Pharmacy, Cardiff University, Wales, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Holen I, Whitworth J, Nutter F, Evans A, Brown HK, Lefley DV, Barbaric I, Jones M, Ottewell PD. Loss of plakoglobin promotes decreased cell-cell contact, increased invasion, and breast cancer cell dissemination in vivo. Breast Cancer Res 2012; 14:R86. [PMID: 22632416 PMCID: PMC3446349 DOI: 10.1186/bcr3201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/10/2012] [Accepted: 05/25/2012] [Indexed: 12/25/2022] Open
Abstract
Introduction The majority of deaths from breast cancer are a result of metastases; however, little is understood about the genetic alterations underlying their onset. Genetic profiling has identified the adhesion molecule plakoglobin as being three-fold reduced in expression in primary breast tumors that have metastasized compared with nonmetastatic tumors. In this study, we demonstrate a functional role for plakoglobin in the shedding of tumor cells from the primary site into the circulation. Methods We investigated the effects of plakoglobin knockdown on breast cancer cell proliferation, migration, adhesion, and invasion in vitro and on tumor growth and intravasation in vivo. MCF7 and T47D cells were stably transfected with miRNA sequences targeting the plakoglobin gene, or scramble vector. Gene and protein expression was monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Cell proliferation, adhesion, migration, and invasion were measured by cell counting, flow cytometry, and scratch and Boyden Chamber assays. For in vivo experiments, plakoglobin knockdown and control cells were inoculated into mammary fat pads of mice, and tumor growth, shedding of tumor cells into the bloodstream, and evidence of metastatic bone lesions were monitored with caliper measurement, flow cytometry, and microcomputed tomography (μCT), respectively. Results Plakoglobin and γ-catenin expression were reduced by more than 80% in all knockdown cell lines used but were unaltered after transfection with the scrambled sequence. Reduced plakoglobin resulted in significantly increased in MCF7 and T47D cell proliferation in vitro and in vivo, compared with control, with significantly more tumor cells being shed into the bloodstream of mice bearing plakoglobin knockdown tumors. In addition, plakoglobin knockdown cells showed a >250% increase in invasion through basement membrane and exhibited reduced cell-to-cell adhesion compared with control cells. Conclusion Decreased plakoglobin expression increases the invasive behavior of breast cancer cells. This is the first demonstration of a functional role for plakoglobin/γ-catenin in the metastatic process, indicating that this molecule may represent a target for antimetastatic therapies.
Collapse
Affiliation(s)
- Ingunn Holen
- Academic Unit of Clinical Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012; 17:6196-236. [PMID: 22634835 PMCID: PMC6268870 DOI: 10.3390/molecules17066196] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM) technique and magnetic cell sorting (MACS) are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs), which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| | - Xiang Ji
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Fangfang Zhang
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Liang Li
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Lan Ma
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| |
Collapse
|
71
|
Montgomery N, Hill A, McFarlane S, Neisen J, O'Grady A, Conlon S, Jirstrom K, Kay EW, Waugh DJJ. CD44 enhances invasion of basal-like breast cancer cells by upregulating serine protease and collagen-degrading enzymatic expression and activity. Breast Cancer Res 2012; 14:R84. [PMID: 22621373 PMCID: PMC3446347 DOI: 10.1186/bcr3199] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/18/2012] [Accepted: 05/23/2012] [Indexed: 01/18/2023] Open
Abstract
Introduction Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells. Methods CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion. Results Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen. Conclusion HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.
