51
|
Chawla D, Eriten M, Henak CR. Effect of osmolarity and displacement rate on cartilage microfracture clusters failure into two regimes. J Mech Behav Biomed Mater 2022; 136:105467. [PMID: 36198233 DOI: 10.1016/j.jmbbm.2022.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Articular cartilage is a poroviscoelastic (PVE) material with remarkable resistance to fracture and fatigue failure. Cartilage failure mechanisms and material properties that govern failure are incompletely understood. Because cartilage is partially comprised of negatively charged glycosaminoglycans, altering solvent osmolarity can influence PVE relaxations. Therefore, this study aims to use osmolarity as a tool to provide additional data to interpret the role of PVE relaxations and identify cartilage failure regimes. Cartilage fracture was induced using a 100 μm radius spheroconical indenter at controlled displacement rates under three different osmolarity solvents. Secondarily, contact pressure (CP) and strain energy density (SED) were estimated to cluster data into two failure regimes with an expectation maximization algorithm. Critical displacement, critical load, critical time, and critical work to fracture increased with increasing osmolarity at a slow displacement rate whereas no significant effect was observed at a fast displacement rate. Clustering provided two distinct failure regimes, with regime (I) at lower normalized thickness (contact radius divided by sample thickness), and regime (II) at higher normalized thickness. Varied CP and SED in regime (I) suggest that failure in the regime is strain-governed. Constant CP and SED in regime (II) suggests that failure in the regime is dominantly governed by stress. These regimes can be interpreted as ductile versus brittle, or using a pressurized fragmentation interpretation. These findings demonstrated fundamental failure properties and postulate failure regimes for articular cartilage.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 University Ave., Madison, WI, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
52
|
Kang H, Zuo Z, Lin R, Yao M, Han Y, Han J. The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv 2022; 29:3087-3110. [PMID: 36151726 PMCID: PMC9518289 DOI: 10.1080/10717544.2022.2125600] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microneedle patch (MNP) is an alternative to the oral route and subcutaneous injection with unique advantages such as painless administration, good compliance, and fewer side effects. Herein, we report MNP as a prominent strategy for drug delivery to treat local or systemic disease. Hyaluronic acid (HA) has advantageous properties, such as human autologous source, strong water absorption, biocompatibility, and viscoelasticity. Therefore, the Hyaluronic acid microneedle patch (HA MNP) occupies a large part of the MNP market. HA MNP is beneficial for wound healing, targeted therapy of certain specific diseases, extraction of interstitial skin fluid (ISF), and preservation of drugs. In this review, we summarize the benefits of HA and cross-linked HA (x-HA) as an MNP matrix. Then, we introduce the types of HA MNP, delivered substances, and drug distribution. Finally, we focus on the biomedical application of HA MNP as an excellent drug carrier in some specific diseases and the extraction and analysis of biomarkers. We also discuss the future development prospect of HA MNP in transdermal drug delivery systems (TDDS).
Collapse
Affiliation(s)
- Huizhi Kang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Zuo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ru Lin
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Muzi Yao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
53
|
Solarino G, Bizzoca D, Moretti L, Vicenti G, Piazzolla A, Moretti B. What's New in the Diagnosis of Periprosthetic Joint Infections: Focus on Synovial Fluid Biomarkers. Trop Med Infect Dis 2022; 7:355. [PMID: 36355897 PMCID: PMC9692966 DOI: 10.3390/tropicalmed7110355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 08/10/2023] Open
Abstract
Periprosthetic joint infections are some of the leading causes of revision prosthetic surgery, accounting for 25% of failed total knee replacements and 15% of failed total hip replacements. The search for a biomarker that, together with clinical and radiological findings, could improve the management of such patients is currently a significant challenge for orthopaedic surgeons. Synovial fluid is a viscous and mucinous substance produced by the synovium, a specialized connective tissue that lines diarthrodial joints. Synovial fluid is an ultrafiltrate of plasma but also contains proteins secreted from the surrounding tissues, including the articular cartilage and synovium. Therefore, synovial fluid represents a source of disease-related proteins that could be used as potential biomarkers in several articular diseases. Based on these findings, the study of synovial fluid has been gaining increasing importance in recent years. This review aims to assess the accuracy and the limitations of the most promising synovial fluid biomarkers-i.e., Alpha-Defensin, Leukocyte Esterase, C-Reactive Protein, Interleukin-6, Calprotectin, Presepsin and Neopterin-in the diagnosis of PJI. Special attention will be given to emerging synovial biomarkers, which could soon be important in diagnosing PJIs.
Collapse
Affiliation(s)
- Giuseppe Solarino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Davide Bizzoca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
- AOU Consorziale Policlinico di Bari, UOSD Spinal Surgery and Scoliosis Deformity Centre, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Lorenzo Moretti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Giovanni Vicenti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Andrea Piazzolla
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
- AOU Consorziale Policlinico di Bari, UOSD Spinal Surgery and Scoliosis Deformity Centre, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Biagio Moretti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
54
|
Vargel İ, Tuncel A, Baysal N, Hartuç-Çevik İ, Korkusuz F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int J Mol Sci 2022; 23:13517. [PMID: 36362308 PMCID: PMC9658499 DOI: 10.3390/ijms232113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue contains adult mesenchymal stem cells that may modulate the metabolism when applied to other tissues. Stromal vascular fraction (SVF) can be isolated from adipose tissue mechanically and/or enzymatically. SVF was recently used to decrease the pain and improve the function of knee osteoarthritis (OA) patients. Primary and/or secondary OA causes inflammation and degeneration in joints, and regenerative approaches that may modify the natural course of the disease are limited. SVF may modulate inflammation and initiate regeneration in joint tissues by initiating a paracrine effect. Chemokines released from SVF may slow down degeneration and stimulate regeneration in joints. In this review, we overviewed articular joint cartilage structures and functions, OA, and macro-, micro-, and nano-fat isolation techniques. Mechanic and enzymatic SVF processing techniques were summarized. Clinical outcomes of adipose tissue derived tissue SVF (AD-tSVF) were evaluated. Medical devices that can mechanically isolate AD-tSVF were listed, and publications referring to such devices were summarized. Recent review manuscripts were also systematically evaluated and included. Transferring adipose tissues and cells has its roots in plastic, reconstructive, and aesthetic surgery. Micro- and nano-fat is also transferred to other organs and tissues to stimulate regeneration as it contains regenerative cells. Minimal manipulation of the adipose tissue is recently preferred to isolate the regenerative cells without disrupting them from their natural environment. The number of patients in the follow-up studies are recently increasing. The duration of follow up is also increasing with favorable outcomes from the short- to mid-term. There are however variations for mean age and the severity of knee OA patients between studies. Positive outcomes are related to the higher number of cells in the AD-tSVF. Repetition of injections and concomitant treatments such as combining the AD-tSVF with platelet rich plasma or hyaluronan are not solidified. Good results were obtained when combined with arthroscopic debridement and micro- or nano-fracture techniques for small-sized cartilage defects. The optimum pressure applied to the tissues and cells during filtration and purification of the AD-tSVF is not specified yet. Quantitative monitoring of articular joint cartilage regeneration by ultrasound, MR, and synovial fluid analysis as well as with second-look arthroscopy could improve our current knowledge on AD-tSVF treatment in knee OA. AD-tSVF isolation techniques and technologies have the potential to improve knee OA treatment. The duration of centrifugation, filtration, washing, and purification should however be standardized. Using gravity-only for isolation and filtration could be a reasonable approach to avoid possible complications of other methodologies.
Collapse
Affiliation(s)
- İbrahim Vargel
- Department of Plastic Reconstructive and Aesthetic Surgery, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Universiteler Mahallesi, Hacettepe Beytepe Campus #31, Çankaya, Ankara 06800, Turkey
| | - Nilsu Baysal
- Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - İrem Hartuç-Çevik
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| |
Collapse
|
55
|
The Usefulness of Synovial Fluid Proteome Analysis in Orthopaedics: Focus on Osteoarthritis and Periprosthetic Joint Infections. J Funct Morphol Kinesiol 2022; 7:jfmk7040097. [PMID: 36412759 PMCID: PMC9680387 DOI: 10.3390/jfmk7040097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Synovial fluid (SF) is a viscous and mucinous substance produced by the synovium, a specialized connective tissue that lines diarthrodial joints. SF represents a source of disease-related proteins that could be used as potential biomarkers in several articular diseases. Based on these findings the study of SF has been gaining increasing importance, in recent years. This review aims to summarize the usefulness of synovial fluid in orthopaedics research and clinical practice, mainly focusing on osteoarthritis (OA) and periprosthetic joint infections (PJIs). Proteomics of the SF has shown the up-regulation of several components of the classic complement pathway in OA samples, including C1, C2, C3, C4A, C4B, C5, and C4 C4BPA, thus depicting that complement is involved in the pathogenesis of OA. Moreover, proteomics has demonstrated that some pro-inflammatory cytokines, namely IL-6, IL-8, and IL-18, have a role in OA. Several SF proteins have been studied to improve the diagnosis of PJIs, including alpha-defensin (Alpha-D), leukocyte esterase (LE), c-reactive protein (CRP), interleukin-6 (IL-6), calprotectin and presepsin. The limits and potentials of these SF biomarkers will be discussed.
Collapse
|
56
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
57
|
Mederake M, Trappe D, Jacob C, Hofmann UK, Schüll D, Dalheimer P, Exner L, Walter C. Influence of hyaluronic acid on intra-articular friction - a biomechanical study in whole animal joints. BMC Musculoskelet Disord 2022; 23:927. [PMID: 36266652 PMCID: PMC9585852 DOI: 10.1186/s12891-022-05867-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage is a mechanically highly stressed tissue in the human body and an important part of synovial joints. The joint cartilage is lubricated by synovial fluid with hyaluronic acid (HA) as main component. However, in joints with osteoarthritis HA has a lower concentration and molecular weight compared to healthy joints. In recent years, the intra-articular injection of therapeutic HA lubricant, has become a popular therapy. The effect of HA application on the friction of a complete joint with physiological movement needs to be further determined. METHODS The aim of the present study was to evaluate the lubrication effect of the joint by three lubricants (NaCl, fetal calf serum (FCS) and HA) and their effect on the friction in nine complete ovine carpo-metacarpal joints. The joints were mounted on a material testing machine and a physiological movement with 10° rotation was simulated with ascending axial load (100 - 400 N). Specimens were tested native, with cartilage damage caused by drying out and relubricated. Dissipated energy (DE) as a measure of friction was recorded and compared. RESULTS Investigating the effect of axial load, we found significant differences in DE between all axial load steps (p < .001), however, only for the defect cartilage. Furthermore, we could document an increase in DE from native (Mean: 15.0 mJ/cycle, SD: 8.98) to cartilage damage (M: 74.4 mJ/cycle, SD: 79.02) and a decrease after relubrication to 23.6 mJ/cycle (SD: 18.47). Finally, we compared the DE values for NaCl, FCS and HA. The highest values were detected for NaCl (MNorm = 16.4 mJ/cycle, SD: 19.14). HA achieved the lowest value (MNorm = 4.3 mJ/cycle, SD: 4.31), although the gap to FCS (MNorm = 5.1 mJ/cycle, SD: 7.07) was small. CONCLUSIONS We were able to elucidate three effects in joints with cartilage damage. First, the friction in damaged joints increases significantly compared to native joints. Second, especially in damaged joints, the friction increases significantly more with increased axial load compared to native or relubricated joints. Third, lubricants can achieve an enormous decrease in friction. Comparing different lubricants, our results indicate the highest decrease in friction for HA.
