51
|
LiHua L, Yoshikawa S, Ohta T, Horiguchi K, Kawano Y, Ohtsu H, Yamanishi Y, Karasuyama H. Large particulate allergens can elicit mast cell-mediated anaphylaxis without exit from blood vessels as efficiently as do small soluble allergens. Biochem Biophys Res Commun 2015; 467:70-5. [PMID: 26410536 DOI: 10.1016/j.bbrc.2015.09.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/01/2022]
Abstract
Anaphylaxis is a rapid-onset, life-threatening allergic reaction in that IgE, mast cells and histamine are commonly involved. It can be experimentally induced in IgE-sensitized animals by intravenous injection of corresponding allergens, and the sign of anaphylactic reaction can be detected within minutes after allergen challenge. However, it remains puzzling why the anaphylactic reaction can be initiated in vivo so quickly, considering that allergens are delivered into the blood circulation while mast cells reside within peripheral tissues but not in the blood circulation. To address this issue, we compared two different forms of the same allergen, small soluble and large particulate ones, in their ability to induce anaphylaxis in IgE-sensitized mice. In contrast to our expectation, particulate allergens could induce anaphylaxis as quickly and efficiently as did soluble allergens, even though they remained inside of blood vessels. In vivo imaging analysis suggested the direct interaction of intravascular particulate allergens and perivascular mast cells across the capillary wall. Taken together with previous report that perivascular mast cells can capture IgE in the blood circulation by extending cell processes across the vessel wall, our findings imply that blood-circulating allergens, regardless of their size, can stimulate mast cells without exit from blood vessels, by means of cross-linking IgE on mast cell processes inserted into the vessel lumen, and hence initiate anaphylactic reaction so quickly.
Collapse
Affiliation(s)
- Li LiHua
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| | - Takuya Ohta
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kayo Horiguchi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yohei Kawano
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan; Max Planck Institute for Infectionbiology, Germany
| | | | - Yoshinori Yamanishi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
52
|
Starkl P, Marichal T, Gaudenzio N, Reber LL, Sibilano R, Tsai M, Galli SJ. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity. J Allergy Clin Immunol 2015; 137:246-257.e11. [PMID: 26410782 DOI: 10.1016/j.jaci.2015.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/25/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Type 2 cytokine-related immune responses associated with development of antigen-specific IgE antibodies can contribute to pathology in patients with allergic diseases and to fatal anaphylaxis. However, recent findings in mice indicate that IgE also can enhance defense against honeybee venom. OBJECTIVE We tested whether IgE antibodies, IgE-dependent effector mechanisms, and a local anaphylactic reaction to an unrelated antigen can enhance defense against Russell viper venom (RVV) and determined whether such responses can be influenced by immunization protocol or mouse strain. METHODS We compared the resistance of RVV-immunized wild-type, IgE-deficient, and Fcer1a-deficient mice after injection of a potentially lethal dose of RVV. RESULTS A single prior exposure to RVV enhanced the ability of wild-type mice, but not mice lacking IgE or functional FcεRI, to survive challenge with a potentially lethal amount of RVV. Moreover, IgE-dependent local passive cutaneous anaphylaxis in response to challenge with an antigen not naturally present in RVV significantly enhanced resistance to the venom. Finally, we observed different effects on resistance to RVV or honeybee venom in BALB/c versus C57BL/6 mice that had received a second exposure to that venom before challenge with a high dose of that venom. CONCLUSION These observations illustrate the potential benefit of IgE-dependent effector mechanisms in acquired host defense against venoms. The extent to which type 2 immune responses against venoms can decrease pathology associated with envenomation seems to be influenced by the type of venom, the frequency of venom exposure, and the genetic background of the host.
Collapse
Affiliation(s)
- Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Laurent Lionel Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Stephen Joseph Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
53
|
Yang B, Yang Q, Huang Q, Yan H, Sun T, Tong H. Silencing c-Kit expression in human DCs suppresses Th2, Th17 response but enhances Th1 response. Am J Transl Res 2015; 7:1499-1509. [PMID: 26550451 PMCID: PMC4626413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Dendritic cells (DCs) are integral to the differentiation of T helper cells into T helper type 1 TH1, TH2 and TH17 subsets. RNA interference (RNAi), which causes the degradation of any RNA in a sequence specific manner, is a posttranscriptional gene silencing mechanism. Targeting the c-Kit in DCs has been used as an approach to enhance antitumor immunity. Here, we shwed that transfection of DCs with siRNA specific for c-Kit gene can significantly knock down c-Kit. When exposed to TNF-α, immature DCs transfected with c-Kit siRNA can differentiate into mature DCs without reducing viability or IL-12p70 production. The c-Kit siRNA-treated DCs exhibited an increased allostimulatory capacity in a lymphocyte proliferation assay. Furthermore, c-Kit siRNA-transfected DCs enhanced TH1 responses by increasing IFN-γ and decreasing IL-4 production, and much stronger cytotoxic activity was observed when DCs were co-transfected with c-Kit siRNA and an endogenous tumor antigen in vitro. Our findings indicate that silencing the c-Kit gene in DCs with siRNA may offer a potential approach to enhance antitumor immunotherapy.
Collapse
Affiliation(s)
- Bin Yang
- Department of Dermatology, Wuhan General Hospital of Guangzhou CommandWuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Qin Yang
- Department of Medical Laboratory, Wuhan General Hospital of Guangzhou CommandWuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Qianchuan Huang
- Department of Medical Laboratory, Wuhan General Hospital of Guangzhou CommandWuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Hongbo Yan
- Department of Dermatology, Wuhan General Hospital of Guangzhou CommandWuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Ting Sun
- Department of Dermatology, Wuhan General Hospital of Guangzhou CommandWuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Hui Tong
- Department of Dermatology, Wuhan General Hospital of Guangzhou CommandWuluo Road 627, Wuhan 430070, Hubei Province, China
| |
Collapse
|
54
|
Haddon DJ, Jarrell JA, Hughes MR, Snyder K, McNagny KM, Kattah MG, Utz PJ. Measurement of mast cell surface molecules by high-throughput immunophenotyping using transcription (HIT). Methods Mol Biol 2015; 1220:381-400. [PMID: 25388264 DOI: 10.1007/978-1-4939-1568-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we describe the application of a highly multiplexed proteomic assay, called HIT (high-throughput immunophenotyping using transcription), to analyze human mast cell surface antigens at rest and during stimulation. HIT allows analysis of up to 100 analytes, including surface antigens and intracellular phosphoproteins, transcription factors, and cytokines, in a single experiment. Briefly, anti-mouse monovalent Fab fragments are covalently conjugated with barcoded oligonucleotides to generate a panel of conjugates. The oligonucleotide-Fab fragment conjugates are bound to monoclonal primary antibodies, creating a cocktail of up to 48 unique barcoded primary antibodies. As few as 100,000 mast cells are stained with the cocktail and the barcodes of the bound primary antibodies are amplified by in vitro transcription with fluorescently labeled NTPs. The resulting barcoded transcripts are quantified using a microarray spotted with oligonucleotides that are complementary to the barcoded transcripts. Differences in levels of the barcoded transcripts correlate well with actual protein levels and are capable of detecting stimulation-dependent changes in protein levels. HIT is an invaluable, broad-spectrum approach for characterizing mast cell surface antigens, signaling molecules, transcription factors, and cytokines.