Collapse
Affiliation(s)
- Nicola Montgomery
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Van Pham P, Vu NB, Duong TT, Nguyen TT, Truong NH, Phan NLC, Vuong TG, Pham VQ, Nguyen HM, Nguyen KT, Nguyen NT, Nguyen KG, Khat LT, Van Le D, Truong KD, Phan NK. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment. Onco Targets Ther 2012; 5:77-84. [PMID: 22649280 PMCID: PMC3358118 DOI: 10.2147/ott.s30609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Breast cancer stem cells with a CD44+CD24− phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24− breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment. Methods Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24− cells. To track CD44+CD24− cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control. Results The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group. Conclusion These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Li J, Zha XM, Wang R, Li XD, Xu B, Xu YJ, Yin YM. Regulation of CD44 expression by tumor necrosis factor-α and its potential role in breast cancer cell migration. Biomed Pharmacother 2012; 66:144-50. [PMID: 22386367 DOI: 10.1016/j.biopha.2011.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/08/2011] [Indexed: 10/28/2022] Open
Abstract
CD44 molecule plays critical role in distant malignant metastasis. It is expressed in standard form (CD44s) or variant form (CD44v). Tumor necrosis factor-α (TNF-α) is highly expressed in the cancer microenvironment. TNF-α was reported to modulate CD44 expression in several kinds of cancer. However, little is known about pathological role of TNF-α in breast cancer (BC) cells. In the current investigation, we investigated the effect of TNF-α on BC cells (MCF-7 and MDA-MB-231) viability, CD44 expression, and in vitro migration. We found that TNF-α down-regulated CD44s expression, up-regulated CD44v3 and CD44v6 expression through JNK pathway in MCF-7 cells. In MDA-MB-231 cells, TNF-α up-regulated CD44s, CD44v3 and CD44v6 expression via p38 pathway. These data indicate important role of CD44 molecule in BC pathology.
Collapse
Affiliation(s)
- Jun Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
74
|
Palen KA, Jing W, Weber JJ, Tilkens SB, Chan AM, Johnson BD, Gershan JA. Separation and Characterization of Epithelial and Mesenchymal-like Murine Mammary Tumor Cells Reveals Epithelial Cell Differentiation Plasticity and Enhanced Tumorigenicity of Epithelial-enriched Tumor Cells. CANCER MICROENVIRONMENT 2012; 6:79-89. [PMID: 22237886 DOI: 10.1007/s12307-011-0095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/21/2011] [Indexed: 01/10/2023]
Abstract
Tumors are composed of heterogeneous populations of cells including tumor-initiating cells (TICs) and metastatic precursors. While the origin of these cells is unknown, there is evidence that tumor cells can transdifferentiate from an epithelial to a mesenchymal phenotype, a property referred to as epithelial-to-mesenchymal transition (EMT). This cellular plasticity may explain the heterogeneous nature of tumors and differences in the tumorigenic and invasive properties of cells. Understanding the origin of these cells and the contribution of external factors that influence the acquisition of cellular properties is critical for the development of therapeutics to eradicate cancer. In this study, we show that primary murine tumor cells harvested from FVB/N Tg (MMTV/Neu) spontaneous mammary tumors possess differentiation plasticity and can be enriched to be epithelial or mesenchymal-like using selected culture media conditions, and we show evidence of EMT in a clonal population of primary epithelial tumor cells when cultured in fibroblast growth factor-1 (FGF-1) or transforming growth factor-β (TGF-β). We also determined that in contrast to the identification of mesenchymal-like tumor cells as TICs in orthotopic xenograph models of tumorigenicity, epithelial-enriched murine mammary tumor cells were more tumorigenic as compared to mesenchymal-enriched cells when transplanted back subcutaneously into syngeneic immune competent mice. Together, these data suggest that EMT plasticity can be induced in primary murine mammary tumor cells, and that tumorigenicity of epithelial or mesenchymal-like cells may be influenced by factors such as the site of tumor inoculation or the immune state of the host (xenogenic immune compromised versus syngeneic immune competent).
Collapse
Affiliation(s)
- Katie A Palen
- Department of Pediatrics, Section of Hematology-Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA,
| | | | | | | | | | | | | |
Collapse
|
75
|
O'Brien CS, Farnie G, Howell SJ, Clarke RB. Breast cancer stem cells and their role in resistance to endocrine therapy. Discov Oncol 2011; 2:91-103. [PMID: 21761332 DOI: 10.1007/s12672-011-0066-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Developmentally, tumours can be viewed as aberrant versions of normal tissues. For example, tumours often retain differentiation markers of their tissue of origin. In addition, there is evidence that they contain cancer stem-like cells (CSCs) that drive tumourigenesis. In this review, we summarise current evidence that breast CSCs may partially explain endocrine resistance in breast cancer. In normal breast, the stem cells are known to possess a basal phenotype and to be mainly oestrogen receptor-α-negative (ER-). If the hierarchy in breast cancer reflects this, the breast CSC may be endocrine resistant because it expresses very little ER and can only respond to treatment by virtue of paracrine signalling from neighbouring, differentiated ER+ tumour cells. Normal breast epithelial stem cells are regulated by the epidermal growth factor receptor and other growth factor receptor signals. The observed increase in growth factor receptor expression in endocrine-resistant breast cancers may reflect a bigger proportion of CSCs selected by endocrine therapies. There is evidence from a number of studies that breast CSCs are ER- and EGR+/HER2+, which would support this view. It is reported that CSCs express mesenchymal genes, which are suppressed by ER expression, further indicating the mutual exclusion between ER+ cells and the CSCs. As we learn more about CSCs, differentiation and the expression and functional activity of the ER in these cells in diverse breast tumour sub-types, it is hoped that our understanding will lead to new modalities to overcome the problem of endocrine resistance in the clinic.