Collapse
Affiliation(s)
- Moritz Mederake
- Department of Trauma and Reconstructive Surgery, BG Klinik, University of Tübingen, Schnarrenbergstraße 95, 72076, Tübingen, Germany.
| | - Dominik Trappe
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany
| | - Christopher Jacob
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany
| | - Ulf Krister Hofmann
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany.,Department of Orthopedic Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Daniel Schüll
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany
| | - Philipp Dalheimer
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany
| | - Lisanne Exner
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany
| | - Christian Walter
- University Hospital Tübingen, Hoppe Seyler -Str. 3, 72076, Tübingen, Germany
| |
Collapse
|
58
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
59
|
Vedadghavami A, He T, Zhang C, Amiji SM, Hakim B, Bajpayee AG. Charge-based drug delivery to cartilage: Hydrophobic and not electrostatic interactions are the dominant cause of competitive binding of cationic carriers in synovial fluid. Acta Biomater 2022; 151:278-289. [PMID: 35963518 PMCID: PMC10441566 DOI: 10.1016/j.actbio.2022.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 01/04/2023]
Abstract
Charge-based drug delivery has proven to be effective for targeting negatively charged cartilage for the treatment of osteoarthritis. Cartilage is surrounded by synovial fluid (SF), which is comprised of negatively charged hyaluronic acid and hydrophobic proteins that can competitively bind cationic carriers and prevent their transport into cartilage. Here we investigate the relative contributions of charge and hydrophobic effects on the binding of cationic carriers within healthy and arthritic SF by comparing the transport of arginine-rich cartilage targeting cationic peptide carriers with hydrophilic (CPC +14N) or hydrophobic property (CPC +14A). CPC +14N had significantly greater intra-cartilage uptake in presence of SF compared to CPC +14A in-vitro and in vivo. In presence of individual anionic SF constituents, both CPCs maintained similar high intra-cartilage uptake while in presence of hydrophobic constituents, CPC +14N had greater uptake confirming that hydrophobic and not charge interactions are the dominant cause of competitive binding within SF. Results also demonstrate that short-range effects can synergistically stabilize intra-cartilage charge-based binding - a property that can be utilized for enhancing drug-carrier residence time in arthritic cartilage with diminished negative fixed charge density. The work provides a framework for the rational design of cationic carriers for developing targeted therapies for another complex negatively charged environments. STATEMENT OF SIGNIFICANCE: This work demonstrates that hydrophobic and not charge interactions are the dominant cause of the binding of cationic carriers in synovial fluid. Therefore, cationic carriers can be effectively used for cartilage targeting if they are made hydrophilic. This can facilitate clinical translation of various osteoarthritis drugs for cartilage repair that have failed due to a lack of effective cartilage targeting methods. It also demonstrates that short-range hydrogen bonds can synergistically stabilize electrostatic binding in cartilage offering a method for enhancing the targeting and residence time of cationic carriers within arthritic cartilage with reduced charge density. Finally, the cartilage-synovial fluid unit provides an excellent model of a complex negatively charged environment and allows us to generalize these findings and develop targeted therapies for other charged tissue-systems.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Tengfei He
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Salima M Amiji
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; Department of Mechanical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
60
|
Emans P, Skaliczki G, Haverkamp D, Bentin J, Chausson M, Schifflers M, Hermitte L, Douette P. First-in-human Study to Evaluate a Single Injection of KiOmedine®CM-Chitosan for Treating Symptomatic Knee Osteoarthritis. Open Rheumatol J 2022. [DOI: 10.2174/18743129-v16-e2206100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Single-injection viscosupplementation is currently performed with cross-linked hyaluronan (e.g., Durolane®) for treating symptomatic knee osteoarthritis.
Objective:
This first-in-human study evaluated the safety and performance of single-injection treatment with non-crosslinked KiOmedine®CM-Chitosan.
Methods:
Patients with painful knee osteoarthritis were randomly assigned to the KiOmedine®CM-Chitosan (n=63) or Durolane® (n=32) group. Patients were blinded to treatment and followed up for 26 weeks. Durolane® was used as scientific control to ensure the validity of the study and reliability of results. No direct comparison was performed between the two groups. The primary objective was defined as an intra-group effect size of 0.8 at 13 weeks post-injection compared to baseline on WOMAC-A (pain). Secondary outcomes included self-reported knee stiffness and knee function, responder rate, quality-of-life questionnaires, and safety.
Results:
The primary objective for both the KiOmedine®CM-Chitosan and the Durolane® groups was met: mean pain reduction of 62.5% (effect size 2.08) for the KiOmedine®CM-Chitosan group and 62.4% (effect size 2.28) for the Durolane® group. Secondary performance outcomes showed all clinically relevant treatment effects over 26 weeks for both groups (p<0.05). Treatment-related adverse events were more often reported in the KiOmedine®CM-Chitosan than Durolane® group and were limited to local reactions. No serious treatment-related adverse events were reported.
Conclusion:
A single intra-articular injection of non-crosslinked KiOmedine®CM-Chitosan is safe and effective for treating symptomatic knee osteoarthritis with a high responder rate. Pain reduction is maintained for 6 months with a high responder rate.
The clinical trial registration number: NCT03679208.
Collapse
|
61
|
Lamparelli EP, Casagranda V, Pressato D, Maffulli N, Della Porta G, Bellini D. Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics 2022; 14:pharmaceutics14091752. [PMID: 36145500 PMCID: PMC9505875 DOI: 10.3390/pharmaceutics14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | | | | | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| | - Davide Bellini
- Novagenit Srl, Viale Trento 115/117, 38017 Mezzolombardo, Italy
| |
Collapse
|
62
|
Petta D, D'Amora U, D'Arrigo D, Tomasini M, Candrian C, Ambrosio L, Moretti M. Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments. Biofabrication 2022; 14. [PMID: 35931043 DOI: 10.1088/1758-5090/ac8767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Over the past years, 3D in vitro models have been widely employed in the regenerative medicine field. Among them, organ-on-a-chip technology has the potential to elucidate cellular mechanism exploiting multichannel microfluidic devices to establish 3D co-culture systems that offer control over the cellular, physico-chemical and biochemical microenvironments. To deliver the most relevant cues to cells, it is of paramount importance to select the most appropriate matrix for mimicking the extracellular matrix of the native tissue. Natural polymers-based hydrogels are the elected candidates for reproducing tissue-specific microenvironments in musculoskeletal tissue-on-a-chip models owning to their interesting and peculiar physico-chemical, mechanical and biological properties. Despite these advantages, there is still a gap between the biomaterials complexity in conventional tissue engineering and the application of these biomaterials in 3D in vitro microfluidic models. In this review, the aim is to suggest the adoption of more suitable biomaterials, alternative crosslinking strategies and tissue engineered-inspired approaches in organ-on-a-chip to better mimic the complexity of physiological musculoskeletal tissues. Accordingly, after giving an overview of the musculoskeletal tissue compositions, the properties of the main natural polymers employed in microfluidic systems are investigated, together with the main musculoskeletal tissues-on-a-chip devices.
Collapse
Affiliation(s)
- Dalila Petta
- Regenerative Medicine Technologis Lab, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco Chiesa 5, Bellinzona, Ticino, 6500, SWITZERLAND
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, V.le J.F. Kennedy 54 Mostra d'Oltremare Pad 20, Naples, 80125, ITALY
| | - Daniele D'Arrigo
- Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco Chiesa 5, Bellinzona, Ticino, 6500, SWITZERLAND
| | - Marta Tomasini
- Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco chies 5, Bellinzona, Ticino, 6500, SWITZERLAND
| | - Christian Candrian
- Unità di Traumatologia e Ortopedia, Ente Ospedaliero Cantonale, via Tesserete 46, Lugano, 6900, SWITZERLAND
| | - Luigi Ambrosio
- Institute of Polymers Composites and Biomaterials National Research Council, Viale Kennedy, Pozzuoli, Campania, 80078, ITALY
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Via Francesco Chiesa 5, Bellinzona, Ticino, 6500, SWITZERLAND
| |
Collapse
|
63
|
Amorim S, Reis RL, Pires RA. Hyaluronan‐Based Hydrogels as Modulators of Cellular Behavior. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:217-232. [DOI: 10.1002/9783527825820.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
64
|
Kim M, Koyama E, Saunders CM, Querido W, Pleshko N, Pacifici M. Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs. Biol Open 2022; 11:bio059381. [PMID: 35608281 PMCID: PMC9212078 DOI: 10.1242/bio.059381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The synovial cavity and its fluid are essential for joint function and lubrication, but their developmental biology remains largely obscure. Here, we analyzed E12.5 to E18.5 mouse embryo hindlimbs and discovered that cavitation initiates around E15.0 with emergence of multiple, discrete, µm-wide tissue discontinuities we term microcavities in interzone, evolving into a single joint-wide cavity within 12 h in knees and within 72-84 h in interphalangeal joints. The microcavities were circumscribed by cells as revealed by mTmG imaging and exhibited a carbohydrate and protein content based on infrared spectral imaging at micro and nanoscale. Accounting for differing cavitation kinetics, we found that the growing femur and tibia anlagen progressively flexed at the knee over time, with peak angulation around E15.5 exactly when the full knee cavity consolidated; however, interphalangeal joint geometry changed minimally over time. Indeed, cavitating knee interzone cells were elongated along the flexion angle axis and displayed oblong nuclei, but these traits were marginal in interphalangeal cells. Conditional Gdf5Cre-driven ablation of Has2 - responsible for production of the joint fluid component hyaluronic acid (HA) - delayed the cavitation process. Our data reveal that cavitation is a stepwise process, brought about by sequential action of microcavities, skeletal flexion and elongation, and HA accumulation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Minwook Kim
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheri M. Saunders
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
65
|
Legouffe R, Jeanneton O, Gaudin M, Tomezyk A, Gerstenberg A, Dumas M, Heusèle C, Bonnel D, Stauber J, Schnebert S. Hyaluronic acid detection and relative quantification by mass spectrometry imaging in human skin tissues. Anal Bioanal Chem 2022; 414:5781-5791. [PMID: 35650447 DOI: 10.1007/s00216-022-04139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
Hyaluronic acid (HA) is a major component of the skin, contributing to tissue hydration and biomechanical properties. As HA content in the skin decreases with age, formulas containing HA are widely used in cosmetics and HA injections in aesthetic procedures to reduce the signs of aging. To prove the beneficial effects of these treatments, efficient quantification of HA levels in the skin is necessary, but remains difficult. A new analytical method has been developed based on matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to quantify HA content in cross sections of human skin explants. A standardized and reproducible chemical entity (3 dimeric motifs or 6-mer) quantifiable by MALDI-MSI was produced by enzymatic hydrolysis using a specific hyaluronidase (H1136) in HA solution. This enzymatic digestion was carried out on skin sections before laser desorption, enabling the detection of HA. Histological coloration allowed us to localize the epidermis and the dermis on skin sections and, by comparison with the MALDI molecular image, to calculate the relative HA concentrations in these tissue areas. Skin explants were treated topically using a formula containing HA or its placebo, and the HA distribution profiles were compared with those obtained from untreated explants. A significant increase in HA was shown in each skin layer following topical application of the formula containing HA versus placebo and untreated samples (average of 126±40% and 92±40%, respectively). The MALDI-MSI technique enabled the quantification and localization of all HA macromolecules (endogenous and exogenous) on skin sections and could be useful for determining the efficacy of new cosmetic products designed to fight the signs of aging.