Collapse
Affiliation(s)
- D James Haddon
- Division of Immunology and Rheumatology, Stanford University School of Medicine, CCSR Building, Room 2215A, Mail Code 5166, 269 Campus Drive, Stanford, CA, 94305, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Fang Y, Xiang Z. Roles and relevance of mast cells in infection and vaccination. J Biomed Res 2015; 30:253-63. [PMID: 26565602 PMCID: PMC4946316 DOI: 10.7555/jbr.30.20150038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 01/06/2023] Open
Abstract
In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases.
Collapse
Affiliation(s)
- Yu Fang
- Department of Microbiology and Immunology; Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
56
|
Sellner S, Kocabey S, Nekolla K, Krombach F, Liedl T, Rehberg M. DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials 2015; 53:453-63. [DOI: 10.1016/j.biomaterials.2015.02.099] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 12/31/2022]
|
57
|
Gaudenzio N, Sibilano R, Starkl P, Tsai M, Galli SJ, Reber LL. Analyzing the Functions of Mast Cells In Vivo Using 'Mast Cell Knock-in' Mice. J Vis Exp 2015:e52753. [PMID: 26068439 DOI: 10.3791/52753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the 'mast cell knock-in' approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
Collapse
Affiliation(s)
| | | | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine; Department of Microbiology & Immunology, Stanford University School of Medicine
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine;
| |
Collapse
|
58
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
59
|
Paradigm shifts in mast cell and basophil biology and function: an emerging view of immune regulation in health and disease. Methods Mol Biol 2015; 1192:3-31. [PMID: 25149480 DOI: 10.1007/978-1-4939-1173-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps, the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities towards the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
|
60
|
Lpr-induced systemic autoimmunity is unaffected by mast cell deficiency. Immunol Cell Biol 2015; 93:841-8. [PMID: 25849740 DOI: 10.1038/icb.2015.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
The function of mast cells in allergic and organ-specific autoimmune responses is highly controversial. In the current study, we aimed to dissect the role of mast cells in systemic autoimmunity in the B6(lpr/lpr) mouse, a spontaneous model of systemic lupus erythematosus. B6(lpr/lpr) mice were interbred with C57Bl/6-Kit(W-sh/W-sh) (Wsh) mice, resulting in mast cell deficiency. The offspring from this cross (Lpr/Wsh mice) developed symptoms of lupus of the same severity as B6(lpr/lpr) mice. Loss of mast cells on the Lpr background did not alter autoantibody production, proteinuria, the composition of T and B cell populations or autoimmune pathology. Reduced c-Kit expression did drive expanded splenomegaly and impeded interleukin-4 production by CD4(+) cells, suggesting minor functions for mast cells. In general, we conclude that mast cell deficiency and c-Kit deficiency do not play a role in the pathogenesis of lupus in B6(lpr/lpr) mice.
Collapse
|
61
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
62
|
Otsuka A, Kabashima K. Mast cells and basophils in cutaneous immune responses. Allergy 2015; 70:131-40. [PMID: 25250718 DOI: 10.1111/all.12526] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 12/19/2022]
Abstract
Mast cells and basophils share some functions in common and are generally associated with T helper 2 (Th2) immune responses, but taking basophils as surrogate cells for mast cell research or vice versa for several decades is problematic. Thus far, their in vitro functions have been well studied, but their in vivo functions remained poorly understood. New research tools for their functional analysis in vivo have revealed previously unrecognized roles for mast cells and basophils in several skin disorders. Newly developed mast cell-deficient mice provided evidence that mast cells initiate contact hypersensitivity via activating dendritic cells. In addition, studies using basophil-deficient mice have revealed that basophils were responsible for cutaneous Th2 skewing to haptens and peptide antigens but not to protein antigens. Moreover, human basophils infiltrate different skin lesions and have been implicated in the pathogenesis of skin diseases ranging from atopic dermatitis to autoimmune diseases. In this review, we will discuss the recent advances related to mast cells and basophils in human and murine cutaneous immune responses.
Collapse
Affiliation(s)
- A. Otsuka
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - K. Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- PRESTO; Japan Science and Technology Agency; Kawaguchi Saitama Japan
| |
Collapse
|
63
|
Abstract
Mast cells have been demonstrated to have critical roles in host defense against a number of types of pathogens. In order to better understand how mast cells participate in effective immune responses, it is important to evaluate their ability to respond directly to pathogens and their products. In the current chapter we provide a methodology to evaluate human mast cell responses to a number of bacterial and fungal pathogen products and to mammalian reovirus as a model of acute viral infection. These methods should provide key information necessary to aid in the effective design of experiments to evaluate human mast cell responses to a number of other organisms. However, it is important to carefully consider the biology of the mast cell subsets and pathogens involved and the optimal experimental conditions necessary to evaluate mediators of interest.
Collapse
Affiliation(s)
- Ian D Haidl
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | | |
Collapse
|
64
|
Reber LL, Marichal T, Sokolove J, Starkl P, Gaudenzio N, Iwakura Y, Karasuyama H, Schwartz LB, Robinson WH, Tsai M, Galli SJ. Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol 2014; 66:2881-91. [PMID: 24943488 DOI: 10.1002/art.38747] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Gouty arthritis is caused by the precipitation of monosodium urate monohydrate (MSU) crystals in the joints. While it has been reported that mast cells (MCs) infiltrate gouty tophi, little is known about the actual roles of MCs during acute attacks of gout. This study was undertaken to assess the role of MCs in a mouse model of MSU crystal-induced acute arthritis. METHODS We assessed the effects of intraarticular (IA) injection of MSU crystals in various strains of mice with constitutive or inducible MC deficiency or in mice lacking interleukin-1β (IL-1β) or other elements of innate immunity. We also assessed the response to IA injection of MSU crystals in genetically MC-deficient mice after IA engraftment of wild-type or IL-1β(-/-) bone marrow-derived cultured MCs. RESULTS MCs were found to augment acute tissue swelling following IA injection of MSU crystals in mice. IL-1β production by MCs contributed importantly to MSU crystal-induced tissue swelling, particularly during its early stages. Selective depletion of synovial MCs was able to diminish MSU crystal-induced acute inflammation in the joints. CONCLUSION Our findings identify a previously unrecognized role of MCs and MC-derived IL-1β in the early stages of MSU crystal-induced acute arthritis in mice.