Collapse
Affiliation(s)
- Ciara S O'Brien
- School of Cancer and Imaging Sciences, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | | | | | | |
Collapse
|
76
|
Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell 2011; 3:26. [PMID: 22082307 PMCID: PMC3226586 DOI: 10.1186/2045-824x-3-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/14/2011] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis is a crucial process in tumor pathogenesis as it sustains malignant cells with nutrients and oxygen. It is well known that tumor cells secrete various growth factors, including VEGF, which triggers endothelial cells to form new capillaries. Prevention of expansion of new blood vessel networks results in reduced tumor size and metastasis. Production of VEGF is driven by hypoxia via transcriptional activation of the VEGF gene by HIF-1α. Tumours are now understood to contain different types of cells, and it is the cancer stem cells that retain the ability to drive the tumour's growth. They are called cancer stem cells because, like stem cells present in normal tissues of the body, they can self-renew and differentiate. These cancer stem cells are responsible for the relapse of cancer as they are found to be resistant to conventional modes of cancer therapy like chemotherapy and radiation. In this review, a novel mode of treatment of cancer is proposed, which utilizes the twin nanoparticle to target endothelial cells in the niche of cancer stem cell. The nanoparticle discussed in this review, is a twin nanoparticle of iron coated with gold, which targets VEGF positive cell in the vicinity of cancer stem cell. In the twin nanoparticle, one particle will recognize cancer stem cell, and another conjugated nanoparticle will recognize VEGF positive cells, thereby inhibiting endothelial cells in the proximity of cancer stem cell. This novel strategy will inhibit angiogenesis near cancer stem cell hence new tumour cannot grow and old tumour will be unable to metastasize.
Collapse
|
77
|
|
78
|
Lin C, Ren S, Zhang L, Jin H, Sun J, Zuo Y. Extracellular ATP induces CD44 shedding from macrophage-like P388D1 cells via the P2X7 receptor. Hematol Oncol 2011; 30:70-5. [PMID: 21812012 DOI: 10.1002/hon.1008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/15/2011] [Accepted: 05/27/2011] [Indexed: 12/13/2022]
Abstract
The P2X7 receptor (P2X7R) is a nucleotide receptor expressed predominantly on hemopoietic, bone, and epithelial cells. The P2X7R can be activated by extracellular ATP and induces the influx of calcium, releases cytokines, and participates in cell proliferation and apoptosis. CD44 is an adhesion molecule. The effects of CD44 include cell-cell and cell-matrix adhesion interactions, lymphocyte activation, and cell migration. Many studies have shown that P2X7R and CD44 play important roles in hematological malignancies, but no study exists regarding the relationship between P2X7R and CD44. In the present study, we characterized P388D1 cells for the surface expression of CD44 and analyzed ATP-induced shedding. The data showed that P388D1 cells express CD44. Incubation of P388D1 cells with ATP induced a rapid loss of CD44 from the P388D1 cell surface. In addition, using a receptor inhibitor and P2X7R short hairpin RNA, we showed that the loss of CD44 is mediated via the P2X7R. Finally, we demonstrated that activation of P2X7R by ATP induces CD44 shedding.
