51
|
Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-Berry D, Pirela SV, Deloid G, Demokritou P, Luanpitpong S, Rojanasakul Y, Wang L. Evaluation of tumorigenic potential of CeO 2 and Fe 2O 3 engineered nanoparticles by a human cell in vitro screening model. NANOIMPACT 2017; 6:39-54. [PMID: 28367517 PMCID: PMC5372702 DOI: 10.1016/j.impact.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With rapid development of novel nanotechnologies that incorporate engineered nanomaterials (ENMs) into manufactured products, long-term, low dose ENM exposures in occupational settings is forecasted to occur with potential adverse outcomes to human health. Few ENM human health risk assessment efforts have evaluated tumorigenic potential of ENMs. Two widely used nano-scaled metal oxides (NMOs), cerium oxide (nCeO2) and ferric oxide (nFe2O3) were screened in the current study using a sub-chronic exposure to human primary small airway epithelial cells (pSAECs). Multi-walled carbon nanotubes (MWCNT), a known ENM tumor promoter, was used as a positive control. Advanced dosimetry modeling was employed to ascertain delivered vs. administered dose in all experimental conditions. Cells were continuously exposed in vitro to deposited doses of 0.18 μg/cm2 or 0.06 μg/cm2 of each NMO or MWCNT, respectively, over 6 and 10 weeks, while saline- and dispersant-only exposed cells served as passage controls. Cells were evaluated for changes in several cancer hallmarks, as evidence for neoplastic transformation. At 10 weeks, nFe2O3- and MWCNT-exposed cells displayed a neoplastic-like transformation phenotype with significant increased proliferation, invasion and soft agar colony formation ability compared to controls. nCeO2-exposed cells showed increased proliferative capacity only. Isolated nFe2O3 and MWCNT clones from soft agar colonies retained their respective neoplastic-like phenotypes. Interestingly, nFe2O3-exposed cells, but not MWCNT cells, exhibited immortalization and retention of the neoplastic phenotype after repeated passaging (12 - 30 passages) and after cryofreeze and thawing. High content screening and protein expression analyses in acute exposure ENM studies vs. immortalized nFe2O3 cells, and isolated ENM clones, suggested that long-term exposure to the tested ENMs resulted in iron homeostasis disruption, an increased labile ferrous iron pool, and subsequent reactive oxygen species generation, a well-established tumorigenesis promotor. In conclusion, sub-chronic exposure to human pSAECs with a cancer hallmark screening battery identified nFe2O3 as possessing neoplastic-like transformation ability, thus suggesting that further tumorigenic assessment is needed.
Collapse
Affiliation(s)
- Todd A. Stueckle
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
- Corresponding Author: Todd A. Stueckle, , Phone: 304 285-6098
| | - Donna C. Davidson
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| | - Raymond Derk
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| | - Tiffany G. Kornberg
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
| | | | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Glen Deloid
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
| | - Liying Wang
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| |
Collapse
|
52
|
Chibber S, Sangeet A, Ansari SA. Downregulation of catalase by CuO nanoparticles via hypermethylation of CpG island II on the catalase promoter. Toxicol Res (Camb) 2017; 6:305-311. [PMID: 30090500 DOI: 10.1039/c6tx00416d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
The advent of nanotechnology has led to new applications of copper as antibiotic treatment alternatives, nanocomposite coatings, catalysts, and lubricants among others. However, few studies address the impact of nano-size copper on the molecular mechanism of eukaryotic cells. Therefore, in the present study, the human hepatic cell line (WRL-68) was used to evaluate the molecular mechanism involved in the adverse effect of CuO NPs. CuO NPs were characterized by scanning electron microscopy and dynamic light scattering to confirm their 100 nm size and their purity was determined by Fourier transform infra-red spectroscopy. The side scattered intensity in WRL-68 cells at a CuO NP concentration of 250, 500, 750 and 1000 μM was found to be 108.83%, 126.86%, 189.03% and 250.88% respectively. The reactive oxygen species (ROS) generation at a CuO NP concentration of 1000 μM in WRL-68 cells was 417.75%. Moreover, the ROS induced methylation of CpG island II on the catalase promoter and downregulated catalase expression at the transcriptional level in WRL-68 cells. Furthermore, the activity of the catalase enzyme was found to decrease with an increase in concentration of CuO NPs. Subsequently, the proliferation of the WRL-68 cells was increased on exposure to the CuO NPs as demonstrated by the mitochondrial activity in the MTT assay. Conclusively, it is demonstrated that exposure of CuO NPs at 1000 μM for 24 h in the WRL-68 cell induced methylation of CpG island II via ROS on the catalase promoter and downregulated catalase expression at the transcriptional level. The obtained molecular mechanistic insights described adverse effects related to the CuO NPs.