Collapse
Affiliation(s)
- Raphael Legouffe
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120, Loos, France.
| | - Olivier Jeanneton
- LVMH Recherche, 185 Avenue de Verdun, 45804, St Jean de Braye, France
| | - Mathieu Gaudin
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120, Loos, France
| | - Aurore Tomezyk
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120, Loos, France
| | | | - Marc Dumas
- LVMH Recherche, 185 Avenue de Verdun, 45804, St Jean de Braye, France
| | - Catherine Heusèle
- LVMH Recherche, 185 Avenue de Verdun, 45804, St Jean de Braye, France
| | - David Bonnel
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120, Loos, France
| | | | | |
Collapse
|
66
|
Luan X, Cong Z, Anastassiades TP, Gao Y. N-Butyrylated Hyaluronic Acid Achieves Anti-Inflammatory Effects In Vitro and in Adjuvant-Induced Immune Activation in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103267. [PMID: 35630747 PMCID: PMC9145605 DOI: 10.3390/molecules27103267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
Previously synthesized N-butyrylated hyaluronic acid (BHA) provides anti-inflammatory effects in rat models of acute gouty arthritis and hyperuricemia. However, the mechanism of action remains to be elucidated. Herein, the anti-inflammatory and antioxidative activities of BHA and the targeted signaling pathways were explored with LPS-induced RAW264.7 and an adjuvant-induced inflammation in a rat model. Results indicated that BHA inhibited the generation of pro-inflammatory cytokines TNFα, IL-1β and IL-6, reduced ROS production and down-regulated JAK1-STAT1/3 signaling pathways in LPS-induced RAW264.7. In vivo, BHA alleviated paw and joint swelling, decreased inflammatory cell infiltration in paw tissues, suppressed gene expressions of p38 and p65, down-regulated the NF-κB and MAPK signaling pathways and reduced protein levels of TNFα, IL-1β and IL-6 in joint tissues of arthritis rats. This study demonstrated the pivotal role of BHA in anti-inflammation and anti-oxidation, suggesting the potential clinical value of BHA in the prevention of inflammatory arthritis and is worthy for development as a new pharmacological treatment.
Collapse
Affiliation(s)
- Xue Luan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
| | - Zhongcheng Cong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
| | - Tassos P. Anastassiades
- Division of Rheumatology, Department of Medicine, Queen’s University, Kingston, ON K7L 4B4, Canada;
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
- Correspondence: ; Fax: +86-431-85168175
| |
Collapse
|
67
|
Immunoregulation and anti-metalloproteinase bioactive injectable polysalicylate matrixgel for efficiently treating osteoarthritis. Mater Today Bio 2022; 15:100277. [PMID: 35601894 PMCID: PMC9114689 DOI: 10.1016/j.mtbio.2022.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 01/03/2023]
Abstract
Current treatments of osteoarthritis, such as oral medication and intra-articular injections, only provided temporary relief from pain and achieved limited advance in inhibiting progression. The development of new treatments is hindered by the complicated and unclear pathological mechanisms. Oxidative stress and immune inflammation are believed to be the important factors in the induction and progression of osteoarthritis. Herein, this work presents a bioactive material strategy to treat osteoarthritis, based on the FPSOH matrixgel with robust anti-inflammatory activity through inhibiting the oxidative stress and nuclear factor kappa B signaling, preventing the metalloproteinase, as well as inducing M2 polarization of macrophage, thereby providing immune regulation of synovial macrophages and suppressing the progression of synovitis and osteoarthritis. In vivo experiments demonstrated that FPSOH hydrogel can prevent papain-induced osteoarthritis and its progression, and provide dual protection for cartilage and synovium, as compared with commercial sodium hyaluronate.
Collapse
|
68
|
Di Francesco M, Fragassi A, Pannuzzo M, Ferreira M, Brahmachari S, Decuzzi P. Management of osteoarthritis: From drug molecules to nano/micromedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1780. [PMID: 35253405 PMCID: PMC9285805 DOI: 10.1002/wnan.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerging as a major medical burden globally. OA is a chronic inflammatory and degenerative disease initially manifesting with joint pain and eventually leading to permanent disability. To date, there are no drugs available for the definitive treatment of osteoarthritis and most therapies have been palliative in nature by alleviating symptoms rather than curing the disease. This coupled with the vague understanding of the early symptoms and methods of diagnosis so that the disease continues as a global problem and calls for concerted research efforts. A cascade of events regulates the onset and progression of osteoarthritis starting with the production of proinflammatory cytokines, including interleukin (IL)‐1β, IL‐6, tumor necrosis factor (TNF)‐α; catabolic enzymes, such as matrix metalloproteinases (MMPs)‐1, ‐3, and ‐13, culminating into cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although intra‐articular injections of small and macromolecules are often prescribed to alleviate symptoms, low residence times within the synovial cavity severely impair their efficacy. This review will briefly describe the factors dictating the onset and progression of the disease, present the current clinically approved methods for its treatment and diagnosis, and finally elaborate on the main challenges and opportunities for the application of nano/micromedicines in the treatment of osteoarthritis. Thus, future treatment regimens will benefit from simultaneous consideration of the mechanobiological, the inflammatory, and tissue degradation aspects of the disease. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Collapse
Affiliation(s)
- Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Agnese Fragassi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
69
|
Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules 2022; 12:biom12050658. [PMID: 35625586 PMCID: PMC9138743 DOI: 10.3390/biom12050658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen species (ROS) to give rise to low-molecular-weight HAs (LMW-HAs) that are potent pro-inflammatory molecules. Therefore, the size of HA regulates the balance of anti- or pro-inflammatory functions. The activities of HA depend also on its interactions with hyaladherins. HA synthesis, degradation, and activities through HA/receptors interactions define the hyaluronasome. In this review, a short overview of the role of high and low-molecular-weight HA polymers in the lungs is provided. The involvement of LMW-HA in pulmonary innate immunity via the activation of neutrophils, macrophages, dendritic cells, and epithelial cells is described to highlight LMW-HA as a therapeutic target in inflammatory respiratory diseases. Finally, the possibilities to counter LMW-HA’s deleterious effects in the lungs are discussed.
Collapse
|
70
|
Possible Repositioning of an Oral Anti-Osteoporotic Drug, Ipriflavone, for Treatment of Inflammatory Arthritis via Inhibitory Activity of KIAA1199, a Novel Potent Hyaluronidase. Int J Mol Sci 2022; 23:ijms23084089. [PMID: 35456905 PMCID: PMC9030858 DOI: 10.3390/ijms23084089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
KIAA1199 has a strong hyaluronidase activity in inflammatory arthritis. This study aimed to identify a drug that could reduce KIAA1199 activity and clarify its effects on inflammatory arthritis. Rat chondrosarcoma (RCS) cells were strongly stained with Alcian blue (AB). Its stainability was reduced in RCS cells, which were over-expressed with the KIAA1199 gene (RCS-KIAA). We screened the drugs that restore the AB stainability in RCS-KIAA. The effects of the drug were evaluated by particle exclusion assay, HA ELISA, RT-PCR, and Western blotting. We further evaluated the HA accumulation and the MMP1 and three expressions in fibroblast-like synoviocytes (FLS). In vivo, the effects of the drug on symptoms and serum concentration of HA in a collagen-induced arthritis mouse were evaluated. Ipriflavone was identified to restore AB stainability at 23%. Extracellular matrix formation was significantly increased in a dose-dependent manner (p = 0.006). Ipriflavone increased the HA accumulation and suppressed the MMP1 and MMP3 expression on TNF-α stimulated FLS. In vivo, Ipriflavone significantly improved the symptoms and reduced the serum concentrations of HA. Conclusions: We identified Ipriflavone, which has inhibitory effects on KIAA1199 activity. Ipriflavone may be a therapeutic candidate based on its reduction of KIAA1199 activity in inflammatory arthritis.
Collapse
|
71
|
Yue Q, Lei L, Gu Y, Chen R, Zhang M, Yu H, Li S, Yang L, Zhang Y, Zhao X, Wei Q, Ma S, Zhang L, Tang P, Zhou F. Bioinspired Polysaccharide-Derived Zwitterionic Brush-like Copolymer as an Injectable Biolubricant for Arthritis Treatment. Adv Healthc Mater 2022; 11:e2200090. [PMID: 35373531 DOI: 10.1002/adhm.202200090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Indexed: 01/03/2023]
Abstract
Developing highly efficient and biocompatible biolubricants for arthritis treatment is extraordinarily demanded. Herein, inspired by the efficient lubrication of synovial joints, a paradigm that combines natural polysaccharide (chitosan) with zwitterionic poly[2-(methacryloyloxy) ethyl phosphorylcholine] (PMPC), to design a series of brush-like Chitosan-g-PMPC copolymers with highly efficient biological lubrication and good biocompatibility is presented. The Chitosan-g-PMPC copolymers are prepared via facile one-step graft polymerization in aqueous medium without using any toxic catalysts and organic solvents. The as-prepared Chitosan-g-PMPC copolymers exhibit very low coefficient of friction (μ < 0.01) on Ti6 Al4 V alloy substrate in both pure water and biological fluids. The superior lubrication is attributed primarily to the hydrated feature of PMPC side chains, interface adsorption of copolymer as well as to the hydrodynamic effect. In vivo experiments confirm that Chitosan-g-PMPC can alleviate the swelling symptom of arthritis and protect the bone and cartilage from destruction. Due to their facile preparation, distinctive lubrication properties, and good biocompatibility, Chitosan-g-PMPC copolymers represent a new type of biomimetic lubricants derived from natural biopolymer for promising arthritis treatment and artificial joint lubrication.