Collapse
Affiliation(s)
- Changwei Lin
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | | | | | | | | | | |
Collapse
|
79
|
Abdraboh ME, Gaur RL, Hollenbach AD, Sandquist D, Raj MHG, Ouhtit A. Survivin is a novel target of CD44-promoted breast tumor invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:555-63. [PMID: 21718681 DOI: 10.1016/j.ajpath.2011.04.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 03/27/2011] [Accepted: 04/05/2011] [Indexed: 12/25/2022]
Abstract
The hyaluronan (HA) receptor CD44 plays an essential role in cell-cell or cell-extracellular matrix communications and is a bioactive signal transmitter. Although a number of studies have described the function of CD44 in breast cancer (BC) metastasis, the underlying mechanisms have yet to be determined. By using a validated tetracycline-off-regulated CD44 expression system in the MCF-7 cell line combined with microarray analysis, we identified survivin (SVV) as a potential downstream transcriptional target of CD44. To test the hypothesis that SVV underpins CD44-promoted BC cell invasion, we combined molecular and pharmacologic approaches and showed that CD44 induction increased SVV expression levels, which in turn promotes BC cell invasion. Further, clinical analysis of breast tissue samples showed that SVV expression patterns paralleled those of the standard form of CD44 during breast tumor progression. More interestingly, we identified the PI3K/E2F1 pathway as a potential molecular link between HA/CD44 activation and SVV transcription. In addition to identifying SVV as a target for HA/CD44 signaling, this investigation provides a better understanding of the molecular mechanisms that underpin the novel function of SVV in breast cancer metastasis.
Collapse
Affiliation(s)
- Mohamed E Abdraboh
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | | | | | | | | | | |
Collapse
|
80
|
Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem 2011; 286:11314-27. [PMID: 21199873 DOI: 10.1074/jbc.m110.193714] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Substantial data from clinical trials and epidemiological studies show promising results for use of statins in many cancers, including mammary carcinoma. Breast tumor primarily metastasizes to bone to form osteolytic lesions, causing severe pain and pathological fracture. Here, we report that simvastatin acts as an inhibitor of osteolysis in a mouse model of breast cancer skeletal metastasis of human mammary cancer cell MDA-MB-231, which expresses the mutant p53R280K. Simvastatin and lovastatin attenuated migration and invasion of MDA-MB-231 and BT-20 breast tumor cells in culture. Acquisition of phenotype to express the cancer stem cell marker, CD44, leads to invasive potential of the tumor cells. Interestingly, statins significantly decreased the expression of CD44 protein via a transcriptional mechanism. shRNA-mediated down-regulation of CD44 markedly reduced the migration and invasion of breast cancer cells in culture. We identified that in the MDA-MB-231 cells, simvastatin elevated the levels of mutated p53R280K, which was remarkably active as a transcription factor. shRNA-derived inhibition of mutant p53R280K augmented the expression of CD44, leading to increased migration and invasion. Finally, we demonstrate an inverse correlation between expression of p53 and CD44 in the tumors of mice that received simvastatin. Our results reveal a unique function of statins, which foster enhanced expression of mutant p53R280K to prevent breast cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center, San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
81
|
Mandal CC, Ghosh-Choudhury T, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Fish oil prevents breast cancer cell metastasis to bone. Biochem Biophys Res Commun 2010; 402:602-7. [PMID: 20971068 DOI: 10.1016/j.bbrc.2010.10.063] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/18/2010] [Indexed: 11/16/2022]
Abstract
The data derived from epidemiological and animal models confirm a beneficial effect of fish oil (rich in ω-3 polyunsaturated fatty acids) in the amelioration of tumor growth and progression, including breast cancer. The breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Using a mouse model of MDA-MB-231 human breast cancer cell metastasis to bone, here we show that fish oil diet enriched in DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) prevents the formation of osteolytic lesions in bone, indicating suppression of cancer cell metastasis to bone. These results are supported by our data showing both DHA and EPA significantly attenuate the migration/invasion of MDA-MB-231 breast cancer cells in culture. The mechanism that limits breast cancer cells to selective metastasis to bone remains hitherto unexplored. Aberrant increased expression of CD44 is associated with generation of cancer stem cells, which contribute to metastasis of breast cancer cells. We demonstrate that DHA and EPA significantly inhibit the expression of CD44 protein and mRNA by a transcriptional mechanism. Furthermore, we show markedly reduced levels of CD44 mRNA and protein in the tumors of mice, which were fed fish oil diet than those in control diet. Our data provide the first evidence for a salutary effect of fish oil on breast cancer metastasis to bone. Our results identify a novel function of the fish oil active components, DHA and EPA, which target the cell-intrinsic pro-metastatic molecule CD44 to inhibit migration/invasion.