Collapse
|
65
|
Rönnberg E, Johnzon CF, Calounova G, Garcia Faroldi G, Grujic M, Hartmann K, Roers A, Guss B, Lundequist A, Pejler G. Mast cells are activated by Staphylococcus aureus in vitro but do not influence the outcome of intraperitoneal S. aureus infection in vivo. Immunology 2014; 143:155-63. [PMID: 24689370 DOI: 10.1111/imm.12297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that can cause a broad spectrum of serious infections including skin infections, pneumonia and sepsis. Peritoneal mast cells have been implicated in the host response towards various bacterial insults and to provide mechanistic insight into the role of mast cells in intraperitoneal bacterial infection we here studied the global effects of S. aureus on mast cell gene expression. After co-culture of peritoneal mast cells with live S. aureus we found by gene array analysis that they up-regulate a number of genes. Many of these corresponded to pro-inflammatory cytokines, including interleukin-3, interleukin-13 and tumour necrosis factor-α. The cytokine induction in response to S. aureus was confirmed by ELISA. To study the role of peritoneal mast cells during in vivo infection with S. aureus we used newly developed Mcpt5-Cre(+) × R-DTA mice in which mast cell deficiency is independent of c-Kit. This is in contrast to previous studies in which an impact of mast cells on bacterial infection has been proposed based on the use of mice whose mast cell deficiency is a consequence of defective c-Kit signalling. Staphylococcus aureus was injected intraperitoneally into mast-cell-deficient Mcpt5-Cre(+) × R-DTA mice using littermate mast-cell-sufficient mice as controls. We did not observe any difference between mast-cell-deficient and control mice with regard to weight loss, bacterial clearance, inflammation or cytokine production. We conclude that, despite peritoneal mast cells being activated by S. aureus in vitro, they do not influence the in vivo manifestations of intraperitoneal S. aureus infection.
Collapse
Affiliation(s)
- Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH, Grimbaldeston MA. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells. PLoS Pathog 2014; 10:e1004466. [PMID: 25340820 PMCID: PMC4207828 DOI: 10.1371/journal.ppat.1004466] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Human Papillomavirus (HPV) 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Neill Ford
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| | - Michele A. Grimbaldeston
- Division of Human Immunology, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
67
|
Dahdah A, Gautier G, Attout T, Fiore F, Lebourdais E, Msallam R, Daëron M, Monteiro RC, Benhamou M, Charles N, Davoust J, Blank U, Malissen B, Launay P. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest 2014; 124:4577-89. [PMID: 25180604 DOI: 10.1172/jci75212] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/24/2014] [Indexed: 12/31/2022] Open
Abstract
Controlling the overwhelming inflammatory reaction associated with polymicrobial sepsis remains a prevalent clinical challenge with few treatment options. In septic peritonitis, blood neutrophils and monocytes are rapidly recruited into the peritoneal cavity to control infection, but the role of resident sentinel cells during the early phase of infection is less clear. In particular, the influence of mast cells on other tissue-resident cells remains poorly understood. Here, we developed a mouse model that allows both visualization and conditional ablation of mast cells and basophils to investigate the role of mast cells in severe septic peritonitis. Specific depletion of mast cells led to increased survival rates in mice with acute sepsis. Furthermore, we determined that mast cells impair the phagocytic action of resident macrophages, thereby allowing local and systemic bacterial proliferation. Mast cells did not influence local recruitment of neutrophils and monocytes or the release of inflammatory cytokines. Phagocytosis inhibition by mast cells involved their ability to release prestored IL-4 within 15 minutes after bacterial encounter, and treatment with an IL-4-neutralizing antibody prevented this inhibitory effect and improved survival of septic mice. Our study uncovers a local crosstalk between mast cells and macrophages during the early phase of sepsis development that aggravates the outcome of severe bacterial infection.
Collapse
|
68
|
Junkins RD, Carrigan SO, Wu Z, Stadnyk AW, Cowley E, Issekutz T, Berman J, Lin TJ. Mast Cells Protect against Pseudomonas aeruginosa–Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2310-21. [DOI: 10.1016/j.ajpath.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
|
69
|
Role of main neuroendocrine pathways activated by swim stress on mast cell-dependent peritoneal TNF production after LPS administration in mice. Inflamm Res 2014; 63:757-67. [PMID: 24912751 DOI: 10.1007/s00011-014-0748-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE AND DESIGN To characterize the effects of swim stress on the early mast cell (MC)-dependent peritoneal production of TNF in response to lipopolysaccharide (LPS) administration in mice, identifying the neuroendocrine mediators involved. SUBJECTS Ten to twelve-week-old Swiss Webster, C57BL/6 J or c-Kit (Wsh/Wsh) mice were used. TREATMENT Animals were intraperitoneally challenged with LPS at different times after forced swimming (FS) and peak TNF production was determined in peritoneal washes at optimal time after LPS administration. Selective blockage of main neuroendocrine pathways was performed before swim stress. METHODS TNF concentrations were determined by ELISA. RESULTS FS provoked an immediate and transient inhibition of LPS-elicited, MC-dependent TNF accumulation in peritoneum, which lasted around 30 min. Suppresive effects of FS were absent on MC-deficient c-Kit (Wsh/Wsh) mice but were recovered after reconstitution with MC. Adrenalectomy or DSP4 administration increased basal ip TNF levels and enhanced LPS-induced TNF release without any effect on stress-induced inhibitory effects, mifepristone did not produce any change on stress-induced inhibition, whereas mecamylamine administration increased basals and attenuated stress effects. CONCLUSIONS Swim stress transiently inhibits the canonical MC-dependent response of TNF production in response to LPS in murine peritoneal cavity with the main participation of the cholinergic anti-inflammatory reflex.