Collapse
Affiliation(s)
- Sandesh Chibber
- Division of Biological and Life Sciences , School of Arts and Sciences , Ahmedabad University , Ahmedabad 380009 , Gujarat , India . ; ; Tel: +91-79-26302414-18
| | - Amee Sangeet
- Division of Biological and Life Sciences , School of Arts and Sciences , Ahmedabad University , Ahmedabad 380009 , Gujarat , India . ; ; Tel: +91-79-26302414-18
| | - Shakeel Ahmed Ansari
- Center of Excellence in Genomic Medicine Research , King Abdulaziz University , Jeddah-21589 , Kingdom Saudi Arabia
| |
Collapse
|
53
|
Chen Y, Xu M, Zhang J, Ma J, Gao M, Zhang Z, Xu Y, Liu S. Genome-Wide DNA Methylation Variations upon Exposure to Engineered Nanomaterials and Their Implications in Nanosafety Assessment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604580. [PMID: 27918113 DOI: 10.1002/adma.201604580] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Sublethal exposure of engineered nanomaterials (ENMs) induces the alteration of various cellular processes due to DNA methylation changes. DNA methylation variations represent a more sensitive fingerprint analysis of the direct and indirect effects that may be overlooked by traditional toxicity assays, and an understanding of the structure-activity relationship of DNA methylation upon ENMs would open a new path for their safer design.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
54
|
DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 2017; 12:355-371. [PMID: 28102836 DOI: 10.1038/nprot.2016.172] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires ∼6-12 h to complete.
Collapse
Affiliation(s)
- Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Joel M Cohen
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Tabish AM, Poels K, Byun HM, luyts K, Baccarelli AA, Martens J, Kerkhofs S, Seys S, Hoet P, Godderis L. Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS One 2017; 12:e0169886. [PMID: 28081255 PMCID: PMC5231360 DOI: 10.1371/journal.pone.0169886] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Aims This study aimed to investigate the effects of nanomaterial (NM) exposure on DNA methylation. Methods and Results Intra-tracheal administration of NM: gold nanoparticles (AuNPs) of 5-, 60- and 250-nm diameter; single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) at high dose of 2.5 mg/kg and low dose of 0.25 mg/kg for 48 h to BALB/c mice. Study showed deregulations in immune pathways in NM-induced toxicity in vivo. NM administration had the following DNA methylation effects: AuNP 60 nm induced CpG hypermethylation in Atm, Cdk and Gsr genes and hypomethylation in Gpx; Gsr and Trp53 showed changes in methylation between low- and high-dose AuNP, 60 and 250 nm respectively, and AuNP had size effects on methylation for Trp53. Conclusion Epigenetics may be implicated in NM-induced disease pathways.
Collapse
Affiliation(s)
- Ali M. Tabish
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Integrated Cardio Metabolic Centre, Huddinge, Sweden
- * E-mail:
| | - Katrien Poels
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Katrien luyts
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Johan Martens
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Stef Kerkhofs
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, KU Leuven, Belgium
| | - Peter Hoet
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at work, Heverlee, Belgium
| |
Collapse
|
56
|
Ma Y, Guo Y, Wu S, Lv Z, Zhang Q, Ke Y. Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells. RSC Adv 2017. [DOI: 10.1039/c6ra28272e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Yinsheng Guo
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Shuang Wu
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Ziquan Lv
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Qian Zhang
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Yuebin Ke
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| |
Collapse
|
57
|
Watson-Wright C, Singh D, Demokritou P. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics. NANOIMPACT 2017; 5:29-40. [PMID: 29333505 PMCID: PMC5764161 DOI: 10.1016/j.impact.2016.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM. This work highlights the importance of assessing the toxicological properties of LCPM and raises environmental health and safety concerns of nano-enabled products at their end of life during thermal decomposition/incineration.