Collapse
Affiliation(s)
- Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, USA
| | | | | | | | | |
Collapse
|
82
|
Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL. In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2131-8. [PMID: 20228222 DOI: 10.2353/ajpath.2010.090712] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A subset of cells, tentatively called cancer stem cells (CSCs), in breast cancer have been associated with tumor initiation, drug resistance, and tumor persistence or aggressiveness. They are characterized by CD44 positivity, CD24 negativity, and/or ALDH1 positivity in flow cytometric studies. We hypothesized that the frequency or density of these cells may be associated with more aggressive tumor behavior. We borrowed these multiplexed, flow-based methods to develop an in situ method to define CSCs in formalin-fixed paraffin-embedded breast cancer tissue, with the goal of assessing the prognostic value of the presence of CSCs in breast cancer. Using a retrospective collection of 321 node-negative and 318 node-positive patients with a mean follow-up time of 12.6 years, we assessed TMAs using the AQUA method for quantitative immunofluorescence. Using a multiplexed assay for ALDH1, CD44, and cytokeratin to measure the coexpression of these proteins, putative CSCs appear in variable sized clusters and in 27 cases (of 490), which showed significantly worse outcome (log rank P = 0.0003). Multivariate analysis showed that this marker combination is independent of tumor size, histological grade, nodal status, ER-, PR,- and HER2-status. In this cohort, ALDH1 expression alone does not significantly predict outcome. We conclude that the multiplexed method of in situ identification of putative CSCs identifies high risk patients in breast cancer.
Collapse
Affiliation(s)
- Veronique Neumeister
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA
| | | | | | | | | |
Collapse
|
83
|
Bartusik D, Tomanek B, Lattová E, Perreault H, Fallone G. Combined treatment of human MCF-7 breast carcinoma with antibody, cationic lipid and hyaluronic acid using ex vivo assays. J Pharm Biomed Anal 2010; 51:192-201. [DOI: 10.1016/j.jpba.2009.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 02/02/2023]
|
84
|
Schmidt S, Friedl P. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 2010; 339:83-92. [PMID: 19921267 PMCID: PMC2784868 DOI: 10.1007/s00441-009-0892-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/28/2009] [Indexed: 12/27/2022]
Abstract
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.
Collapse
Affiliation(s)
- Samuel Schmidt
- Microscopical Imaging of the Cell, Department of Cell Biology (283), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Friedl
- Microscopical Imaging of the Cell, Department of Cell Biology (283), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Rudolf Virchow Zentrum and Department for Dermatology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
85
|
Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0892-9 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
86
|
Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, Wong KK, Wang X, Ferrone S, Ioannides CG. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother 2009; 58:1185-94. [PMID: 19048252 PMCID: PMC2726795 DOI: 10.1007/s00262-008-0623-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/29/2008] [Indexed: 12/22/2022]
Abstract
Cancer stem cells (CSC) are resistant to chemo- and radiotherapy. To eliminate cells with phenotypic markers of CSC-like we characterized: (1) expression of CD44, CD24, CD133 and MIC-A/B (NKG2 receptors) in breast (MCF7) and ovarian (SK-OV-3) cells resistant to gemcitabine (GEM), paclitaxel (PTX) and 5-fluorouracil (5-FU) and (2) their elimination by Numb- and Notch-peptide activated CTL. The number of cells in all populations with the luminal CSC phenotype [epithelial specific antigen(+) (ESA) CD44(hi) CD24(lo), CD44(hi) CD133(+), and CD133(+) CD24(lo)] increased in drug-resistant MCF7 and SK-OV-3 cells. Similarly, the number of cells with expressed MIC-A/B increased 4 times in drug-resistant tumor cells compared with drug-sensitive cells. GEM(Res) MCF7 cells had lower levels of the Notch-1-extracellular domain (NECD) and Notch trans-membrane intracellular domain (TMIC) than GEM(Sens) MCF7. The levels of Numb, and Numb-L-[P]-Ser(265) were similar in GEM(Res) and GEM(Sens) MCF7 cells. Only the levels of Numb-L (long)-Ser(295) decreased slightly. This finding suggests that Notch-1 cleavage to TMIC is inhibited in GEM(Res) MCF7 cells. PBMC activated by natural immunogenic peptides Notch-1 (2112-2120) and Numb-1 (87-95) eliminated NICD(positive), CD24(hi) CD24(lo) MCF7 cells. It is likely that the immunogenic Numb-1 peptide in MCF7 cells originated from Numb, [P]-lated by an unknown kinase, because staurosporine but not wortmannin and MAPK-inhibitors decreased peptide presentation. Numb and Notch are antagonistic proteins which degrade each other to stop and activate cell proliferation, respectively. Their peptides are presented alternatively. Targeting both antagonistic proteins should be useful to prevent metastases in patients whose tumors are resistant to conventional treatments.