Collapse
Affiliation(s)
- Qinyu Yue
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Lele Lei
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Ya Gu
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Ruijin Chen
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Mingming Zhang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Haikuan Yu
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Shang Li
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Luming Yang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Yixin Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Qiangbing Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Licheng Zhang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Peifu Tang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
72
|
Zhu J, Yang S, Qi Y, Gong Z, Zhang H, Liang K, Shen P, Huang YY, Zhang Z, Ye W, Yue L, Fan S, Shen S, Mikos AG, Wang X, Fang X. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. SCIENCE ADVANCES 2022; 8:eabk0011. [PMID: 35353555 PMCID: PMC8967232 DOI: 10.1126/sciadv.abk0011] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteoarthritis (OA) is a common joint disease characterized by progressive loss of cartilage and reduction in lubricating synovial fluid, which lacks effective treatments currently. Here, we propose a hydrogel-based miRNA delivery strategy to rejuvenate impaired cartilage by creating a regenerative microenvironment to mitigate chondrocyte senescence that mainly contributes to cartilage breakdown during OA development. An aging-related miRNA, miR-29b-5p, was first found to be markedly down-regulated in OA cartilage, and their up-regulation suppressed the expression of matrix metalloproteinases and senescence-associated genes (P16INK4a/P21) via ten-eleven-translocation enzyme 1 (TET1). An injectable bioactive self-assembling peptide nanofiber hydrogel was applied to deliver agomir-29b-5p, which was functionalized by conjugating a stem cell-homing peptide SKPPGTSS for endogenous synovial stem cell recruitment simultaneously. Sustained miR-29b-5p delivery and recruitment of synovial stem cells and their subsequent differentiation into chondrocytes led to successful cartilage repair and chondrocyte rejuvenation. This strategy enables miRNA-based therapeutic modality to become a viable alternative for surgery in OA treatment.
Collapse
Affiliation(s)
- Jinjin Zhu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Zhe Gong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Haitao Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Kaiyu Liang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Panyang Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Yin-Yuan Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Weilong Ye
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Shuying Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Corresponding author. (X.F.); (X.W.)
| | - Xiangqian Fang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Corresponding author. (X.F.); (X.W.)
| |
Collapse
|
73
|
Sakhrani N, Lee AJ, Murphy LA, Kenawy HM, Visco CJ, Ateshian GA, Shah RP, Hung CT. Toward Development of a Diabetic Synovium Culture Model. Front Bioeng Biotechnol 2022; 10:825046. [PMID: 35265601 PMCID: PMC8899218 DOI: 10.3389/fbioe.2022.825046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and inflammation of synovium, the specialized connective tissue that envelops the diarthrodial joint. Type 2 diabetes mellitus (DM) is often found in OA patients, with nearly double the incidence of arthritis reported in patients with diabetes (52%) than those without it (27%). The correlation between OA and DM has been attributed to similar risk factors, namely increasing age and joint loading due to obesity. However, a potential causative link is not well understood due to comorbidities involved with treating diabetic patients, such as high infection rates and poor healing response caused by hyperglycemia and insulin resistance. The purpose of this study was to investigate the effect of hyperglycemic and insulin culture conditions on synovium properties. It was hypothesized that modeling hyperglycemia-induced insulin resistance in synovium would provide novel insights of OA pathogenesis in DM patients. To simulate DM in the synovial joint, healthy synovium was preconditioned in either euglycemic (EG) or hyperglycemic (HG) glucose concentrations with insulin in order to induce the biological response of the diseased phenotype. Synovium biochemical composition was evaluated to determine ECM remodeling under hyperglycemic culture conditions. Concurrent changes in AKT phosphorylation, a signaling pathway implicated in insulin resistance, were measured along with gene expression data for insulin receptors, glucose transporters, and specific glycolysis markers involved in glucose regulation. Since fluid shear stress arising during joint articulation is a relevant upstream stimulus for fibroblast-like synoviocytes (FLS), the predominant cell type in synovium, FLS mechanotransduction was evaluated via intracellular calcium ([Ca2+]i). Incidence and length of primary cilia, a critical effector of cell mechanosensing, were measured as potential mechanisms to support differences in [Ca2+]i responses. Hyperglycemic culture conditions decreased collagen and GAG content compared to EG groups, while insulin recovered ECM constituents. FLS mechanosensitivity was significantly greater in EG and insulin conditions compared to HG and non-insulin treated groups. Hyperglycemic treatment led to decreased incidence and length of primary cilia and decreased AKT phosphorylation, providing possible links to the mechanosensing response and suggesting a potential correlation between glycemic culture conditions, diabetic insulin resistance, and OA development.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Lance A Murphy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Christopher J Visco
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
74
|
Rapid Aggregation of Staphylococcus aureus in Synovial Fluid Is Influenced by Synovial Fluid Concentration, Viscosity, and Fluid Dynamics, with Evidence of Polymer Bridging. mBio 2022; 13:e0023622. [PMID: 35254134 PMCID: PMC9040867 DOI: 10.1128/mbio.00236-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Early bacterial survival in the postsurgical joint is still a mystery. Recently, synovial fluid-induced aggregation was proposed as a potential mechanism of bacterial protection upon entry into the joint. As synovial fluid is secreted back into the joint cavity following surgery, rapid fluctuations in synovial fluid concentrations, composition, and viscosity occur. These changes, along with fluid movement resulting from postoperative joint motion, modify the environment and potentially affect the kinetics of aggregate formation. Through this work, we sought to evaluate the influence of exposure time, synovial fluid concentration, viscosity, and fluid dynamics on aggregation. Furthermore, we aimed to elucidate the primary mechanism of aggregate formation by assessing the interaction of bacterial adhesins with the synovial fluid polymer fibrinogen. Following incubation under each simulated postoperative joint condition, the aggregates were imaged using confocal microscopy. Our analysis revealed the formation of two distinct aggregate phenotypes, depending on whether the incubation was conducted under static or dynamic conditions. Using a surface adhesin mutant, we have narrowed down the genetic determinants for synovial fluid aggregate formation and identified essential host polymers. We report here that synovial fluid-induced aggregation is influenced by various changes specific to the postsurgical joint environment. While we now have evidence that select synovial fluid polymers facilitate bridging aggregation through essential bacterial adhesins, we suspect that their utility is limited by the increasing viscosity under static conditions. Furthermore, dynamic fluid movement recovers the ability of the bacteria with surface proteins present to aggregate under high-viscosity conditions, yielding large, globular aggregates.
Collapse
|
75
|
Papaneophytou C, Alabajos-Cea A, Viosca-Herrero E, Calvis C, Costa M, Christodoulides AE, Kroushovski A, Lapithis A, Lapithi VM, Papayiannis I, Christou A, Messeguer R, Giannaki C, Felekkis K. Associations between serum biomarkers of cartilage metabolism and serum hyaluronic acid, with risk factors, pain categories, and disease severity in knee osteoarthritis: a pilot study. BMC Musculoskelet Disord 2022; 23:195. [PMID: 35236298 PMCID: PMC8889762 DOI: 10.1186/s12891-022-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific serum biomarkers of cartilage metabolism such as cartilage oligomeric matrix protein (sCOMP) and procollagen type II C-terminal propeptide (sPIICP) as well as hyaluronan (sHA), a biomarker of synovitis, have been implicated in the pathophysiology of knee osteoarthritis (OA). However, the associations of these biomarkers with the severity of the disease and OA risk factors, including age and obesity remain inconclusive. This analysis examines the associations between these serum biomarkers and the radiographic severity of OA and knee pain, as wells as obesity, the age and gender of the participants, and other OA risk factors. METHODS From 44 patients with early knee OA and 130 patients with late knee OA we analyzed the radiographic severity of the disease using the Kellgren and Lawrence (KL) grading system. Moreover, 38 overweight healthy individuals were used as a control group. Specific information was collected from all participants during their recruitment. The levels of the three serum biomarkers were quantified using commercially available ELISA kits. Serum biomarkers were analyzed for associations with the average KL scores and pain in both knees, as well as with specific OA risk factors. RESULTS The levels of sCOMP were elevated in patients with severe late OA and knee pain and correlated weakly with OA severity. A weakly correlation of sHA levels and OA severity OA was observed. We demonstrated that only sPIICP levels were markedly decreased in patients with late knee OA suggesting the alterations of cartilage metabolism in this arthritic disease. Moreover, we found that sPIICP has the strongest correlation with obesity and the severity of OA, as well as with the knee pain at rest and during walking regardless of the severity of the disease. ROC analysis showed that the area under the ROC curve (AUC) was 0.980 (95% CI: 0.945-0.995; p < 0.0001), suggesting high diagnostic accuracy of sPIICP. Interestingly, gender and age had also an effect on the levels of sPIICP. CONCLUSION This study revealed the potential of serum PIICP to be used as a biomarker to monitor the progression of knee OA, however, further studies are warranted to elucidate its clinical implication.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus
| | - Ana Alabajos-Cea
- Physical Medicine & Rehabilitation Department, Hospital La Fe, 46026, Valencia, Spain
- Health Research Institute La Fe, 46026, Valencia, Spain
| | | | - Carme Calvis
- Drug Development Area, Health & Biomedicine Department, LEITAT Technological Centre, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Marta Costa
- Drug Development Area, Health & Biomedicine Department, LEITAT Technological Centre, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Alexander Kroushovski
- Apollonion Hospital, 2054, Nicosia, Cyprus
- Medical School, University of Nicosia, 2408, Nicosia, Cyprus
| | | | | | | | | | - Ramon Messeguer
- Drug Development Area, Health & Biomedicine Department, LEITAT Technological Centre, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Christoforos Giannaki
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus.
| | - Kyriacos Felekkis
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus.
| |
Collapse
|
76
|
Gao J, Xia Z, Mary HB, Joseph J, Luo JN, Joshi N. Overcoming barriers for intra-articular delivery of disease-modifying osteoarthritis drugs. Trends Pharmacol Sci 2022; 43:171-187. [PMID: 35086691 PMCID: PMC8840969 DOI: 10.1016/j.tips.2021.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Despite four decades of research in intra-articular drug delivery systems (DDS) and two decades of advances in disease-modifying osteoarthritis drugs (DMOADs), there is still no clinically available disease-modifying therapy for osteoarthritis (OA). Multiple barriers compromise intra-articular DMOAD delivery. Although multiple exciting approaches have been developed to overcome these barriers, there are still outstanding questions. We make several recommendations that can help in fully overcoming these barriers. Considering OA heterogeneity, we also propose a patient-centered, bottom-up workflow to guide preclinical development of DDS-based intra-articular DMOAD therapies. Overall, we expect this review to inspire paradigm-shifting innovations for developing next-generation DDS that can enable clinical translation of intra-articular DMOADs.