Collapse
Affiliation(s)
| | | | - Philip Demokritou
- To whom correspondence should be addressed: Prof. Philip Demokritou, Associate Professor, Department of Environmental Health, Harvard T.H. Chan School of Public, Health, 677 Huntington Avenue, Boston, MA 02115, USA, , Tel: 617-432-3481
| |
Collapse
|
58
|
Zhao J, Pyrgiotakis G, Demokritou P. Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhal Toxicol 2016; 28:658-669. [PMID: 27829296 PMCID: PMC5496446 DOI: 10.1080/08958378.2016.1246628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Electronic cigarettes (e-cig) have been introduced as a nicotine replacement therapy and have gained increasing attention and popularity. However, while findings on possible toxicological implications continue to grow, major knowledge gaps on both the complex chemistry of the exposure and toxicity exist, prohibiting public health assessors from assessing risks. Here, a versatile electronic cigarette exposure generation system (Ecig-EGS) has been developed and characterized. Ecig-EGS allows generation of real world e-cig emission profiles under controlled operational conditions, real time monitoring and time-integrated particle/gas sampling for physico-chemical characterization, and toxicological assessment (both in vitro and in vivo). The platform is highly versatile and can be used with all e-cig types. It enables generation of precisely controlled e-cig exposure while critical operational parameters and environmental mixing conditions can be adjusted in a systematic manner to assess their impact on complex chemistry and toxicity of emissions. Results proved the versatility and reproducibility of Ecig-EGS. E-cig emission was found to contain 106-107 particles/cm3 with the mode diameter around 200 nm, under air change rate of 60/h. Elevated CO2 and volatile organic specie generation was also observed. Furthermore, environmental mixing conditions also influenced e-cig emission profile. The versatility of Ecig-EGS will enable linking of operational and environmental parameters with exposure chemistry and toxicology and help in assessing health risks.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| | - Georgios Pyrgiotakis
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
59
|
Sierra MI, Valdés A, Fernández AF, Torrecillas R, Fraga MF. The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. Int J Nanomedicine 2016; 11:6297-6306. [PMID: 27932878 PMCID: PMC5135284 DOI: 10.2147/ijn.s120104] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human exposure to nanomaterials and nanoparticles is increasing rapidly, but their effects on human health are still largely unknown. Epigenetic modifications are attracting ever more interest as possible underlying molecular mechanisms of gene–environment interactions, highlighting them as potential molecular targets following exposure to nanomaterials and nanoparticles. Interestingly, recent research has identified changes in DNA methylation, histone post-translational modifications, and noncoding RNAs in mammalian cells exposed to nanomaterials and nanoparticles. However, the challenge for the future will be to determine the molecular pathways driving these epigenetic alterations, the possible functional consequences, and the potential effects on health.