Collapse
MESH Headings
- Anticarcinogenic Agents/pharmacology
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- CD24 Antigen/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Female
- GPI-Linked Proteins
- Humans
- Hyaluronan Receptors/immunology
- Immunotherapy, Active
- Immunotherapy, Adoptive
- Intercellular Signaling Peptides and Proteins/immunology
- Intercellular Signaling Peptides and Proteins/metabolism
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Peptides/immunology
- Receptor, Notch1/immunology
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
- Takashi Mine
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Craig EA, Parker P, Camenisch TD. Size-dependent regulation of Snail2 by hyaluronan: its role in cellular invasion. Glycobiology 2009; 19:890-8. [PMID: 19451547 DOI: 10.1093/glycob/cwp064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hyaluronan (HA) induces changes in cellular behavior that are crucial during both embryonic development and cancer progression. However, the biological effects of varying sizes of HA and the signal transduction mechanisms that these polymers may activate remain unclear. In this study, we demonstrate that pulse stimulation of mouse embryonic fibroblasts with high-molecular-weight (HMW) HA, but not HA of lower molecular sizes, leads to increases in Snail2 protein which are dependent on NFkappaB activity. Involvement of CD44, the main HA receptor, in these responses was determined by use of a CD44 blocking antibody and CD44 siRNA. Both the blockade and silencing of CD44 significantly abrogate the increases in nuclear factor kappaB (NFkappaB) activity and Snail2 protein following HMW-HA stimulation. Furthermore, we show that HMW-HA induces cellular invasion and that inhibition of CD44, Snail2, or NFkappaB significantly decreases this response. These studies elucidate a novel HA/Snail2 functional connection through CD44 and NFkappaB that is important for the induction of cellular invasion and is dependent on HA size.
Collapse
Affiliation(s)
- Evisabel A Craig
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
88
|
Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ. Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2009; 395:1-10. [PMID: 19421768 DOI: 10.1007/s00423-009-0502-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/24/2009] [Indexed: 01/12/2023]
Abstract
PURPOSE Since the discovery of cancer cells with stem-like characteristics in hematopoietic malignancies and, more recently, in solid tumors, enormous attention has been paid to the stem-cell nature of pancreatic cancer. Among the most important properties of cancer stem cells their high capacity for tumorigenicity as well as their ability to metastasize is under special research interest today. METHODS Here, we give a brief overview of main components used to confirm the stem-cell-like behavior of putative cancer stem cells and discuss markers and methods for identifying them in pancreatic cancer. Finally, the review provides some new suggestions as to how specifically target these cells and improve current therapy regimens. RESULTS The cancer stem-cell hypothesis is a fundamentally different model of carcinogenesis composed of two separate but dependent on each other characteristics of stem cells--aberrant activation of their tightly regulated processes of self-renewal and differentiation and their resistance towards chemo- and radiotherapy. The cancer stem cells may further be identified based on their expression of cell surface markers or their functional characteristics. The concept of molecular targeting of such highly tumorigenic cancer cells aimed to sensitize tumors toward conventional therapies and effectively abrogate tumor growth and metastasis. CONCLUSIONS The presence of cancer stem cells in pancreatic tumors has prognostic relevance and influences therapeutic response. Evidence suggests that metastatic potential may be conferred to these highly tumorigenic cells as well. A better understanding of the biological behavior of these cells may further improve therapeutic approaches and outcomes in patients with this devastating disease.