Collapse
Affiliation(s)
- Jingjing Gao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ziting Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Helna B Mary
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - James N Luo
- Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
77
|
Fasham J, Lin S, Ghosh P, Radio FC, Farrow EG, Thiffault I, Kussman J, Zhou D, Hemming R, Zahka K, Chioza BA, Rawlins LE, Wenger OK, Gunning AC, Pizzi S, Onesimo R, Zampino G, Barker E, Osawa N, Rodriguez MC, Neuhann TM, Zackai EH, Keena B, Capasso J, Levin AV, Bhoj E, Li D, Hakonarson H, Wentzensen IM, Jackson A, Chandler KE, Coban-Akdemir ZH, Posey JE, Banka S, Lupski JR, Sheppard SE, Tartaglia M, Triggs-Raine B, Crosby AH, Baple EL. Elucidating the clinical spectrum and molecular basis of HYAL2 deficiency. Genet Med 2022; 24:631-644. [PMID: 34906488 PMCID: PMC9933146 DOI: 10.1016/j.gim.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.
Collapse
Affiliation(s)
- James Fasham
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Siying Lin
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Promita Ghosh
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | | | - Jennifer Kussman
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - Dihong Zhou
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - Rick Hemming
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenneth Zahka
- Pediatric Cardiology, Cleveland Clinic, Cleveland, OH
| | - Barry A Chioza
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Lettie E Rawlins
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Olivia K Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH
| | - Adam C Gunning
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli (Gemelli University Hospital), IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli (Gemelli University Hospital), IRCCS, Rome, Italy
| | - Emily Barker
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Natasha Osawa
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Megan Christine Rodriguez
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Beth Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jenina Capasso
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Alex V Levin
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy.
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Andrew H Crosby
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | - Emma L Baple
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.
| |
Collapse
|
78
|
Hahn AK, Rawle RA, Bothner B, Prado Lopes EB, Griffin TM, June RK. In vivo mechanotransduction: Effect of acute exercise on the metabolomic profiles of mouse synovial fluid. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100228. [PMID: 36474473 PMCID: PMC9718234 DOI: 10.1016/j.ocarto.2021.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Objective Exercise is known to induce beneficial effects in synovial joints. However, the mechanisms underlying these are unclear. Synovial joints experience repeated mechanical loading during exercise. These mechanical stimuli are transduced into biological responses through cellular mechanotransduction. Mechanotransduction in synovial joints is typically studied in tissues. However, synovial fluid directly contacts all components of the joint, and thus may produce a whole-joint picture of the mechanotransduction response to loading. The objective of this study was to determine if metabolic phenotypes are present in the synovial fluid after acute exercise as a first step to understanding the beneficial effects of exercise on the joint. Material and methods Mice underwent a single night of voluntary wheel running or standard housing and synovial fluid was harvested for global metabolomic profiling by LC-MS. Hierarchical unsupervised clustering, partial least squares discriminant, and pathway analysis provided insight into exercise-induced mechanotransduction. Results Acute exercise produced a distinct metabolic phenotype in synovial fluid. Mechanosensitive metabolites included coenzyme A derivatives, prostaglandin derivatives, phospholipid species, tryptophan, methionine, vitamin D3, fatty acids, and thiocholesterol. Enrichment analysis identified several pathways previously linked to exercise including amino acid metabolism, inflammatory pathways, citrulline-nitric oxide cycle, catecholamine biosynthesis, ubiquinol biosynthesis, and phospholipid metabolism. Conclusion To our knowledge, this is the first study to investigate metabolomic profiles of synovial fluid during in vivo mechanotransduction. These profiles indicate that exercise induced stress-response processes including both pro- and anti-inflammatory pathways. Further research will expand these results and define the relationship between the synovial fluid and the serum.
Collapse
Affiliation(s)
- Alyssa K. Hahn
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA
- Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, 59717, USA
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT, 59625, USA
| | - Rachel A. Rawle
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Ronald K. June
- Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, 59717, USA
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
79
|
Medina-González P, Moreno K, Gómez M. Why Is the Grass the Best Surface to Prevent Lameness? Integrative Analysis of Functional Ranges as a Key for Dairy Cows’ Welfare. Animals (Basel) 2022; 12:ani12040496. [PMID: 35203204 PMCID: PMC8868409 DOI: 10.3390/ani12040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lameness is a highly prevalent clinical condition that causes movement disorders in dairy cows worldwide. With an estimated global population of one billion dairy cows, producing 522 million metric tons of milk per year, this problem affects food availability as well as the global economy. While grass is considered to be the best support surface for cattle, in many places it cannot be used, particularly when climate conditions are too harsh for grass to grow or be maintained. In this paper, we investigate whether grass is the best surface to prevent lameness. The answer to this question is fundamental to establishing better farming practices for cattle welfare. We built an integrative analysis of functional ranges to establish the minimum and maximum movement capacities that a cow has, according to the surfaces to which it is subjected in free housing systems. Using this analysis, we identified many aspects that make a grass surface the healthiest option for cattle. However, when grass is not available, this type of strategy can help to find the best characteristics for other possible surfaces. Our study applies movement analysis to one of the most critical problems in the world of livestock management and contributes towards finding the balance between animal welfare and production. Abstract Lameness is a painful clinical condition of the bovine locomotor system that results in alterations of movement. Together with mastitis and infertility, lameness is the main welfare, health, and production problem found in intensive dairy farms worldwide. The clinical assessment of lameness results in an imprecise diagnosis and delayed intervention. Hence, the current approach to the problem is palliative rather than preventive. The five main surfaces used in free housing systems in dairy farms are two natural (grass and sand) and three artificial (rubber, asphalt, and concrete). Each surface presents a different risk potential for lameness, with grass carrying the lowest threat. The aim of the present study is to evaluate the flooring type influences on cows’ movement capabilities, using all the available information relating to kinematics, kinetics, behavior, and posture in free-housed dairy cows. Inspired by a refurbished movement ecology concept, we conducted a literature review, taking into account kinematics, kinetics, behavior, and posture parameters by reference to the main surfaces used in free housing systems for dairy cows. We built an integrative analysis of functional ranges (IAFuR), which provides a combined welfare status diagram for the optimal (i.e., within the upper and lower limit) functional ranges for movement (i.e., posture, kinematics, and kinetics), navigation (i.e., behavior), and recovery capacities (i.e., metabolic cost). Our analysis confirms grass’ outstanding clinical performance, as well as for all of the movement parameters measured. Grass boosts pedal joint homeostasis; provides reliable, safe, and costless locomotion; promotes longer resting times. Sand is the best natural alternative surface, but it presents an elevated metabolic cost. Rubber is an acceptable artificial alternative surface, but it is important to consider the mechanical and design properties. Asphalt and concrete surfaces are the most harmful because of the high traffic abrasiveness and loading impact. Furthermore, IAFuR can be used to consider other qualitative and quantitative parameters and to provide recommendations on material properties and the design of any surface, so as to move towards a more grass-like feel. We also suggest the implementation of a decision-making pathway to facilitate the interpretation of movement data in a more comprehensive way, in order to promote consistent, adaptable, timely, and adequate management decisions.
Collapse
Affiliation(s)
- Paul Medina-González
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3480112, Chile
- Programa de Doctorado en Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5110566, Chile
- Correspondence: or (P.M.-G.); (K.M.); Tel.: +56-71-2413622 (P.M.-G.)
| | - Karen Moreno
- Laboratorio de Paleontología, Facultad de Ciencias, Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Valdivia 5110566, Chile
- Correspondence: or (P.M.-G.); (K.M.); Tel.: +56-71-2413622 (P.M.-G.)
| | - Marcelo Gómez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| |
Collapse
|
80
|
Yoon KH, Wan WS, Kim YS, Park JY. The efficacy of intraarticular viscosupplementation after arthroscopic partial meniscectomy: a randomized controlled trial. BMC Musculoskelet Disord 2022; 23:32. [PMID: 34983471 PMCID: PMC8729128 DOI: 10.1186/s12891-021-04990-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the efficacy of viscosupplementation after arthroscopic partial meniscectomy. METHOD A randomized controlled trial of 47 patients who underwent arthroscopic partial meniscectomy was conducted between March 2020 and March 2021. Patients were randomized into two groups: a viscosupplementation group (n = 23) and a control group (n = 24). A single-dose intraarticular hyaluronic acid injection was used as viscosupplementation. The 100 mm visual analogue scale (VAS) for pain assessment was measured at baseline and at 1 day, 2 weeks, 6 weeks, and 3 months post-surgery. The International Knee Documentation Committee (IKDC), Tegner, Lysholm, and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scores and range of motion (ROM) of the knee were measured at baseline, 2 weeks, 6 weeks, and 3 months. RESULTS The 100 mm VAS score for pain was significantly lower in the viscosupplementation group at 2 weeks post-surgery (27.5 mm vs. 40.7 mm, P = 0.047). ROM was significantly greater in the viscosupplementation group than in the control group at 2 weeks (131.5° vs. 121.0°, P = 0.044) post-surgery. No significant differences were observed in the IKDC or in the Tegner, Lysholm, and WOMAC scores between the two groups. CONCLUSIONS Viscosupplementation after arthroscopic partial meniscectomy significantly reduced pain at 2 weeks post-surgery and improved ROM of the knee at 2 weeks post-surgery. There might be some benefits in terms of pain and functional recovery of viscosupplementation after arthroscopic surgery. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. TRIAL REGISTRATION This randomized controlled trial was registered at cris.nih.go.kr # KCT0004921 .
Collapse
Affiliation(s)
- Kyoung Ho Yoon
- Department of Orthopaedic Surgery, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Woo Seung Wan
- Department of Orthopaedic Surgery, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Yoon-Seok Kim
- Department of Orthopaedic Surgery, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Jae-Young Park
- Department of Orthopaedic Surgery, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, 712, Dongil-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
81
|
Abusharha A, Shbear AA, Fagehi R, Alanazi MA, Alsaqr A, El-Hiti GA, Masmali AM. Assessment of the Efficiency of HP-Guar and hyaluronic Acid Tear Supplements to Control Tear Film Evaporation Rate in Dry Eye Subjects. Open Ophthalmol J 2021. [DOI: 10.2174/1874364102115010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The most common factor that could lead to dryness is the accelerated tear evaporation rate. Controlling the tear evaporation rate is increasingly used as a method to control dry eye complications. The present study explores the effects of different tear supplements formulations on tear film evaporation rate.
Objective:
This study aimed to evaluate the short-term effects of Systane ULTRA and Artelac Advanced eye drops on the tear film evaporation rate.