Collapse
|
70
|
Abstract
Salmonella bacteria often cause food-borne diseases. In this issue of Immunity, Choi et al. (2013) demonstrate that the Salmonella Typhimurium-secreted protein tyrosine phosphatase, SptP, suppresses mast cell degranulation, which enables bacterial dissemination.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan.
| | - Tomoaki Ando
- Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
71
|
Choi HW, Brooking-Dixon R, Neupane S, Lee CJ, Miao EA, Staats HF, Abraham SN. Salmonella typhimurium impedes innate immunity with a mast-cell-suppressing protein tyrosine phosphatase, SptP. Immunity 2014; 39:1108-20. [PMID: 24332031 DOI: 10.1016/j.immuni.2013.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022]
Abstract
The virulence of Salmonella is linked to its invasive capacity and suppression of adaptive immunity. This does not explain, however, the rapid dissemination of the pathogen after it breaches the gut. In our study, S. Typhimurium suppressed degranulation of local mast cells (MCs), resulting in limited neutrophil recruitment and restricting outflow of vascular contents into infection sites, thus facilitating bacterial spread. MC suppression was mediated by secreted effector protein (SptP), which shares structural homology with Yersinia YopH. SptP functioned by dephosphorylating the vesicle fusion protein N-ethylmalemide-sensitive factor and by blocking phosphorylation of Syk. Without SptP, orally challenged S. Typhimurium failed to suppress MC degranulation and exhibited limited colonization of the mesenteric lymph nodes. Administration of SptP to sites of E. coli infection markedly enhanced its virulence. Thus, SptP-mediated inactivation of local MCs is a powerful mechanism utilized by S. Typhimurium to impede early innate immunity.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rhea Brooking-Dixon
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Subham Neupane
- Undergraduate Program in Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Herman F Staats
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke - National University of Singapore Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
72
|
Garcia-Faroldi G, Melo FR, Bruemmer D, Conneely OM, Pejler G, Lundequist A. Nuclear receptor 4a3 (nr4a3) regulates murine mast cell responses and granule content. PLoS One 2014; 9:e89311. [PMID: 24586680 PMCID: PMC3930735 DOI: 10.1371/journal.pone.0089311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptor 4a3 (Nr4a3) is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.
Collapse
Affiliation(s)
- Gianni Garcia-Faroldi
- Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, BMC, Uppsala, Sweden
| | - Fabio R. Melo
- Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, BMC, Uppsala, Sweden
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Wethington, Kentucky, United States of America
| | - Orla M. Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gunnar Pejler
- Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, BMC, Uppsala, Sweden
| | - Anders Lundequist
- Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
73
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
74
|
Reber LL, Daubeuf F, Pejler G, Abrink M, Frossard N. Mast Cells Contribute to Bleomycin-Induced Lung Inflammation and Injury in Mice through a Chymase/Mast Cell Protease 4–Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2014; 192:1847-54. [DOI: 10.4049/jimmunol.1300875] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
75
|
Kumar V, Everingham S, Hall C, Greer PA, Craig AWB. Calpains promote neutrophil recruitment and bacterial clearance in an acute bacterial peritonitis model. Eur J Immunol 2013; 44:831-41. [PMID: 24375267 DOI: 10.1002/eji.201343757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/15/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022]
Abstract
Activation of the innate immune system is critical for clearance of bacterial pathogens to limit systemic infections and host tissue damage. Here, we report a key role for calpain proteases in bacterial clearance in mice with acute peritonitis. Using transgenic mice expressing Cre recombinase primarily in innate immune cells (fes-Cre), we generated conditional capns1 knockout mice. Consistent with capns1 being essential for stability and function of the ubiquitous calpains (calpain-1, calpain-2), peritoneal cells from these mice had reduced levels of calpain-2/capns1, and reduced proteolysis of their substrate selenoprotein K. Using an acute bacterial peritonitis model, we observed impaired bacterial killing within the peritoneum and development of bacteremia in calpain knockout mice. These defects correlated with significant reductions in IL-1α release, neutrophil recruitment, and generation of reactive oxygen species in calpain knockout mice with acute bacterial peritonitis. Peritoneal macrophages from calpain knockout mice infected with enterobacteria ex vivo, were competent in phagocytosis of bacteria, but showed impaired clearance of intracellular bacteria compared with control macrophages. Together, these results implicate calpains as key mediators of effective innate immune responses to acute bacterial infections, to prevent systemic dissemination of bacteria that can lead to sepsis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
76
|
|
77
|
Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M, Metz M, Galli SJ. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 2013; 39:963-75. [PMID: 24210352 PMCID: PMC4164235 DOI: 10.1016/j.immuni.2013.10.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Allergies are widely considered to be misdirected type 2 immune responses, in which immunoglobulin E (IgE) antibodies are produced against any of a broad range of seemingly harmless antigens. However, components of insect venoms also can sensitize individuals to develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. We found that mice injected with amounts of honeybee venom similar to that which could be delivered in one or two stings developed a specific type 2 immune response that increased their resistance to subsequent challenge with potentially lethal amounts of the venom. Our data indicate that IgE antibodies and the high affinity IgE receptor, FcεRI, were essential for such acquired resistance to honeybee venom. The evidence that IgE-dependent immune responses against venom can enhance survival in mice supports the hypothesis that IgE, which also contributes to allergic disorders, has an important function in protection of the host against noxious substances.
Collapse
Affiliation(s)
- Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Janet Kalesnikoff
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Hans C. Oettgen
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Martin Metz
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, 02115; USA
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; USA
| |
Collapse
|
78
|
de Boer JD, Van't Veer C, Stroo I, van der Meer AJ, de Vos AF, van der Zee JS, Roelofs JJTH, van der Poll T. Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun 2013; 20:618-25. [PMID: 24048772 DOI: 10.1177/1753425913503387] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 01/24/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is abundantly expressed in the pulmonary compartment. House dust mite (HDM) is a common cause of allergic asthma and contains multiple PAR2 agonistic proteases. The aim of this study was to determine the role of PAR2 in HDM-induced allergic lung inflammation. For this, the extent of allergic lung inflammation was studied in wild type (Wt) and PAR2 knockout (KO) mice after repeated airway exposure to HDM. HDM exposure of Wt mice resulted in a profound influx of eosinophils in bronchoalveolar lavage fluid (BALF) and accumulation of eosinophils in lung tissue, which both were strongly reduced in PAR2 KO mice. PAR2 KO mice demonstrated attenuated lung pathology and protein leak in the bronchoalveolar space, accompanied by lower BALF levels of the anaphylatoxins C3a and C5a. This study reveals, for the first time, an important role for PAR2 in allergic lung inflammation induced by the clinically relevant allergens contained in HDM.