Collapse
Affiliation(s)
- Ivan Ischenko
- Department of Surgery, Grosshadern Campus, Medical Center of the University of Munich, Marchioninistr. 15, Munich, 81377, Germany.
| | | | | | | | | | | | | |
Collapse
|
89
|
O'Brien CS, Howell SJ, Farnie G, Clarke RB. Resistance to endocrine therapy: are breast cancer stem cells the culprits? J Mammary Gland Biol Neoplasia 2009; 14:45-54. [PMID: 19252972 DOI: 10.1007/s10911-009-9115-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/10/2009] [Indexed: 12/13/2022] Open
Abstract
From a developmental point of view, tumors can be seen as aberrant versions of their tissue of origin. For example, tumors often partially retain differentiation markers of their tissue of origin and there is evidence that they contain cancer stem cells (CSCs) that drive tumorigenesis. In this review, we summarise current evidence that breast CSCs may partly explain endocrine resistance in breast cancer. In normal breast, the stem cells are known to possess a basal phenotype and to be mainly ERalpha-. If the hierarchy in breast cancer reflects this, the breast CSC may be endocrine resistant because it expresses very little ERalpha and can only respond to treatment by virtue of paracrine influences of neighboring, differentiated ERalpha+ tumor cells. Normal breast epithelial stem cells are highly dependent on the EGFR and other growth factor receptors and it may be that the observed increased growth factor receptor expression in endocrine-resistant breast cancers reflects an increased proportion of CSCs selected by endocrine therapies. There is evidence from a number of studies that breast CSCs are ERalpha- and EGFR+/HER2+, which would support this view. CSCs also express mesenchymal genes which are suppressed by ERalpha expression, further indicating the mutual exclusion between ERalpha+ cells and the CSCs. As we learn more about CSCs, differentiation and the expression and functional activity of the ERalpha in these cells in diverse breast tumor sub-types, it is hoped that our understanding will lead to new modalities to overcome the problem of endocrine resistance in the clinic.
Collapse
Affiliation(s)
- Ciara S O'Brien
- Breast Biology Group, School of Cancer and Imaging Sciences, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
90
|
Ouhtit A, Gaur RL, Abd Elmageed ZY, Fernando A, Thouta R, Trappey AK, Abdraboh ME, El-Sayyad HI, Rao P, Raj MGH. Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146. Biochim Biophys Acta Rev Cancer 2009; 1795:130-6. [PMID: 19356677 DOI: 10.1016/j.bbcan.2009.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 12/12/2022]
Abstract
CD146, also known as melanoma cell adhesion molecule or MCAM, is a key cell adhesion protein in vascular endothelial cell activity and angiogenesis. CD146 promotes tumor progression of many cancers including melanoma and prostate. Strikingly, its expression is frequently lost in breast carcinoma cells, and it may act as a suppressor of breast cancer progression. While upstream mechanisms regulating CD146 are well documented, our understanding of the downstream molecular events underlying its mode of action remains to be elucidated. This review aims to focus on the progress in understanding the signaling mechanisms and the functional relevance of CD146, a multifaceted molecule, in cancer with particular emphasis on its role in inhibiting breast cancer progression.
Collapse
Affiliation(s)
- Allal Ouhtit
- Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med 2008; 14:450-60. [PMID: 18775674 DOI: 10.1016/j.molmed.2008.08.003] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 12/17/2022]
Abstract
Rapid advances in the cancer stem cell (CSC) field have provided cause for optimism for the development of more reliable cancer therapies in the future. Strategies aimed at efficient targeting of CSCs are becoming important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. Here, we characterize and compare the specific markers that have been found to be present on stem cells, cancer cells and CSCs in selected tissues (colon, breast, liver, pancreas and prostate). We then discuss future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, R3E 0W3, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
92
|
Travaglini L, Vian L, Billi M, Grignani F, Nervi C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol 2008; 41:225-34. [PMID: 18789398 DOI: 10.1016/j.biocel.2008.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/09/2008] [Accepted: 08/11/2008] [Indexed: 01/10/2023]
Abstract
