51
|
Zhang Z, Liang ZC, Zhang JH, Tian SL, Le Qu J, Tang JN, De Liu S. Nano-sized TiO 2 (nTiO 2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:108-117. [PMID: 29454986 DOI: 10.1016/j.ecoenv.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Nano-sized TiO2 (nTiO2) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO2 is an urgent concern. Little information is available regarding the effect of TiO2 on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO2 cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO2 toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO2 on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO2. Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO2 may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO2-induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO2-induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO2 toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials.
Collapse
Affiliation(s)
- Zhi Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Cheng Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jian Hua Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sheng Li Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Le Qu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China
| | - Jiao Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shi De Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
52
|
Zhang Y, Zhang H, Chang D, Guo F, Pan H, Yang Y. Metabolomics approach by 1H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout. Arthritis Res Ther 2018; 20:111. [PMID: 29871692 PMCID: PMC5989453 DOI: 10.1186/s13075-018-1600-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gout is a metabolic disease and is the most common form of inflammatory arthritis affecting men. However, the pathogenesis of gout is still uncertain, and novel biomarkers are needed for early prediction and diagnosis of gout. The aim of this study was to develop a systemic metabolic profile of patients with asymptomatic hyperuricemia (HUA) and gout by using a metabolomics approach, and find potential pathophysiological mechanisms of and markers of predisposition to gout. METHODS Serum samples were collected from 149 subjects, including 50 patients with HUA, 49 patients with gout and 50 healthy controls. 1H nuclear magnetic resonance (NMR) spectroscopy combined with principal components analysis and orthogonal partial least squares-discriminant analysis were used to distinguish between samples from patients and healthy controls. Clinical measurements and pathway analysis were also performed to contribute to understanding of the metabolic change. RESULTS By serum metabolic profiling, 21 metabolites including lipids and amino acids were significantly altered in patients with HUA or gout. The levels of identified biomarkers together with clinical data showed apparent alteration trends in patients with HUA or gout compared to healthy individuals. According to pathway analysis, three and five metabolic pathways were remarkably perturbed in patients with HUA or gout, respectively. These enriched pathways involve in lipid metabolism, carbohydrate metabolism, amino acids metabolism and energy metabolism. CONCLUSIONS Taken together, we identified the biomarker signature for HUA and gout, which provides biochemical insights into the metabolic alteration, and identified a continuous progressive axis of development from HUA to gout.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan, 750004 China
| | - Huanzhen Zhang
- Department of Obstetrics and Gynecology, Tai’an Hospital of Traditional Chinese Medicine, Tai’an, 271000 China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301 China
| | - Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, 350122 China
| | - Hongzhi Pan
- Department of Sanitary Inspection, Shanghai University of Medical & Health Sciences, Shanghai, 201318 China
| | - Yuexin Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050 China
| |
Collapse
|
53
|
Chen J, Li K, Le XC, Zhu L. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:308-317. [PMID: 29499574 DOI: 10.1016/j.envpol.2018.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography-mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7-12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%-67.1%) and 19 organic acids (by 7.8%-70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
54
|
Khoshkam M, Baghdadchi Y, Arezumand R, Ramazani A. Synthesis, characterization and in vivo evaluation of cadmium telluride quantum dots toxicity in mice by toxicometabolomics approach. Toxicol Mech Methods 2018; 28:539-546. [DOI: 10.1080/15376516.2018.1471635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Maryam Khoshkam
- Chemistry Group, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Yasamin Baghdadchi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
55
|
Gil AM, Duarte D, Pinto J, Barros AS. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort. J Proteome Res 2018; 17:1278-1289. [DOI: 10.1021/acs.jproteome.7b00878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ana M. Gil
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Duarte
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Pinto
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UCIBIO@REQUIMTE/Laboratório
de Toxicologia, Departamento de Ciências Biológicas,
Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - António S. Barros
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Cardiothoracic Surgery and Physiology, Faculty of Medicine, Porto 4200-319, Portugal
| |
Collapse
|
56
|
JAK/STAT and TGF-ß activation as potential adverse outcome pathway of TiO 2NPs phototoxicity in Caenorhabditis elegans. Sci Rep 2017; 7:17833. [PMID: 29259193 PMCID: PMC5736661 DOI: 10.1038/s41598-017-17495-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are widely used nanoparticles, whose catalytic activity is mainly due to photoactivation. In this study, the toxicity of TiO2NPs was investigated on the nematode Caenorhabditis elegans, with and without UV activation. Comparative analyses across the four treatments revealed that UV-activated TiO2NPs led to significant reproductive toxicity through oxidative stress. To understand the underlying molecular mechanism, transcriptomics and metabolomics analyses were conducted, followed by whole-genome network-based pathway analyses. Differential expression analysis from microarray data revealed only 4 DEGs by exposure to TiO2NPs alone, compared to 3,625 and 3,286 DEGs by UV alone and UV-activated TiO2NPs, respectively. Pathway analyses suggested the possible involvement of the JAK/STAT and TGF-ß pathways in the phototoxicity of TiO2NPs, which correlated with the observation of increased gene expression of those pathways. Comparative analysis of C. elegans response across UV activation and TiO2NPs exposure was performed using loss-of-function mutants of genes in these pathways. Results indicated that the JAK/STAT pathway was specific to TiO2NPs, whereas the TGF-ß pathway was specific to UV. Interestingly, crosstalk between these pathways was confirmed by further mutant analysis. We consider that these findings will contribute to understand the molecular mechanisms of toxicity of TiO2NPs in the natural environment.