Methods:
Fifteen male dry eye subjects were enrolled in the current study. Tear film parameters were observed at several time points post installation (10, 20, 30, and 60 min). The tear film parameters observed in the current study were tear evaporation rate, noninvasive breakup time (NITBUT) and tear meniscus height (TMH). Two visits were required to conduct this study. One visit was conducted to assess the physiological tear film parameters with the use of Systane® ULTRA eye drop. The other visit was conducted to assess tear film parameters with the use of Artelac Advanced eye drop.
Results:
The mean tear evaporation rate at baseline was 52.58 ± 23.24 g/m2 h. A box plot of tear evaporation showed a reduction in tear film evaporation rate after instillation of Systane eye drop. A drop in tear film evaporation rate of 14% was observed at 20 and 60 min time point after instillation of Systane ULTRA eye drop. A significant increase in NITBUT was found after instillation of Systane ULTRA (P = 0.01) and Artelac Advanced (P = 0.02).
Conclusion:
The current study indicates a significant improvement in the tear film parameters using both HP-Guar and hyaluronic acid formulations. However, it was apparent that the use of HP-Guar was superior to hyaluronic acid in controlling the tear evaporation rate in dry eye subjects.
Collapse
|
82
|
Li Y, Zhou Y, Wang Y, Crawford R, Xiao Y. Synovial macrophages in cartilage destruction and regeneration-lessons learnt from osteoarthritis and synovial chondromatosis. Biomed Mater 2021; 17. [PMID: 34823229 DOI: 10.1088/1748-605x/ac3d74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/25/2021] [Indexed: 01/15/2023]
Abstract
Inflammation is a critical process in disease pathogenesis and the restoration of tissue structure and function, for example, in joints such as the knee and temporomandibular. Within the innate immunity process, the body's first defense response in joints when physical and chemical barriers are breached is the synovial macrophages, the main innate immune effector cells, which are responsible for triggering the initial inflammatory reaction. Macrophage is broadly divided into three phenotypes of resting M0, pro-inflammatory M1-like (referred to below as M1), and anti-inflammatory M2-like (referred to below as M2). The synovial macrophage M1-to-M2 transition can affect the chondrogenic differentiation of mesenchymal stem cells (MSCs) in joints. On the other hand, MSCs can also influence the transition between M1 and M2. Failure of the chondrogenic differentiation of MSCs can result in persistent cartilage destruction leading to osteoarthritis. However, excessive chondrogenic differentiation of MSCs may cause distorted cartilage formation in the synovium, which is evidenced in the case of synovial chondromatosis. This review summarizes the role of macrophage polarization in the process of both cartilage destruction and regeneration, and postulates that the transition of macrophage phenotype in an inflammatory joint environment may play a key role in determining the fate of joint cartilage.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
83
|
Mordin M, Parrish W, Masaquel C, Bisson B, Copley-Merriman C. Intra-articular Hyaluronic Acid for Osteoarthritis of the Knee in the United States: A Systematic Review of Economic Evaluations. CLINICAL MEDICINE INSIGHTS. ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2021; 14:11795441211047284. [PMID: 34840501 PMCID: PMC8619730 DOI: 10.1177/11795441211047284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023]
Abstract
Background: The economic impact of intra-articular hyaluronic acid (IAHA) for the treatment of knee pain associated with osteoarthritis (OA) has been evaluated in the United States, but not systematically summarized. Objective: We reviewed the literature to determine the economic impact of IAHA for pain associated with knee OA in the United States. Methods: A literature review was performed in PubMed (including MEDLINE and MEDLINE In-Process), Embase, the Cochrane Database of Systematic Reviews, and National Health Service Economic Evaluation Database and was limited to English language human studies published from January 2000 to October 2020. Results: The literature search identified 215 unique abstracts; of these, 47 were selected for full-text review and 21 studies met the inclusion criteria. Intra-articular hyaluronic acid injections delayed progression to total knee arthroplasty (TKA), and repeated courses of treatment successfully delayed TKA by more than 5 years. Intra-articular hyaluronic acid was found to reduce the use of pain medications overall and reduce the number of patients receiving opioid prescriptions by 6% (P < .001). Several studies showed that IAHA is more cost-effective in treating pain associated with knee OA compared with conventional care with nonsteroidal anti-inflammatory drugs (NSAIDs), analgesics, and corticosteroids, and several authors concluded that IAHA should be the dominant treatment strategy. Conclusions: Current studies suggest that IAHA may reduce the use of pain medications, such as NSAIDs and opioids, and impact time to TKA procedures, thus potentially decreasing overall treatment costs of knee OA over time. Furthermore, IAHA was determined to be cost-effective against NSAIDs, corticosteroids, analgesics, and conservative treatment. As the safety and efficacy of IAHA for knee OA have been well established, the findings from our literature review may be used to inform future economic evaluations.
Collapse
Affiliation(s)
- Margaret Mordin
- Market Access and Outcomes Strategy, RTI Health Solutions, Ann Arbor, MI, USA
| | - William Parrish
- Department of Medical Affairs, DePuy Synthes, Raynham, MA, USA
| | - Catherine Masaquel
- Market Access and Outcomes Strategy, RTI Health Solutions, Ann Arbor, MI, USA
| | - Brad Bisson
- Department of Medical Affairs, DePuy Synthes, Raynham, MA, USA
| | | |
Collapse
|
84
|
Hwang JW, Chawla D, Han G, Eriten M, Henak CR. Effects of solvent osmolarity and viscosity on cartilage energy dissipation under high-frequency loading. J Mech Behav Biomed Mater 2021; 126:105014. [PMID: 34871958 DOI: 10.1016/j.jmbbm.2021.105014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 11/27/2021] [Indexed: 01/16/2023]
Abstract
Articular cartilage is a spatially heterogeneous, dissipative biological hydrogel with a high fluid volume fraction. Although energy dissipation is important in the context of delaying cartilage damage, the dynamic behavior of articular cartilage equilibrated in media of varied osmolarity and viscosity is not widely understood. This study investigated the mechanical behaviors of cartilage when equilibrated to media of varying osmolarity and viscosity. Dynamic moduli and phase shift were measured at both low (1 Hz) and high (75-300 Hz) frequency, with cartilage samples compressed to varied offset strain levels. Increasing solution osmolarity and viscosity both independently resulted in larger energy dissipation and decreased dynamic modulus of cartilage at both low and high frequency. Mechanical property alterations induced by varying osmolarity are likely due to the change in permeability and fluid volume fraction within the tissue. The effects of solution viscosity are likely due to frictional interactions at the solid-fluid interface, affecting energy dissipation. These findings highlight the significance of interstitial fluid on the energy dissipation capabilities of the tissue, which can influence the onset of cartilage damage.
Collapse
Affiliation(s)
- Jin Wook Hwang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
85
|
Aw AAL, Leeu JJ, Tao X, Bin Abd Razak HR. Comparing the efficacy of dual Platelet-Rich Plasma (PRP) and Hyaluronic Acid (HA) therapy with PRP-alone therapy in the treatment of knee osteoarthritis: a systematic review and meta-analysis. J Exp Orthop 2021; 8:101. [PMID: 34735663 PMCID: PMC8569119 DOI: 10.1186/s40634-021-00415-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aims to compare the efficacy of a dual therapy of Platelet-Rich Plasma (PRP) and Hyaluronic Acid (HA) compared with PRP-alone therapy in the treatment of knee osteoarthritis (KOA). Methods PubMed, Embase, CINAHL, SCOPUS, Cochrane Library, grey literature and bibliographic references were searched from inception to January 2021. Only randomized controlled trials (RCTs) and retrospective cohort studies comparing the effect of PRP and HA versus PRP-alone therapy for KOA were included. Literature retrieval and data extraction were conducted by three independent reviewers. Pooled analysis of Visual Analogue Scale (VAS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), International Knee Documentation Committee (IKDC) scores and adverse events were conducted. Results Ten studies (7 RCTs, 3 cohort studies) involving 983 patients were covered. Dual PRP and HA therapy resulted in significant reduction in VAS compared to PRP-alone therapy at 4–6 weeks (P < 0.00001) and 12 months (P < 0.00001). Dual therapy resulted in better WOMAC score improvement at 3 (P = 0.02), 6 (P = 0.05) and 12 months (P < 0.0001) compared to PRP-alone therapy. The IKDC score for dual therapy was also higher at 6 months compared to PRP-alone therapy (P = 0.007). Regarding adverse events, dual therapy was generally safer than PRP-alone therapy (P = 0.02). Conclusion While there is a paucity of large high-quality Level I studies, current best evidence suggests that dual therapy with PRP and HA for KOA may be effective at providing pain relief and improvement in function up to 1 year following administration. Level of evidence II.
Collapse
Affiliation(s)
- Angeline Ai Ling Aw
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Jun Jie Leeu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Xinyu Tao
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Hamid Rahmatullah Bin Abd Razak
- Department of Orthopaedic Surgery, Sengkang General Hospital, 110 Sengkang East Way, Singapore, 544886, Singapore. .,SingHealth Duke-NUS Musculoskeletal Sciences Academic Clinical Programme, 20 College Road, Academia Level 4, Singapore, 169865, Singapore.
| |
Collapse
|
86
|
Staats A, Burback PW, Eltobgy M, Parker DM, Amer AO, Wozniak DJ, Wang SH, Stevenson KB, Urish KL, Stoodley P. Synovial Fluid-Induced Aggregation Occurs across Staphylococcus aureus Clinical Isolates and is Mechanistically Independent of Attached Biofilm Formation. Microbiol Spectr 2021; 9:e0026721. [PMID: 34523997 PMCID: PMC8557890 DOI: 10.1128/spectrum.00267-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Rapid synovial fluid-induced aggregation of Staphylococcus aureus is currently being investigated as an important factor in the establishment of periprosthetic joint infections (PJIs). Pathogenic advantages of aggregate formation have been well documented in vitro, including recalcitrance to antibiotics and protection from host immune defenses. The objective of the present work was to determine the strain dependency of synovial fluid-induced aggregation by measuring the degree of aggregation of 21 clinical S. aureus isolates cultured from either PJI or bloodstream infections using imaging and flow cytometry. Furthermore, by measuring attached bacterial biomass using a conventional crystal violet assay, we assessed whether there is a correlation between the aggregative phenotype and surface-associated biofilm formation. While all of the isolates were stimulated to aggregate upon exposure to bovine synovial fluid (BSF) and human serum (HS), the extent of aggregation was highly variable between individual strains. Interestingly, the PJI isolates aggregated significantly more upon BSF exposure than those isolated from bloodstream infections. While we were able to stimulate biofilm formation with all of the isolates in growth medium, supplementation with either synovial fluid or human serum inhibited bacterial surface attachment over a 24 h incubation. Surprisingly, there was no correlation between the degree of synovial fluid-induced aggregation and quantity of surface-associated biofilm as measured by a conventional biofilm assay without host fluid supplementation. Taken together, our findings suggest that synovial fluid-induced aggregation appears to be widespread among S. aureus strains and mechanistically independent of biofilm formation. IMPORTANCE Bacterial infections of hip and knee implants are rare but devastating complications of orthopedic surgery. Despite a widespread appreciation of the considerable financial, physical, and emotional burden associated with the development of a prosthetic joint infection, the establishment of bacteria in the synovial joint remains poorly understood. It has been shown that immediately upon exposure to synovial fluid, the viscous fluid in the joint, Staphylococcus aureus rapidly forms aggregates which are resistant to antibiotics and host immune cell clearance. The bacterial virulence associated with aggregate formation is likely a step in the establishment of prosthetic joint infection, and as such, it has the potential to be a potent target of prevention. We hope that this work contributes to the future development of therapeutics targeting synovial fluid-induced aggregation to better prevent and treat these infections.