Collapse
Affiliation(s)
- M I Sierra
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo
| | - A Valdés
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo
| | - R Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - M F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| |
Collapse
|
60
|
Teng C, Wang Z, Yan B. Fine particle-induced birth defects: Impacts of size, payload, and beyond. ACTA ACUST UNITED AC 2016; 108:196-206. [PMID: 27581067 DOI: 10.1002/bdrc.21136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022]
Abstract
Worldwide epidemiological studies have shown that exposures to particulate matters (PMs), such as PM2.5 or PM10 , during pregnancy cause birth defects in the newborn. Although mechanistic understanding of such effects are not available, recent research using murine models highlights some key progress: (1) toxicity caused by PMs is a combined effects of particles and the adsorbed toxic pollutants, such as heavy metals, persistent organic pollutants, bacteria, and virus. Fine particles may hold on to pollutants and, therefore, reduce their toxicity or enhance the toxicity by carrying pollutants crossing the placental barrier; (2) smaller size, certain particle surface chemistry modifications, early developmental stage of placenta, and maternal diseases all aggravate PM-induced birth defects; (3) molecular events involved in such toxicity are begin to emerge: induction of oxidative stress, DNA damage, and alteration of molecular signaling or epigenetic events are some possible causes. Despite this progress, a clear understanding of PM-induced birth defects awaits further breakthroughs on many fronts, including epidemiological studies, animal models, nanotoxicity, and molecular mechanism investigations. Birth Defects Research (Part C) 108:196-206, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chuanfeng Teng
- Chuanfeng Teng and Bing Yan are from the School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhiping Wang
- Chuanfeng Teng and Bing Yan are from the School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.,Zhiping Wang is from the School of Public Health, Shandong University, Jinan, 250100, China
| | - Bing Yan
- Chuanfeng Teng and Bing Yan are from the School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
61
|
McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NANOIMPACT 2016; 3-4:47-57. [PMID: 29568810 PMCID: PMC5860850 DOI: 10.1016/j.impact.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many foods contain appreciable levels of engineered nanomaterials (ENMs) (diameter < 100 nm) that may be either intentionally or unintentionally added. These ENMs vary considerably in their compositions, dimensions, morphologies, physicochemical properties, and biological responses. From a toxicological point of view, it is often convenient to classify ingested ENMs (iENMs) as being either inorganic (such as TiO2, SiO2, Fe2O3, or Ag) or organic (such as lipid, protein, or carbohydrate), since the former tend to be indigestible and the latter are generally digestible. At present there is a relatively poor understanding of how different types of iENMs behave within the human gastrointestinal tract (GIT), and how the food matrix and biopolymers transform their physico-chemical properties and influence their gastrointestinal fate. This lack of knowledge confounds an understanding of their potential harmful effects on human health. The purpose of this article is to review our current understanding of the GIT fate of iENMs, and to highlight gaps where further research is urgently needed in assessing potential risks and toxicological implications of iENMs. In particular, a strong emphasis is given to the development of standardized screening methods that can be used to rapidly and accurately assess the toxicological properties of iENMs.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- corresponding authors: David Julian McClements, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. ; Tel: 413 545 1019. Philip Demokritou, Center for Nanotechnology an nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston MA 02115, , Tel 617 432-3481, Web: www.hsph.harvard.edu/nano
| | - Glen DeLoid
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Georgios Pyrgiotakis
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Philip Demokritou
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
- corresponding authors: David Julian McClements, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. ; Tel: 413 545 1019. Philip Demokritou, Center for Nanotechnology an nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston MA 02115, , Tel 617 432-3481, Web: www.hsph.harvard.edu/nano
| |
Collapse
|
62
|
Watson C, DeLoid GM, Pal A, Demokritou P. Buoyant Nanoparticles: Implications for Nano-Biointeractions in Cellular Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3172-3180. [PMID: 27135209 PMCID: PMC5089376 DOI: 10.1002/smll.201600314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Indexed: 05/18/2023]
Abstract
In the safety and efficacy assessment of novel nanomaterials, the role of nanoparticle (NP) kinetics in in vitro studies is often ignored although it has significant implications in dosimetry, hazard ranking, and nanomedicine efficacy. It is demonstrated here that certain nanoparticles are buoyant due to low effective densities of their formed agglomerates in culture media, which alters particle transport and deposition, dose-response relationships, and underestimates toxicity and bioactivity. To investigate this phenomenon, this study determines the size distribution, effective density, and assesses fate and transport for a test buoyant NP (polypropylene). To enable accurate dose-response assessment, an inverted 96-well cell culture platform is developed in which adherent cells are incubated above the buoyant particle suspension. The effect of buoyancy is assessed by comparing dose-toxicity responses in human macrophages after 24 h incubation in conventional and inverted culture systems. In the conventional culture system, no adverse effects are observed at any NP concentration tested (up to 250 μg mL(-1) ), whereas dose-dependent decreases in viability and increases in reactive oxygen species are observed in the inverted system. This work sheds light on an unknown issue that plays a significant role in vitro hazard screening and proposes a standardized methodology for buoyant NP assessments.