Collapse
|
57
|
Baghdadchi Y, Khoshkam M, Fathi M, Jalilvand A, Fooladsaz K, Ramazani A. The assessment of metabolite alteration induced by -OH functionalized multi-walled carbon nanotubes in mice using NMR-based metabonomics. BIOIMPACTS : BI 2017; 8:107-116. [PMID: 29977832 PMCID: PMC6026527 DOI: 10.15171/bi.2018.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022]
Abstract
Introduction: There is a fundamental need to characterize multiwalled carbon nanotubes (MWCNTs) toxicity to guarantee their safe application. Functionalized MWCNTs have recently attracted special interest in order to enhance biocompatibility. The aim of the current work was to study the underlying toxicity mechanism of the -OH-functionalized MWCNTs (MWCNTs-OH), using the powerful NMR-based metabonomics technique. Methods: Following intraperitoneal single-injection of mice with 3 doses of MWCNTs-OH and one control, samples were collected at four time points during 22-days for NMR, biochemistry, and histopathology analysis. Metabolome profiling and pathway analysis were implemented by chemometrics tools and metabolome databases. Results: Based on the 1H-NMR data, metabolic perturbation induced by MWCNTs-OH were characterized by altered levels of steroid hormones, including elevated androgens, estrogens, corticosterone, and aldosterone. Moreover, increased L-lysine, aminoadipate, taurine and taurocholic acid and decreased biotin were observed in the high-dose group (1 mg.kg-1 B.W.) compared to the control. The findings also indicated that steroid hormone biosynthesis, lysine biosynthesis, and biotin metabolism are the most affected pathways by MWCNTs-OH. Conclusion: These pathways can reflect perturbation of energy, amino acids, and fat metabolism, as well as oxidative stress. The data obtained by biochemistry, metabonomics, and histopathology were in good agreement, proving that MWCNTs-OH was excreted within 24 h, through the biliary pathway.
Collapse
Affiliation(s)
- Yasamin Baghdadchi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Khoshkam
- Chemistry Group, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mojtaba Fathi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ahmad Jalilvand
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Koorosh Fooladsaz
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
58
|
Sonane M, Moin N, Satish A. The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO 2 and ZnO nanoparticles. CHEMOSPHERE 2017; 187:240-247. [PMID: 28854380 DOI: 10.1016/j.chemosphere.2017.08.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 05/26/2023]
Abstract
The exponential increase in the usage of engineered nanoparticles (ENPs) has raised global concerns due to their potential toxicity and environmental impacts. Nano-TiO2 and nano-ZnO have been extensively used in various applications. Thus, there is a need for determining the toxic potentials of ENPs as well as, to develop the possible attenuation method for ENPs toxicity. Both in the in vitro and in vivo systems, exposure to the majority of ENPs have shown Reactive Oxygen Species (ROS) generation, which leads to oxidative stress mediated inflammation, genotoxicity, and cytotoxicity. Hence, with the rationale of determining easy and economical protection against ENPs exposure, the amelioration effect of the antioxidants (curcumin and vitamin-C) against the nano-TiO2 and nano-ZnO induced ROS and lethality were investigated in Caenorhabditis elegans. We not only employed pre-treatment and along with treatment approach, but also determined the effect of antioxidants at different time points of treatment. Our study revealed that both the antioxidants efficiently ameliorate nanoparticles induced ROS as well as lethality in worms. Further, the pretreatment approach was more effective than the along with treatment. Therefore, our study indicates the possibility of evading the nanotoxicity by incorporating curcumin and vitamin-C in everyday diet.