Collapse
Affiliation(s)
- J Daan de Boer
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Cornelis Van't Veer
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Ingrid Stroo
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands Department of Immunopathology, Sanquin, Amsterdam, the Netherlands
| | - Anne J van der Meer
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Alex F de Vos
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Jaring S van der Zee
- Department of Pulmonology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
79
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
80
|
Reber LL, Marichal T, Mukai K, Kita Y, Tokuoka SM, Roers A, Hartmann K, Karasuyama H, Nadeau KC, Tsai M, Galli SJ. Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. J Allergy Clin Immunol 2013; 132:881-8.e1-11. [PMID: 23915716 DOI: 10.1016/j.jaci.2013.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Studies with c-kit mutant mast cell (MC)-deficient mice and antibody-mediated depletion of basophils suggest that both MCs and basophils can contribute to peanut-induced anaphylaxis (PIA). However, interpretation of data obtained by using such approaches is complicated because c-kit mutant mice have several phenotypic abnormalities in addition to MC deficiency and because basophil-depleting antibodies can also react with MCs. OBJECTIVE We analyzed (1) the changes in the features of PIA in mice after the selective and inducible ablation of MCs or basophils and (2) the possible importance of effector cells other than MCs and basophils in the PIA response. METHODS Wild-type and various mutant mice were orally sensitized with peanut extract and cholera toxin weekly for 4 weeks and challenged intraperitoneally with peanut extract 2 weeks later. RESULTS Peanut-challenged, MC-deficient Kit(W-sh/W-sh) mice had reduced immediate hypothermia, as well as a late-phase decrease in body temperature that was abrogated by antibody-mediated depletion of neutrophils. Diphtheria toxin-mediated selective depletion of MCs or basophils in Mcpt5-Cre;iDTR and Mcpt8(DTR) mice, respectively, and treatment of wild-type mice with the basophil-depleting antibody Ba103 significantly reduced peanut-induced hypothermia. Non-c-kit mutant MC- and basophil-deficient Cpa3-Cre;Mcl-1(fl/fl) mice had reduced but still significant responses to peanut. CONCLUSION Inducible and selective ablation of MCs or basophils in non-c-kit mutant mice can significantly reduce PIA, but partial responses to peanut can still be observed in the virtual absence of both cell types. The neutrophilia in Kit(W-sh/W-sh) mice might influence the responses of these mice in this PIA model.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Carlos D, Spiller F, Souto FO, Trevelin SC, Borges VF, de Freitas A, Alves-Filho JC, Silva JS, Ryffel B, Cunha FQ. Histamine h2 receptor signaling in the pathogenesis of sepsis: studies in a murine diabetes model. THE JOURNAL OF IMMUNOLOGY 2013; 191:1373-82. [PMID: 23817413 DOI: 10.4049/jimmunol.1202907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes enhances susceptibility to infection and favors the sepsis development. In addition, diabetic mice produced higher levels of histamine in several tissues and in the blood after LPS stimulation than nondiabetic mice. In this study, we aimed to explore the role of mast cells (MCs) and histamine in neutrophil migration and, consequently, infection control in diabetic mice with mild sepsis (MS) induced by cecum ligation and puncture. We used female BALB/c, MC-sufficient (WB/B6), MC-deficient (W/W(v)), and NOD mice. Diabetic mice given MS displayed 100% mortality within 24 h, whereas all nondiabetic mice survived for at least 5 d. The mortality rate of diabetic mice was reduced to 57% after the depletion of MC granules with compound 48/80. Moreover, this pretreatment increased neutrophil migration to the focus of infection, which reduced systemic inflammatory response and bacteremia. The downregulation of CXCR2 and upregulation of G protein-coupled receptor kinase 2 in neutrophils was prevented by pretreatment of diabetic mice given MS with compound 48/80. In addition, blocking the histamine H2 receptor restored neutrophil migration, enhanced CXCR2 expression, decreased bacteremia, and improved sepsis survival in alloxan-induced diabetic and spontaneous NOD mice. Finally, diabetic W/W(v) mice had neutrophil migration to the peritoneal cavity, increased CXCR2 expression, and reduced bacteremia compared with diabetic WB/B6 mice. These results demonstrate that histamine released by MCs reduces diabetic host resistance to septic peritonitis in mice.
Collapse
Affiliation(s)
- Daniela Carlos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Oka T, Rios EJ, Tsai M, Kalesnikoff J, Galli SJ. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells. J Allergy Clin Immunol 2013; 132:922-32.e1-16. [PMID: 23810240 DOI: 10.1016/j.jaci.2013.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/19/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. OBJECTIVES We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. METHODS C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. RESULTS Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. CONCLUSIONS Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro.
Collapse
Affiliation(s)
- Tatsuya Oka
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | | | | | | | | |
Collapse
|
83
|
Nauta AC, Grova M, Montoro DT, Zimmermann A, Tsai M, Gurtner GC, Galli SJ, Longaker MT. Evidence that mast cells are not required for healing of splinted cutaneous excisional wounds in mice. PLoS One 2013; 8:e59167. [PMID: 23544053 PMCID: PMC3609818 DOI: 10.1371/journal.pone.0059167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/13/2013] [Indexed: 11/18/2022] Open
Abstract
Wound healing is a complex biological process involving the interaction of many cell types to replace lost or damaged tissue. Although the biology of wound healing has been extensively investigated, few studies have focused on the role of mast cells. In this study, we investigated the possible role of mast cells in wound healing by analyzing aspects of cutaneous excisional wound healing in three types of genetically mast cell-deficient mice. We found that C57BL/6-KitW-sh/W-sh, WBB6F1-KitW/W-v, and Cpa3-Cre; Mcl-1fl/fl mice re-epithelialized splinted excisional skin wounds at rates very similar to those in the corresponding wild type or control mice. Furthermore, at the time of closure, scars were similar in the genetically mast cell-deficient mice and the corresponding wild type or control mice in both quantity of collagen deposition and maturity of collagen fibers, as evaluated by Masson’s Trichrome and Picro-Sirius red staining. These data indicate that mast cells do not play a significant non-redundant role in these features of the healing of splinted full thickness excisional cutaneous wounds in mice.