Estrogen receptors (ERs) are a recognized prognostic factor and therapeutic target in breast cancer. The loss of ER expression relates to poor prognosis, poor clinical outcome and impairs the use of anti-estrogenic treatment. Histone deacetylase inhibitors are candidate drugs for cancer therapy. Among them, valproic acid (VPA) is a long used and safe anti-epileptic drug. We studied the biological consequences of the chromatin remodeling action of VPA in a normal human mammary epithelial cell line and in ERalpha-positive and ERalpha-negative breast cancer cell lines. In these cells and regardless of their ER status, VPA-induced cell differentiation, as shown by increased milk lipids production, decreased expression of the CD44 antigen and growth arrest in the G(0)-G(1) phase of the cell cycle. These effects were accompanied by decreased Rb phosphorylation, hyperacetylation of the p21(WAF1/CIP1) gene promoter and increased p21 protein expression. Only in breast cancer cells, cyclin B1 expression was decreased and the cells accumulated also in G(2). ERalpha expression decreased in ERalpha-positive, increased in ERalpha-negative and was unchanged in normal mammary epithelial cells, as did the expression of progesterone receptor, a physiological ERalpha target. VPA decreased the expression of the invasiveness marker pS2 in ERalpha-positive breast cancer cells, but did not cause its re-expression in ERalpha-negative cells. Overall, these data suggest that in both ERalpha-positive and -negative malignant mammary epithelial cells VPA reprograms the cells to a more differentiated and "physiologic" phenotype that may improve the sensitivity to endocrine therapy and/or chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Lorena Travaglini
- Department of Histology & Medical Embryology, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
93
|
Okamoto OK, Perez JF. Targeting cancer stem cells with monoclonal antibodies: a new perspective in cancer therapy and diagnosis. Expert Rev Mol Diagn 2008; 8:387-93. [PMID: 18598221 DOI: 10.1586/14737159.8.4.387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses some of the impacts that biotechnology, genomics and nanotechnology convergence should have on future cancer management, in particular, the development of innovative diagnostic and therapeutic approaches based on monoclonal antibodies (mAbs) and cancer stem cells. Emergent therapeutic strategies in cancer have been focusing on the use of mAbs to stimulate an immune response against tumors, to block signaling pathways, or to refine delivery of cytotoxic agents. Now that cancer stem cells are being identified and characterized in different tumor types, their relevance to cancer physiopathology is becoming evident, making them natural targets for mAb development. Cancer stem cells are postulated to be responsible for tumor development, metastasis and relapse after conventional therapies. Therefore, mAbs targeting specific antigens and related pathways altered in cancer stem cells should facilitate earlier diagnosis through molecular imaging techniques and more efficient destruction of tumor initiating cells, thus improving clinical outcome.
Collapse
Affiliation(s)
- Oswaldo Keith Okamoto
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurologia Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, São Paulo, Brazil.
| | | |
Collapse
|
94
|
Perera CN, Spalding HS, Mohammed SI, Camarillo IG. Identification of proteins secreted from leptin stimulated MCF-7 breast cancer cells: a dual proteomic approach. Exp Biol Med (Maywood) 2008; 233:708-20. [PMID: 18408141 DOI: 10.3181/0710-rm-281] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leptin is an adipocyte-derived hormone that regulates energy expenditure and food intake. A significant role for leptin in breast cancer has also been indicated by the resistance of leptin knockout mice in development of mammary tumors. In vitro, leptin induces proliferation of MCF-7 cells by activating cellular signaling pathways (1, 11, 12, 16, 17, 56). As leptin is emerging as an important factor for tumor growth, and hormones can exert their actions via autocrine/paracrine mechanisms, we hypothesized leptin may act by regulating epithelial-derived proteins. To test this hypothesis, leptin-regulated proteins secreted from MCF-7 mammary tumor cells were identified using proteomics techniques. Treatment of MCF-7 cells with 500 ng/ml leptin for 24 hours resulted in a 40% increase in cell number and a 5-fold increase in protein secretion as compared to controls. Establishing the significance of leptin-induced secreted factors, the addition of conditioned media from leptin-treated MCF-7 cells to synchronized MCF-7 cells resulted in 40% increase in cell number. Identification of leptin-regulated secreted proteins was done by 2D gel electrophoresis coupled with MALDI-TOF mass spectrometry. Proteins identified using Pro Found software and NCBI database included KF10 Collagen Precursor, Serologically Defined Breast Cancer Antigen NY-BR-62 and Cortactin Isoform a. A Human Cytokine Antibody Array system was used to identify low abundant proteins in the media of control and 500 ng/ml leptin-stimulated MCF-7 cells. In leptin treated cells, levels of FGF-9 were increased while IGFBP-3 and TGF-beta3 levels were decreased. Many previous studies have focused on the regulation of distinct cellular proteins by leptin during mammary tumor cell proliferation. However, ours is the first study to identify leptin-regulated secreted proteins, many of which are known to play important roles in cancer. Our data support that leptin can influence mammary tumor growth and progression through regulation of autocrine/paracrine factors and by modulating the extracellular matrix composition.
Collapse
Affiliation(s)
- Candida N Perera
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|