Collapse
Affiliation(s)
- Madhavi Sonane
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Nida Moin
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
59
|
Wu B, Zhu L, Le XC. Metabolomics analysis of TiO 2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:302-310. [PMID: 28667911 DOI: 10.1016/j.envpol.2017.06.062] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 05/23/2023]
Abstract
The wide occurrence and high environmental concentration of titanium dioxide nanoparticles (nano-TiO2) have raised concerns about their potential toxic effects on crops. In this study, we employed a GC-MS-based metabolomic approach to investigate the potential toxicity of nano-TiO2 on hydroponically-cultured rice (Oryza sativa L.) after exposed to 0, 100, 250 or 500 mg/L of nano-TiO2 for fourteen days. Results showed that the biomass of rice was significantly decreased and the antioxidant defense system was significantly disturbed after exposure to nano-TiO2. One hundred and five identified metabolites showed significant difference compared to the control, among which the concentrations of glucose-6-phosphate, glucose-1-phosphate, succinic and isocitric acid were increased most, while the concentrations of sucrose, isomaltulose, and glyoxylic acid were decreased most. Basic energy-generating ways including tricarboxylic acid cycle and the pentose phosphate pathway, were elevated significantly while the carbohydrate synthesis metabolism including starch and sucrose metabolism, and glyoxylate and dicarboxylate metabolism were inhibited. However, the biosynthetic formation of most of the identified fatty acids, amino acids and secondary metabolites which correlated to crop quality, were increased. The results suggest that the metabolism of rice plants is distinctly disturbed after exposure to nano-TiO2, and nano-TiO2 would have a mixed effect on the yield and quality of rice.
Collapse
Affiliation(s)
- Biying Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| |
Collapse
|
60
|
Gonzalez-Moragas L, Maurer LL, Harms VM, Meyer JN, Laromaine A, Roig A. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans. MATERIALS HORIZONS 2017; 4:719-746. [PMID: 29057078 PMCID: PMC5648024 DOI: 10.1039/c7mh00166e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the in vivo fate and transport of nanoparticles (NPs) is challenging, but critical. We review recent studies of metal and metal oxide NPs using the model organism Caenorhabditis elegans, summarizing major findings to date. In a joint transdisciplinary effort, we highlight underutilized opportunities offered by powerful techniques lying at the intersection of mechanistic toxicology and materials science,. To this end, we firstly summarize the influence of exposure conditions (media, duration, C. elegans lifestage) and NP physicochemical properties (size, coating, composition) on the response of C. elegans to NP treatment. Next, we focus on the techniques employed to study NP entrance route, uptake, biodistribution and fate, emphasizing the potential of extending the toolkit available with novel and powerful techniques. Next, we review findings on several NP-induced biological responses, namely transport routes and altered molecular pathways, and illustrate the molecular biology and genetic strategies applied, critically reviewing their strengths and weaknesses. Finally, we advocate the incorporation of a set of minimal materials and toxicological science experiments that will permit meta-analysis and synthesis of multiple studies in the future. We believe this review will facilitate coordinated integration of both well-established and underutilized approaches in mechanistic toxicology and materials science by the nanomaterials research community.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ 08801-3059, United States
| | - Victoria M Harms
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Joel N Meyer
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
61
|
Sendra M, Moreno-Garrido I, Yeste MP, Gatica JM, Blasco J. Toxicity of TiO 2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:39-48. [PMID: 28454020 DOI: 10.1016/j.envpol.2017.04.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure. TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability.