Collapse
Affiliation(s)
- Allison C Nauta
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Role of mast cells in allergy had remained undetermined until the discovery of IgE in 1966. Then, IgE purified from many Liters of plasma, which had been donated from a patient with fatal myeloma, was distributed to researchers all over the world, and thus accelerated exploring the mechanisms involved in allergic reactions, particularly about the role of mast cells and basophils in the IgE-mediated reactions. Identification of mast cells as a progeny of a bone marrow hematopoietic stem cell in 1977 led us to successful in vitro culture of human mast cells. Along with the development of molecular biological techniques, the structure of the high affinity IgE receptor (FcεRI) was determined in 1989. These findings and subsequent investigations brought deeper understanding of IgE-mediated allergic diseases in the past half century, especially where mast cells are involved. We have now even obtained the information about whole genome expression of FcεRI-dependently activated mast cells. In sharp contrast to our comprehension of allergic diseases where IgE and mast cells are involved, the mechanisms involved in non-IgE-mediated allergic diseases or non-IgE-mediated phase of IgE-mediated diseases are almost left unsolved and are waiting for devoted investigators to reveal it.
Collapse
Affiliation(s)
- Hirohisa Saito
- National Research Institute for Child Health & Development, Tokyo, Japan. saito−
| | | | | |
Collapse
|
85
|
Costanza M, Colombo MP, Pedotti R. Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 2012. [PMID: 23203114 PMCID: PMC3509630 DOI: 10.3390/ijms131115107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MCs) are best known as key immune players in immunoglobulin E (IgE)-dependent allergic reactions. In recent years, several lines of evidence have suggested that MCs might play an important role in several pathological conditions, including autoimmune disorders such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Since their first description in MS plaques in the late 1800s, much effort has been put into elucidating the contribution of MCs to the development of central nervous system (CNS) autoimmunity. Mouse models of MC-deficiency have provided a valuable experimental tool for dissecting MC involvement in MS and EAE. However, to date there is still major controversy concerning the function of MCs in these diseases. Indeed, although MCs have been classically proposed as having a detrimental and pro-inflammatory role, recent literature has questioned and resized the contribution of MCs to the pathology of MS and EAE. In this review, we will present the main evidence obtained in MS and EAE on this topic, and discuss the critical and controversial aspects of such evidence.
Collapse
Affiliation(s)
- Massimo Costanza
- Neuroimmunology and Neuromuscular Disorder Unit, Neurological Institute Foundation IRCCS C. Besta, via Amadeo 42, Milan 20133, Italy; E-Mail:
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy; E-Mail:
| | - Rosetta Pedotti
- Neuroimmunology and Neuromuscular Disorder Unit, Neurological Institute Foundation IRCCS C. Besta, via Amadeo 42, Milan 20133, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-02-23944654; Fax: +39-02-23944708
| |
Collapse
|
86
|
Piliponsky AM, Chen CC, Rios EJ, Treuting PM, Lahiri A, Abrink M, Pejler G, Tsai M, Galli SJ. The chymase mouse mast cell protease 4 degrades TNF, limits inflammation, and promotes survival in a model of sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:875-86. [PMID: 22901752 DOI: 10.1016/j.ajpath.2012.05.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022]
Abstract
Mouse mast cell protease 4 (mMCP-4), the mouse counterpart of human mast cell chymase, is thought to have proinflammatory effects in innate or adaptive immune responses associated with mast cell activation. However, human chymase can degrade the proinflammatory cytokine TNF, a mediator that can be produced by mast cells and many other cell types. We found that mMCP-4 can reduce levels of mouse mast cell-derived TNF in vitro through degradation of transmembrane and soluble TNF. We assessed the effects of interactions between mMCP-4 and TNF in vivo by analyzing the features of a classic model of polymicrobial sepsis, cecal ligation and puncture (CLP), in C57BL/6J-mMCP-4-deficient mice versus C57BL/6J wild-type mice, and in C57BL/6J-Kit(W-sh/W-sh) mice containing adoptively transferred mast cells that were either wild type or lacked mMCP-4, TNF, or both mediators. The mMCP-4-deficient mice exhibited increased levels of intraperitoneal TNF, higher numbers of peritoneal neutrophils, and increased acute kidney injury after CLP, and also had significantly higher mortality after this procedure. Our findings support the conclusion that mMCP-4 can enhance survival after CLP at least in part by limiting detrimental effects of TNF, and suggest that mast cell chymase may represent an important negative regulator of TNF in vivo.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Department of Pathology, Stanford University School of Medicine, California 94305-5324, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell functions in vivo. Trends Immunol 2012; 33:613-25. [PMID: 23127755 DOI: 10.1016/j.it.2012.09.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
In addition to their well-accepted role as critical effector cells in anaphylaxis and other acute IgE-mediated allergic reactions, mast cells (MCs) have been implicated in a wide variety of processes that contribute to disease or help to maintain health. Although some of these roles were first suggested by analyses of MC products or functions in vitro, it is critical to determine whether, and under which circumstances, such potential roles actually can be performed by MCs in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products during biological responses in vivo, and comments on some of the similarities and differences in the results obtained with these newer versus older models of MC deficiency.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
88
|
Rodewald HR, Feyerabend TB. Widespread immunological functions of mast cells: fact or fiction? Immunity 2012; 37:13-24. [PMID: 22840840 DOI: 10.1016/j.immuni.2012.07.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Indexed: 12/29/2022]
Abstract
Immunological functions of mast cells are currently considered to be much broader than the original role of mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, microbial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system, has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we consider the implications of these recent developments for the state of the field as well as for future work, aiming at deciphering the physiological functions of mast cells.
Collapse
Affiliation(s)
- Hans-Reimer Rodewald
- Division for Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | |
Collapse
|
89
|
Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ. Evidence questioning cromolyn's effectiveness and selectivity as a 'mast cell stabilizer' in mice. J Transl Med 2012; 92:1472-82. [PMID: 22906983 PMCID: PMC3580174 DOI: 10.1038/labinvest.2012.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cromolyn, widely characterized as a 'mast cell stabilizer', has been used in mice to investigate the biological roles of mast cells in vivo. However, it is not clear to what extent cromolyn can either limit the function of mouse mast cells or influence biological processes in mice independently of effects on mast cells. We confirmed that cromolyn (at 10 mg/kg in vivo or 10-100 μM in vitro) can inhibit IgE-dependent mast cell activation in rats in vivo (measuring Evans blue extravasation in passive cutaneous anaphylaxis (PCA) and increases in plasma histamine in passive systemic anaphylaxis (PSA)) and in vitro (measuring peritoneal mast cell (PMC) β-hexosaminidase release and prostaglandin D(2) synthesis). However, under the conditions tested, cromolyn did not inhibit those mast cell-dependent responses in mice. In mice, cromolyn also failed to inhibit the ear swelling or leukocyte infiltration at sites of PCA. Nor did cromolyn inhibit IgE-independent degranulation of mouse PMCs induced by various stimulators in vitro. At 100 mg/kg, a concentration 10 times higher than that which inhibited PSA in rats, cromolyn significantly inhibited the increases in plasma concentrations of mouse mast cell protease-1 (but not of histamine) during PSA, but had no effect on the reduction in body temperature in this setting. Moreover, this concentration of cromolyn (100 mg/kg) also inhibited LPS-induced TNF production in genetically mast cell-deficient C57BL/6-Kit(W-sh/W-sh) mice in vivo. These results question cromolyn's effectiveness and selectivity as an inhibitor of mast cell activation and mediator release in the mouse.