Collapse
Affiliation(s)
- C.Y. Watson
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - GM. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - A. Pal
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - P. Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| |
Collapse
|
63
|
DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. Effects of engineered nanomaterial exposure on macrophage innate immune function. NANOIMPACT 2016; 2:70-81. [PMID: 29568809 PMCID: PMC5860825 DOI: 10.1016/j.impact.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing use of engineered nanomaterials (ENMs) means increased human exposures. Potential adverse effects include those on the immune system, ranging from direct toxicity to impairment of defenses against environmental pathogens and toxins. Effects on lung macrophages may be especially prominent, because they serve to clear foreign materials like ENMs and bacterial pathogens. We investigated the effects of 4 hour exposures over a range of concentrations, of a panel of industry-relevant ENMs, including SiO2, Fe2O3, ZnO, CeO2, TiO2, and an Ag/SiO2 composite, on human THP-1 macrophages. Effects on phagocytosis of latex beads, and phagocytosis and killing of Francisella tularensis (FT), as well as viability, oxidative stress and mitochondrial integrity, were measured by automated scanning confocal microscopy and image analysis. Results revealed some notable patterns: 1) Phagocytosis of unopsonized beads was increased, whereas that of opsonized beads was decreased, by all ENMs, with the exception of ZnO, which reduced both opsonized and unopsonized uptake; 2) Uptake of opsonized and unopsonized FT was either impaired or unaffected by all ENMs, with the exception of CeO2, which increased phagocytosis of unopsonized FT; 3) Macrophage killing of FT tended to improve with all ENMs; and 4) Viability was unaffected immediately following exposures with all ENMs tested, but was significantly decreased 24 hours after exposures to Ag/SiO2 and ZnO ENMs. The results reveal a complex landscape of ENM effects on macrophage host defenses, including both enhanced and reduced capacities, and underscore the importance of robust hazard assessment, including immunotoxicity assessment, of ENMs.
Collapse
Affiliation(s)
- Glen DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- corresponding author: Glen M. DeLoid,
| | - Beatriz Casella
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Rose Filoramo
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Lester Kobzik
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
64
|
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, Koturbash I, Castranova V, Thomas T, Godleski J, Demokritou P. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NANOIMPACT 2016; 1:1-8. [PMID: 26989787 PMCID: PMC4791579 DOI: 10.1016/j.impact.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into toners used in laser printers has led to countless quality and performance improvements. However, the release of ENMs during printing (consumer use) has raised concerns about their potential adverse health effects. The aim of this study was to use "real world" printer-emitted particles (PEPs), rather than raw toner powder, and assess the pulmonary responses following exposure by intratracheal instillation. Nine-week old male Balb/c mice were exposed to various doses of PEPs (0.5, 2.5 and 5 mg/kg body weight) by intratracheal instillation. These exposure doses are comparable to real world human inhalation exposures ranging from 13.7 to 141.9 h of printing. Toxicological parameters reflecting distinct mechanisms of action were evaluated, including lung membrane integrity, inflammation and regulation of DNA methylation patterns. Results from this in vivo toxicological analysis showed that while intratracheal instillation of PEPs caused no changes in the lung membrane integrity, there was a pulmonary immune response, indicated by an elevation in neutrophil and macrophage percentage over the vehicle control and low dose PEPs groups. Additionally, exposure to PEPs upregulated expression of the Ccl5 (Rantes), Nos1 and Ucp2 genes in the murine lung tissue and modified components of the DNA methylation machinery (Dnmt3a) and expression of transposable element (TE) LINE-1 compared to the control group. These genes are involved in both the repair process from oxidative damage and the initiation of immune responses to foreign pathogens. The results are in agreement with findings from previous in vitro cellular studies and suggest that PEPs may cause immune responses in addition to modifications in gene expression in the murine lung at doses that can be comparable to real world exposure scenarios, thereby raising concerns of deleterious health effects.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Isabelle Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jennifer D. Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Nancy Guo
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Treye Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Rockville, MD, United States
| | - John Godleski
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Corresponding author at: Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, United States. Tel.: +1 917 432 3481. (P. Demokritou)
| |
Collapse
|