Collapse
Affiliation(s)
- Amelia Staats
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Peter W. Burback
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Dana M. Parker
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Daniel J. Wozniak
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kurt B. Stevenson
- Department of Internal Medicine, Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kenneth L. Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Department of Mechanical Engineering, University of Southampton, United Kingdom
| |
Collapse
|
87
|
Marinho A, Nunes C, Reis S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021; 11:1518. [PMID: 34680150 PMCID: PMC8533685 DOI: 10.3390/biom11101518] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA) is a natural polymer, produced endogenously by the human body, which has unique physicochemical and biological properties, exhibiting desirable biocompatibility and biodegradability. Therefore, it has been widely studied for possible applications in the area of inflammatory diseases. Although exogenous HA has been described as unable to restore or replace the properties and activities of endogenous HA, it can still provide satisfactory pain relief. This review aims to discuss the advances that have been achieved in the treatment of inflammatory diseases using hyaluronic acid as a key ingredient, essentially focusing on studies carried out between the years 2017 and 2021.
Collapse
Affiliation(s)
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (A.M.); (S.R.)
| | | |
Collapse
|
88
|
Differential regulation of the water channel protein aquaporins in chondrocytes of human knee articular cartilage by aging. Sci Rep 2021; 11:20425. [PMID: 34650163 PMCID: PMC8516946 DOI: 10.1038/s41598-021-99885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Knee cartilage is in an aqueous environment filled with synovial fluid consisting of water, various nutrients, and ions to maintain chondrocyte homeostasis. Aquaporins (AQPs) are water channel proteins that play an important role in water exchange in cells, and AQP1, -3, and -4 are known to be expressed predominantly in cartilage. We evaluated the changes in AQP expression in chondrocytes from human knee articular cartilage in patients of different ages and identified the key factor(s) that mediate age-induced alteration in AQP expression. The mRNA and protein expression of AQP1, -3 and -4 were significantly decreased in fibrocartilage compared to hyaline cartilage and in articular cartilage from older osteoarthritis patients compared to that from young patients. Gene and protein expression of AQP1, -3 and -4 were altered during the chondrogenic differentiation of C3H10T1/2 cells. The causative factors for age-associated decrease in AQP included H2O2, TNFα, and HMGB1 for AQP1, -3, and -4, respectively. In particular, the protective effect of AQP4 reduction following HMGB1 neutralization was noteworthy. The identification of other potent molecules that regulate AQP expression represents a promising therapeutic approach to suppress cartilage degeneration during aging.
Collapse
|
89
|
Vandeweerd JM, Innocenti B, Rocasalbas G, Gautier SE, Douette P, Hermitte L, Hontoir F, Chausson M. Non-clinical assessment of lubrication and free radical scavenging of an innovative non-animal carboxymethyl chitosan biomaterial for viscosupplementation: An in-vitro and ex-vivo study. PLoS One 2021; 16:e0256770. [PMID: 34634053 PMCID: PMC8504732 DOI: 10.1371/journal.pone.0256770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Lubrication and free radical scavenging are key features of biomaterials used for viscosupplementation (VS) of joints affected by osteoarthritis (OA). The objective of this study was to describe the non-clinical performance characterization of KiOmedine® CM-Chitosan, a non-animal carboxymethyl chitosan, in order to assess its intended action in VS and to compare it to existing viscosupplements based on crosslinked hyaluronan (HA) formulations. METHOD The lubrication capacity of the tested viscosupplements (VS) was evaluated in-vitro and ex-vivo. In-vitro, the coefficient of friction (COF) was measured using a novel tribological system. Meanwhile, an ex-vivo biomechanical model in ovine hindlimbs was developed to assess the recovery of join mobility after an intra-articular (IA) injection. Free radical scavenging capacity of HA and KiOmedine® CM-Chitosan formulations was evaluated using the Trolox Equivalent Antioxidant Capacity (TEAC) assay. RESULTS In the in-vitro tribological model, KiOmedine® CM-Chitosan showed high lubrication capacity with a significant COF reduction than crosslinked HA formulations. In the ex-vivo model, the lubrication effect of KiOmedine® CM-Chitosan following an IA injection in the injured knee was proven again by a COF reduction. The recovery of joint motion was optimal with an IA injection of 3 ml of KiOmedine® CM-Chitosan, which was significantly better than the crosslinked HA formulation at the same volume. In the in-vitro TEAC assay, KiOmedine® CM-Chitosan showed a significantly higher free radical scavenging capacity than HA formulations. CONCLUSION Overall, the results provide a first insight into the mechanism of action in terms of lubrication and free radical scavenging for the use of KiOmedine® CM-Chitosan as a VS treatment of OA. KiOmedine® CM-Chitosan demonstrated a higher capacity to scavenge free radicals, and it showed a higher recovery of mobility after a knee lesion than crosslinked HA formulations. This difference could be explained by the difference in chemical structure between KiOmedine® CM-Chitosan and HA and their formulations.
Collapse
Affiliation(s)
- Jean-Michel Vandeweerd
- OASIS, Integrated Veterinary Research Unit, Namur Research Institute of Life Sciences (NARILIS), Namur University, Namur, Belgium
| | | | | | | | | | | | - Fanny Hontoir
- OASIS, Integrated Veterinary Research Unit, Namur Research Institute of Life Sciences (NARILIS), Namur University, Namur, Belgium
| | | |
Collapse
|
90
|
Yamamoto T, Suzuki S, Fujii T, Mima Y, Watanabe K, Matsumoto M, Nakamura M, Fujita N. Efficacy of hyaluronic acid on intervertebral disc inflammation: An in vitro study using notochordal cell lines and human disc cells. J Orthop Res 2021; 39:2197-2208. [PMID: 33251629 DOI: 10.1002/jor.24933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023]
Abstract
Hyaluronic acid (HA) is widely recognized as a therapeutic target and currently used in medicine. However, HA metabolism during intervertebral disc degeneration (IVDD) has not been completely elucidated. This study aimed to evaluate the efficacy of HA on intervertebral disc (IVD) inflammation and identify the main molecules modulating HA degradation in IVDs. To assess HA function in IVD cells in vitro, we treated human disc cells and U-CH1-N cells, a notochordal nucleus pulposus cell line, with HA or hyaluronidase. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis showed that tumor necrosis factor alpha (TNF-α)-mediated induction of the expression of TNF-α and cyclooxygenase-2 (COX2) was clearly neutralized by HA treatment, and the expression of TNF-α and COX2 was significantly induced by hyaluronidase treatment in both cell types. Additionally, Western blot analysis showed that hyaluronidase-induced phosphorylation of p38 and Erk1/2, and that TNF-α-mediated phosphorylation of p38 and Erk1/2 was clearly reduced by HA addition. In degenerating human IVD samples, immunohistochemistry for hyaluronidase showed that the expression of hyaluronidases including HYAL1, HYAL2, and cell migration-inducing protein (CEMIP) tended to increase in accordance with IVDD. In particular, HYAL1 showed statistically significant differences. In vitro study also confirmed a similar phenomenon that TNF-α treatment increased both messenger RNA and protein expression in both cell types. Our results demonstrated that HA could potentially suppress IVDD by regulating p38 and Erk1/2 pathways, and that the expression of HYAL1 was correlated with IVDD progression. These findings indicated that HYAL1 would be a potential molecular target for suppressing IVDD by controlling HA metabolism.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Fujii
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yuichiro Mima
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Kawasaki Municipal Hospital, Kanagawa, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
91
|
Bączkowicz D, Skiba G, Szmajda M, Vařeka I, Falkowski K, Laudner K. Effects of Viscosupplementation on Quality of Knee Joint Arthrokinematic Motion Analyzed by Vibroarthrography. Cartilage 2021; 12:438-447. [PMID: 31072141 PMCID: PMC8461162 DOI: 10.1177/1947603519847737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate the influence of viscosupplementation on osteoarthritic knee arthrokinematics analyzed by VAG. It is considered that intra-articular hyaluronic acid injection may improve the function of synovial joints by recovery of friction-reducing properties of articular environment. DESIGN Thirty-five patients with knee osteoarthritis (grade II according to the Kellgren-Lawrence system) and 50 asymptomatic subjects were enrolled in the study. Patients were analyzed at 3 time points: 1 day before and 2 weeks and 4 weeks after single injection of 1.5% cross-linked hyaluronate. Control subjects were tested once. The vibroarthrographic signals were collected during knee flexion/extension motion using an accelerator and described by variation of mean square (VMS), mean range (R5), and power spectral density for frequency of 50 to 250 Hz (P1), and 250 to 450 Hz (P2). RESULTS Patients before viscosupplementation were characterized by about 2-fold higher values of vibroarthrographic parameters than controls. Two weeks after the procedure, the values of R5, P1, and P2 significantly decreased, in comparison to pre-injection. At 4 weeks post-injection, we noted a significant increase in R5, P1, and P2 values, when compared to 2 weeks post-injection. Finally, at 4 weeks post-injection, the level of VMS, R5, and P2 parameters did not differ from values obtained at pre-injection. CONCLUSIONS We showed that viscosupplementation may be effective in providing arthrokinematics improvement, but with a relatively short period of duration. This phenomenon is observed as decreased vibroacoustic emission, which reflects a more smooth movement in the joint.