Collapse
Affiliation(s)
- M Sendra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - I Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - M P Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, Faculty of Sciences, University of Cadiz, E-11510, Puerto Real, Cádiz, Spain
| | - J M Gatica
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, Faculty of Sciences, University of Cadiz, E-11510, Puerto Real, Cádiz, Spain
| | - J Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
62
|
Zhang X, Zhou Q, Zou W, Hu X. Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7861-7871. [PMID: 28614664 DOI: 10.1021/acs.est.7b01922] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Developmental toxicity is a critical issue in nanotoxicity. However, very little is known about the effects of graphene oxide (GO, a widely used carbon material) at predicted environmental concentrations on biological development or the specific molecular mechanisms. The present study established that the development of zebrafish embryos exposed to trace concentrations (1-100 μg/L) of GO was impaired because of DNA modification, protein carbonylation and excessive generation of reactive oxygen species (ROS), especially the superoxide radical. Noticeably, there was a nonmonotonic response of zebrafish developmental toxicity to GO at μg/L to mg/L levels. Transcriptomics analysis revealed that disturbing collagen- and matrix metalloproteinase (MMP)-related genes affected the skeletal and cardiac development of zebrafish. Moreover, metabolomics analysis showed that the inhibition of amino acid metabolism and the ratios of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) contributed to the above developmental toxicity. The present work verifies the developmental toxicity of GO at trace concentrations and illustrates for the first time the specific molecular mechanisms thereof. Because of the potential developmental toxicity of GO at trace concentrations, government administrators and nanomaterial producers should consider its potential risks prior to the widespread environmental exposure to GO.
Collapse
Affiliation(s)
- Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
63
|
Ruszkiewicz JA, Pinkas A, Ferrer B, Peres TV, Tsatsakis A, Aschner M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol Rep 2017; 4:245-259. [PMID: 28959646 PMCID: PMC5615097 DOI: 10.1016/j.toxrep.2017.05.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
Sunscreen application is the main strategy used to prevent the maladies inflicted by ultraviolet (UV) radiation. Despite the continuously increasing frequency of sunscreen use worldwide, the prevalence of certain sun exposure-related pathologies, mainly malignant melanoma, is also on the rise. In the past century, a variety of protective agents against UV exposure have been developed. Physical filters scatter and reflect UV rays and chemical filters absorb those rays. Alongside the evidence for increasing levels of these agents in the environment, which leads to indirect exposure of wildlife and humans, recent studies suggest a toxicological nature for some of these agents. Reviews on the role of these agents in developmental and endocrine impairments (both pathology and related mechanisms) are based on both animal and human studies, yet information regarding the potential neurotoxicity of these agents is scant. In this review, data regarding the neurotoxicity of several organic filters: octyl methoxycinnamate, benzophenone-3 and −4, 4-methylbenzylidene camphor, 3-benzylidene camphor and octocrylene, and two allowed inorganic filters: zinc oxide and titanium dioxide, is presented and discussed. Taken together, this review advocates revisiting the current safety and regulation of specific sunscreens and investing in alternative UV protection technologies.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adi Pinkas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Crete, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
64
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
65
|
Wu N, Yu Y, Li T, Ji X, Jiang L, Zong J, Huang H. Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level. PLoS One 2016; 11:e0167245. [PMID: 27907068 PMCID: PMC5132170 DOI: 10.1371/journal.pone.0167245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Molybdenum disulfide, a type of two-dimensional layered material with unique properties, has been widely used in many fields. However, an exact understanding of its toxicity remains elusive, let alone its effects on the environmental microbial community. In this study, we utilized metabolomics technology to explore the effects of different concentrations of molybdenum disulfide nanosheets on Escherichia coli for the first time. The results showed that with increasing concentration of molybdenum disulfide nanosheets, the survival rate of Escherichia coli was decreased and the release of lactic dehydrogenase was increased. At the same time, intracellular concentrations of reactive oxygen species were dramatically increased. In addition, metabolomics analysis showed that high concentrations of molybdenum disulfide nanosheets (100, 1000 μg/mL) could significantly affect the metabolic profile of Escherichia coli, including glycine, serine and threonine metabolism, protein biosynthesis, urea cycle and pyruvate metabolism. These results will be beneficial for molybdenum disulfide toxicity assessment and further applications.
Collapse
Affiliation(s)
- Na Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yadong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China
- * E-mail: (YY); (HH)
| | - Tao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ling Jiang
- College of food science and light industry, Nanjing Tech University, Nanjing, China
| | - Jiajun Zong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
- * E-mail: (YY); (HH)
| |
Collapse
|
66
|
Boyles MSP, Ranninger C, Reischl R, Rurik M, Tessadri R, Kohlbacher O, Duschl A, Huber CG. Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part Fibre Toxicol 2016; 13:49. [PMID: 27609141 PMCID: PMC5017021 DOI: 10.1186/s12989-016-0160-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity. RESULTS We have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis. CONCLUSIONS Our findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.