Collapse
|
90
|
Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 2012; 133:303-15. [PMID: 22931926 DOI: 10.1038/jid.2012.284] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergic contact dermatitis (ACD) is one of the most common skin diseases, consisting of sensitization and elicitation phases. With the advancement of technology and the discovery of new types of immune cells, our knowledge of the immunological mechanisms of contact hypersensitivity (CHS) as a murine model of ACD has expanded significantly in the past decade. For example, by introducing regulatory T cells, CD4(+) T-helper 17 cells, and Langerin-positive dermal dendritic cells, the initiation and termination mechanism of CHS has been revealed. In addition, the role of mast cells in CHS, long a matter of debate, has become apparent by developing conditional mast cell-deficient mice. Moreover, the role of the innate immunity system, such as that of Toll-like receptor signaling, has made a breakthrough in this field. In this review, we will integrate the recent advancement of immunological mechanisms of both the sensitization and elicitation phases of CHS into the classic view, and we will discuss updated mechanisms on its development and future directions.
Collapse
|
91
|
Schäfer B, Piliponsky AM, Oka T, Song CH, Gerard NP, Gerard C, Tsai M, Kalesnikoff J, Galli SJ. Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice. J Allergy Clin Immunol 2012; 131:541-8.e1-9. [PMID: 22728083 DOI: 10.1016/j.jaci.2012.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mast cells express receptors for complement anaphylatoxins C3a and C5a (ie, C3a receptor [C3aR] and C5a receptor [C5aR]), and C3a and C5a are generated during various IgE-dependent immediate hypersensitivity reactions in vivo. However, it is not clear to what extent mast cell expression of C3aR or C5aR influences C3a- or C5a-induced cutaneous responses or IgE-dependent mast cell activation and passive cutaneous anaphylaxis (PCA) in vivo. OBJECTIVE We sought to assess whether mouse skin mast cell expression of C3aR or C5aR influences (1) the cells' responsiveness to intradermal injections of C3a or C5a or (2) the extent of IgE-dependent mast cell degranulation and PCA in vivo. METHODS We measured the magnitude of cutaneous responses to intradermal injections of C3a or C5a and the extent of IgE-dependent mast cell degranulation and PCA responses in mice containing mast cells that did or did not express C3aR or C5aR. RESULTS The majority of the skin swelling induced by means of intradermal injection of C3a or C5a required that mast cells at the site expressed C3aR or C5aR, respectively, and the extent of IgE-dependent degranulation of skin mast cells and IgE-dependent PCA was significantly reduced when mast cells lacked either C3aR or C5aR. IgE-dependent PCA responses associated with local increases in C3a levels occurred in antibody-deficient mice but not in mice deficient in FcɛRIγ. CONCLUSION Expression of C3aR and C5aR by skin mast cells contributes importantly to the ability of C3a and C5a to induce skin swelling and can enhance mast cell degranulation and inflammation during IgE-dependent PCA in vivo.
Collapse
Affiliation(s)
- Beatrix Schäfer
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif 94305-5324, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Morphine Preconditioning Protects Against LPS-Induced Neuroinflammation and Memory Deficit. J Mol Neurosci 2012; 48:22-34. [DOI: 10.1007/s12031-012-9726-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/13/2012] [Indexed: 12/16/2022]
|
93
|
Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C. Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immun 2012; 18:648-60. [PMID: 22302035 DOI: 10.1177/1753425911435265] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mast cells (MCs) control allergic reactions and contribute to protective innate immune responses through TLR4 activation. The tyrosine kinase Lyn is important to the high affinity IgE receptor (FcεRI) signal transduction system in MCs, but its role on the TLR4 signalling cascade is still elusive. Here, we characterized several TLR4-triggered responses in bone marrow-derived mast cells (BMMCs) from wild-type (WT) and Lyn(-/-) mice. We found that Lyn(-/-) MCs secreted lower amounts of TNF-α after LPS challenge when compared with WT cells. Lyn(-/-) BMMCs showed less MAPK, IκB phosphorylation and NF-κB nuclear translocation after TLR-4 triggering than WT cells. LPS-induced MAPK and inhibitor of IκB kinase (IKK) phosphorylation were importantly reduced in the absence of Lyn. A constitutive interaction between TNF receptor associated factor 6 (TRAF-6) and phosphorylated TGF-β-activated kinase (TAK-1) was observed in Lyn(-/-) BMMCs and this complex was insensitive to LPS addition. Lyn kinase was activated and associated to TRAF-6 shortly after LPS addition in WT MCs. Analyzing two local MC-dependent innate immune responses in vivo, we found that Lyn positively controls early TNF-α production and immune cell recruitment after an intraperitoneal injection of LPS. Our results indicate that Lyn plays a positive role in TLR4-induced production of TNF-α in MCs controlling the activity of the TRAF-6/TAK-1 protein complex.
Collapse
Affiliation(s)
- Martin Avila
- Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | | | | | | |
Collapse
|
94
|
Chan CY, St John AL, Abraham SN. Plasticity in mast cell responses during bacterial infections. Curr Opin Microbiol 2011; 15:78-84. [PMID: 22055570 DOI: 10.1016/j.mib.2011.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) have been implicated in orchestrating the host's early innate immune and adaptive immune responses in several models of acute bacterial infections. Most of this activity results in early clearance of the bacteria and timely resolution of infection. However, during chronic infections because of the prolonged nature of MC-bacterial interactions, the role of the MC in determining the fate of infection is markedly more complex. Depending on the nature of the pathogen, severity of infection, and its association with a preexisting inflammatory disease, MCs may promote rather than contain chronic infections and exacerbate their pathological sequellae.