Collapse
Affiliation(s)
- Dawid Bączkowicz
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland,Dawid Bączkowicz, Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 76 Prószkowska Street, Opole 45-758, Poland.
| | | | - Mirosław Szmajda
- Institute of Automatic Control, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Opole, Poland
| | - Ivan Vařeka
- Department of Rehabilitation, Faculty Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Krzysztof Falkowski
- Department of Trauma and Orthopaedic Surgery, University Clinical Hospital in Opole, Opole, Poland
| | - Kevin Laudner
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| |
Collapse
|
92
|
Majeed M, Nagabhushanam K, Lawrence L, Nallathambi R, Thiyagarajan V, Mundkur L. Boswellia serrata Extract Containing 30% 3-Acetyl-11-Keto-Boswellic Acid Attenuates Inflammatory Mediators and Preserves Extracellular Matrix in Collagen-Induced Arthritis. Front Physiol 2021; 12:735247. [PMID: 34650445 PMCID: PMC8506213 DOI: 10.3389/fphys.2021.735247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Boswellia serrata extracts have been traditionally employed for the treatment of inflammatory diseases. In the present study, we have evaluated the mechanism of activity of Boswellin Super® FJ (BSE), a standardized extract of B. serrata containing not less than 30% 3-acetyl-11-keto-β-boswellic acid along with other β-boswellic acids. The in vitro anti-inflammatory activities were carried out in RAW 264.7 macrophages or human peripheral blood mononuclear cells stimulated with bacterial lipopolysaccharides (LPS) and treated with 1.25-5μg/ml BSE. The anti-arthritic activity of the extract was evaluated in a rat model of collagen-induced arthritis. BSE at 40 and 80mg/kg and celecoxib 10mg/kg were orally dosed for 21days. BSE showed significant (p<0.05) inhibition of inflammation (TNF-α, IL-6, nitric oxide, and COX-2 secretion) and downregulates the mRNA levels of TNF-α, IL-6, IL1-β, and inducible nitric oxide synthase in macrophages. BSE treatment reduced the levels of phosphorylated-NF-κB (P65), suggesting an anti-inflammatory activity mediated by blocking this key signal transduction pathway. In addition, BSE showed inhibition (p<0.05) of collagenase, elastase, hyaluronidase enzymes, and a reduction in reactive oxygen species and matrix-degrading proteins in RAW 264.7 macrophages stimulated with LPS. BSE treatment significantly (p<0.05) reduced the arthritic index, paw volume, and joint inflammation comparable to celecoxib in collagen-induced arthritis (CIA) in rats. The circulating anti-collagen antibodies were reduced in BSE and celecoxib-treated animals as compared to the CIA. In confirmation with in vitro data, BSE showed a significant (p<0.05) dose-dependent effect on C-reactive protein, prostaglandin E2, and erythrocyte sedimentation rate, which is widely used as a blood marker of inflammation. Further, BSE treatment suppressed the cartilage oligomeric matrix protein and significantly enhanced the hyaluronan levels in synovial fluid. As observed by collagen staining in joints, the loss of matrix proteins was lower in BSE-treated animals, suggesting that BSE could preserve the extracellular matrix in RA. The extract showed inhibition of collagenase enzyme activity in vitro, further strengthening this hypothesis. BSE treatment was found to be safe, and rats displayed no abnormal behavior or activities. The results suggest that Boswellin Super® mediates its activity by preserving matrix proteins, reducing pro-inflammatory mediators, and oxidative stress.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, India
- Sabinsa Corporation, East Windsor, NJ, United States
| | | | | | | | | | | |
Collapse
|
93
|
Long DM, Fitzpatrick J. Safety and efficacy of a single intra-articular injection of hyaluronic acid in osteoarthritis of the hip: a case series of 87 patients. BMC Musculoskelet Disord 2021; 22:797. [PMID: 34530784 PMCID: PMC8447787 DOI: 10.1186/s12891-021-04672-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent form of joint disease and commonly affects the hip. Hip OA is associated with a high socioeconomic burden. Intra-articular hyaluronic acid (HA) injection may be of benefit but quality evidence for HA use in hip OA is lacking. The purpose of this study was to assess the safety and efficacy of ultrasound guided injection of a high molecular weight, non-animal derived, stabilised HA (NASHA) in patients with mild to moderate hip OA. Methods This single site study is an analysis of prospectively collected outcome data for 87 consecutive patients over a 2-year period who received a single HA (Durolane) injection for symptomatic hip OA. Inclusion criteria were male or female patients over 18-years of age with mild to moderate hip OA on x-ray. Patients with severe hip OA were excluded. The primary outcome measure was a modified Harris Hip Score (mHHS) questionnaire at baseline and 6-weeks with a minimal clinically important difference (MCID) of 10 points. All adverse events were recorded and assessed. Results Data from 87 patients, 49 women and 38 men with mean age of 54 (SD = 10.8) were analysed. At baseline, mean mHHS was 58.47 (SD 14.31). At the 6 week follow up, mean mHHS improved to 71.30 (SD 16.46), a difference of 12.83 (p < 0.01). This was greater than the MCID of 10. No significant adverse events were encountered. Five patients reported short-lived injection site pain. Conclusion A single injection of HA (NASHA) in the setting of hip joint OA was both safe and efficacious in this 87 patient cohort. Improvement in pain and function as measured with mHHS was statistically significant and reached the MCID of 10. Trial registration The study was retrospectively registered on the 1st of February 2021 in the Australian New Zealand Clinical Trials Registry with registry number ACTRN12621000098831. All research was performed in accordance with the Declaration of Helsinki.
Collapse
Affiliation(s)
- David M Long
- Olympic Park Sports Medicine Centre, 60 Olympic Blvd, Melbourne, 3004, Australia.,School of Medicine, Deakin University, Little Malop St, Geelong, Victoria, 3220, Australia
| | - Jane Fitzpatrick
- Centre for Health and Exercise Sports Medicine, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Level 7, Alan Gilbert Building, 161 Barry Street, Parkville, Victoria, 3010, Australia. .,Joint Health Institute, Malvern, Victoria, 3144, Australia.
| |
Collapse
|
94
|
Uzieliene I, Bironaite D, Bernotas P, Sobolev A, Bernotiene E. Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro. Int J Mol Sci 2021; 22:9690. [PMID: 34575847 PMCID: PMC8469886 DOI: 10.3390/ijms22189690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a long-term chronic joint disease characterized by the deterioration of bones and cartilage, which results in rubbing of bones which causes joint stiffness, pain, and restriction of movement. Tissue engineering strategies for repairing damaged and diseased cartilage tissue have been widely studied with various types of stem cells, chondrocytes, and extracellular matrices being on the lead of new discoveries. The application of natural or synthetic compound-based scaffolds for the improvement of chondrogenic differentiation efficiency and cartilage tissue engineering is of great interest in regenerative medicine. However, the properties of such constructs under conditions of mechanical load, which is one of the most important factors for the successful cartilage regeneration and functioning in vivo is poorly understood. In this review, we have primarily focused on natural compounds, particularly extracellular matrix macromolecule-based scaffolds and their combinations for the chondrogenic differentiation of stem cells and chondrocytes. We also discuss different mechanical forces and compression models that are used for In Vitro studies to improve chondrogenic differentiation. Summary of provided mechanical stimulation models In Vitro reviews the current state of the cartilage tissue regeneration technologies and to the potential for more efficient application of cell- and scaffold-based technologies for osteoarthritis or other cartilage disorders.
Collapse
Affiliation(s)
- Ilona Uzieliene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Daiva Bironaite
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Paulius Bernotas
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia;
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| |
Collapse
|
95
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
96
|
Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nat Commun 2021; 12:4829. [PMID: 34376643 PMCID: PMC8355239 DOI: 10.1038/s41467-021-25025-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.
Collapse
|
97
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
98
|
Steixner SJM, Spiegel C, Dammerer D, Wurm A, Nogler M, Coraça-Huber DC. Influence of Nutrient Media Compared to Human Synovial Fluid on the Antibiotic Susceptibility and Biofilm Gene Expression of Coagulase-Negative Staphylococci In Vitro. Antibiotics (Basel) 2021; 10:antibiotics10070790. [PMID: 34209737 PMCID: PMC8300679 DOI: 10.3390/antibiotics10070790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial antibiotic resistance and biofilm formation are mechanisms usually involved in the pathogeny of implant-related infections. Worldwide, antibiotic susceptibility tests are usually carried out using nutrient-rich media. Clinical routine laboratories and even research centers use for example EUCAST or CLSI for guidelines. In this study, we investigated the effect of different nutrient media on the antibiotic susceptibility and icaADBC gene expression of bacteria in biofilm. As media, Müller-Hinton Bouillon (MHB), Tryptic Soy Broth (TSB) and human synovial fluid (SF) diluted 1:4 in phosphate buffered saline (PBS), each also supplemented with 1% glucose, were used. The influence of different nutrient media on the antibiotic susceptibility of coagulase-negative staphylococci (CoNS) was evaluated by counting of colony-forming units (CFU) and by checking the metabolic activity of the bacteria. We used reverse transcriptase and real-time qPCR to investigate the influence of nutrient media on the biofilm gene expression. We used two-way analysis of variance (ANOVA). p < 0.05 was considered to be statistically significant. Significant differences in growth and antibiotic susceptibility were detected in all strains tested among the different media used. The nutrient media showed influence on the cell viability of all bacteria after antibiotic treatment. IcaADBC gene expression was significantly influenced by glucose and all nutrient media. The results highlight the influence of glucose on the antibiotic susceptibility, growth and gene expression of all strains tested. For all strains, a significant difference in bacterial recovery, viability and gene expression were found when compared to biofilm grown in SF.
Collapse
Affiliation(s)
- Stephan Josef Maria Steixner
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.J.M.S.); (C.S.); (M.N.)
| | - Christopher Spiegel
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.J.M.S.); (C.S.); (M.N.)
| | - Dietmar Dammerer
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (D.D.); (A.W.)
| | - Alexander Wurm
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (D.D.); (A.W.)
| | - Michael Nogler
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.J.M.S.); (C.S.); (M.N.)
| | - Débora Cristina Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.J.M.S.); (C.S.); (M.N.)
- Correspondence: ; Tel.: +43-512-9003-71697; Fax: +43-512-9003-73691
| |
Collapse
|
99
|
Hyaluronan and the Fascial Frontier. Int J Mol Sci 2021; 22:ijms22136845. [PMID: 34202183 PMCID: PMC8269293 DOI: 10.3390/ijms22136845] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The buzz about hyaluronan (HA) is real. Whether found in face cream to increase water volume loss and viscoelasticity or injected into the knee to restore the properties of synovial fluid, the impact of HA can be recognized in many disciplines from dermatology to orthopedics. HA is the most abundant polysaccharide of the extracellular matrix of connective tissues. HA can impact cell behavior in specific ways by binding cellular HA receptors, which can influence signals that facilitate cell survival, proliferation, adhesion, as well as migration. Characteristics of HA, such as its abundance in a variety of tissues and its responsiveness to chemical, mechanical and hormonal modifications, has made HA an attractive molecule for a wide range of applications. Despite being discovered over 80 years ago, its properties within the world of fascia have only recently received attention. Our fascial system penetrates and envelopes all organs, muscles, bones and nerve fibers, providing the body with a functional structure and an environment that enables all bodily systems to operate in an integrated manner. Recognized interactions between cells and their HA-rich extracellular microenvironment support the importance of studying the relationship between HA and the body’s fascial system. From fasciacytes to chronic pain, this review aims to highlight the connections between HA and fascial health.
Collapse
|
100
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|