Collapse
Affiliation(s)
- Matthew S. P. Boyles
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Christina Ranninger
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Roland Reischl
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Marc Rurik
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany ,Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Richard Tessadri
- Faculty of Geo- and Atmospheric Science, Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany ,Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany ,Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany ,Faculty of Medicine, University of Tübingen, Geissweg 3, 72076 Tübingen, Germany ,Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany
| | - Albert Duschl
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| |
Collapse
|
67
|
Wang D. Biological effects, translocation, and metabolism of quantum dots in the nematode Caenorhabditis elegans. Toxicol Res (Camb) 2016; 5:1003-1011. [PMID: 30090407 DOI: 10.1039/c6tx00056h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
Quantum dots (QDs), semiconductor nanomaterials with tiny light-emitting particles, act as important alternatives to conventional fluorescent dyes for biomedical imaging. With the increased tendency towards QD applications, concerns about the likelihood of adverse health impacts from exposure to QDs have also received attention. The nematode Caenorhabditis elegans is an important non-mammalian alternative model for the toxicological study of environmental toxicants including engineered nanomaterials. In this review, we summarize recent progress on the biological effects, translocation, and metabolism of QDs in the in vivo assay system of C. elegans. Moreover, certain perspectives or suggestions are further raised for the future toxicological study of QDs in nematodes.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
68
|
Costa PM, Fadeel B. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol 2015; 299:101-11. [PMID: 26721310 DOI: 10.1016/j.taap.2015.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Pedro M Costa
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
69
|
Eloh K, Demurtas M, Deplano A, Ngoutane Mfopa A, Murgia A, Maxia A, Onnis V, Caboni P. In vitro nematicidal activity of aryl hydrazones and comparative GC-MS metabolomics analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9970-9976. [PMID: 26528945 DOI: 10.1021/acs.jafc.5b04815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of aryl hydrazones were synthesized and in vitro assayed for their activity on the root-knot nematode Meloidogyne incognita. The phenylhydrazones of thiophene-2-carboxyaldehyde 5, 3-methyl-2-thiophenecarboxyaldehyde, 6, and salicylaldehyde, 2, were the most potent with EC50/48h values of 16.6 ± 2.2, 23.2 ± 2.7, and 24.3 ± 1.4 mg/L, respectively. A GC-MS metabolomics analysis, after in vitro nematode treatment with hydrazone 6 at 100 mg/L for 12 h, revealed elevated levels of fatty acids such as lauric acid, stearic acid, 2-octenoic acid, and palmitic acid. Whereas control samples showed the highest levels of monoacylglycerols such as monostearin and 2-monostearin, surprisingly, 2 h after treatment with hydrazone 6, nematodes excreted 3 times the levels of ammonia eliminated in the same conditions by controls. Thus, phenylhydrazones may represent a good scaffold in the discovery and synthesis of new nematicidal compounds, and a metabolomics approach may be helpful in understanding their mechanisms of toxicity and mode of action.
Collapse
Affiliation(s)
- Kodjo Eloh
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Monica Demurtas
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Alvine Ngoutane Mfopa
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Murgia
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
70
|
Scharf A, Gührs KH, von Mikecz A. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans. Nanotoxicology 2015; 10:426-35. [PMID: 26444998 PMCID: PMC4819850 DOI: 10.3109/17435390.2015.1073399] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation.
Collapse
Affiliation(s)
- Andrea Scharf
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| | - Karl-Heinz Gührs
- b CF Proteomics, FLI-Leibniz-Institute for Age Research, Fritz-Lipman-Institute e.V. , Jena , Germany
| | - Anna von Mikecz
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| |
Collapse
|
71
|
Garcia-Contreras R, Sugimoto M, Umemura N, Kaneko M, Hatakeyama Y, Soga T, Tomita M, Scougall-Vilchis RJ, Contreras-Bulnes R, Nakajima H, Sakagami H. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model. Biomaterials 2015; 57:33-40. [DOI: 10.1016/j.biomaterials.2015.03.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 12/14/2022]
|