Collapse
Affiliation(s)
- Cheryl Y Chan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
95
|
Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 2011; 12:1035-44. [PMID: 22012443 PMCID: PMC3412172 DOI: 10.1038/ni.2109] [Citation(s) in RCA: 750] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents a common mechanism for modulating innate or adaptive immunity.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | |
Collapse
|
96
|
Abstract
It has been reported that the intracellular antiapoptotic factor myeloid cell leukemia sequence 1 (Mcl-1) is required for mast cell survival in vitro, and that genetic manipulation of Mcl-1 can be used to delete individual hematopoietic cell populations in vivo. In the present study, we report the generation of C57BL/6 mice in which Cre recombinase is expressed under the control of a segment of the carboxypeptidase A3 (Cpa3) promoter. C57BL/6-Cpa3-Cre; Mcl-1(fl/fl) mice are severely deficient in mast cells (92%-100% reduced in various tissues analyzed) and also have a marked deficiency in basophils (58%-78% reduced in the compartments analyzed), whereas the numbers of other hematopoietic cell populations exhibit little or no changes. Moreover, Cpa3-Cre; Mcl-1(fl/fl) mice exhibited marked reductions in the tissue swelling and leukocyte infiltration that are associated with both mast cell- and IgE-dependent passive cutaneous anaphylaxis (except at sites engrafted with in vitro-derived mast cells) and a basophil- and IgE-dependent model of chronic allergic inflammation, and do not develop IgE-dependent passive systemic anaphylaxis. Our findings support the conclusion that Mcl-1 is required for normal mast cell and basophil development/survival in vivo in mice, and also suggest that Cpa3-Cre; Mcl-1(fl/fl) mice may be useful in analyzing the roles of mast cells and basophils in health and disease.
Collapse
|
97
|
Collington SJ, Williams TJ, Weller CL. Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 2011; 32:478-85. [PMID: 21917522 DOI: 10.1016/j.it.2011.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
Mast cells are tissue-resident cells best known for their role in allergy and host defence against helminth parasites. They are involved in responses against other pathogenic infections, wound healing and inflammatory disease. Committed mast cell progenitors are released from the bone marrow into the circulation, from where they are recruited into tissues to complete their maturation under the control of locally produced cytokines and growth factors. Directed migration occurs at distinct stages of the mast cell life-cycle and is associated with successive up- and downregulation of cell surface adhesion molecules and chemoattractant receptors as the cells mature. This article discusses some of the recent advances in our understanding of the mechanisms underlying mast cell recruitment.
Collapse
Affiliation(s)
- Sarah J Collington
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
98
|
Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One 2011; 6:e25538. [PMID: 21980488 PMCID: PMC3184129 DOI: 10.1371/journal.pone.0025538] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/06/2011] [Indexed: 01/24/2023] Open
Abstract
The role of mast cells (MCs) in contact hypersensitivity (CHS) remains controversial. This is due in part to the use of the MC-deficient Kit W/Wv mouse model, since Kit W/Wv mice congenitally lack other types of cells as a result of a point mutation in c-kit. A recent study indicated that the intronic enhancer (IE) for Il4 gene transcription is essential for MCs but not in other cell types. The aim of this study is to re-evaluate the roles of MCs in CHS using mice in which MCs can be conditionally and specifically depleted. Transgenic Mas-TRECK mice in which MCs are depleted conditionally were newly generated using cell-type specific gene regulation by IE. Using this mouse, CHS and FITC-induced cutaneous DC migration were analyzed. Chemotaxis assay and cytoplasmic Ca2+ imaging were performed by co-culture of bone marrow-derived MCs (BMMCs) and bone marrow-derived dendritic cells (BMDCs). In Mas-TRECK mice, CHS was attenuated when MCs were depleted during the sensitization phase. In addition, both maturation and migration of skin DCs were abrogated by MC depletion. Consistently, BMMCs enhanced maturation and chemotaxis of BMDC in ICAM-1 and TNF-α dependent manners Furthermore, stimulated BMDCs increased intracellular Ca2+ of MC upon direct interaction and up-regulated membrane-bound TNF-α on BMMCs. These results suggest that MCs enhance DC functions by interacting with DCs in the skin to establish the sensitization phase of CHS.
Collapse
|
99
|
Buckley CL, Stokes AJ. Corin-deficient W-sh mice poorly tolerate increased cardiac afterload. ACTA ACUST UNITED AC 2011; 172:44-50. [PMID: 21903139 DOI: 10.1016/j.regpep.2011.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/15/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
Abstract
C57BL/6-Kit(W-sh/W-sh) mice are generally regarded as a mast cell-deficient model, as they lack the necessary kit receptor for mast cell development. Further characterization of this strain, however, indicates that C57BL/6-Kit(W-sh/W-sh) mice also have a disruption in the Corin gene. Corin is a transmembrane serine protease critical for processing atrial natriuretic peptide (ANP) from pro-ANP through proteolytic cleavage. Pro-ANP is produced, stored and released by cardiac myocytes in response to atrial stretch and the stress generated by increased afterload such as increased ventricular pressure from aortic stenosis or myocardial infarction. ANP inhibits the effects of the renin-angiotensin system to preserve homeostasis under conditions of increased hemodynamic load, and changes in the level of its activating enzyme Corin have been observed during the progression to heart failure. Here, we investigate the effect of increased hemodynamic load on Corin-deficient C57BL/6-Kit(W-sh/W-sh) mice. Ten-week old male mice were subjected to transverse aortic constriction for 8 weeks and were monitored for changes in cardiac structure and function by echocardiography. Hearts were collected 8 weeks after surgery for molecular and histological analyses. Corin-deficient C57BL/6-Kit(W-sh/W-sh) mice developed rapidly progressive and substantial left ventricular dilation, hypertrophy, and markedly impaired cardiac function during the 8 weeks after surgery, compared to wildtype mice. Concomitant with this we observed increased levels of ANP transcript, but a lack of prepro-ANP or pro-ANP protein in heart tissue extracted from Corin-deficient mice. Surprisingly, fibrosis was not increased in Corin-deficient mice when compared to wildtype mice. These data indicate that Corin's involvement in ANP processing is a key element in the heart's response to increased hemodynamic load. Further, C57BL/6-Kit(W-sh/W-sh) strain is an effective model for investigating the involvement of Corin and, conversely, a less than optimal model for investigating mast cell, and immunological, functions in certain cardiovascular pathologies.
Collapse
Affiliation(s)
- Cadie L Buckley
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawai'i, 651 Ilalo Street, Honolulu, HI 96813, USA
| | | |
Collapse
|
100
|
Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, Blank U. Mast cells as cellular sensors in inflammation and immunity. Front Immunol 2011; 2:37. [PMID: 22566827 PMCID: PMC3342044 DOI: 10.3389/fimmu.2011.00037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 12/28/2022] Open
Abstract
Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.
Collapse
|