51
|
The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 2016; 221:4705-4721. [PMID: 26754839 DOI: 10.1007/s00429-015-1179-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.
Collapse
|
52
|
Mitter C, Jakab A, Brugger PC, Ricken G, Gruber GM, Bettelheim D, Scharrer A, Langs G, Hainfellner JA, Prayer D, Kasprian G. Validation of In utero Tractography of Human Fetal Commissural and Internal Capsule Fibers with Histological Structure Tensor Analysis. Front Neuroanat 2015; 9:164. [PMID: 26732460 PMCID: PMC4689804 DOI: 10.3389/fnana.2015.00164] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic characterization of axon guidance disorders at prenatal stages of human brain development.
Collapse
Affiliation(s)
- Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of ViennaVienna, Austria; Institute of Neurology, Medical University of ViennaVienna, Austria
| | - András Jakab
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Peter C Brugger
- Department of Systematic Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna Vienna, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Gerlinde M Gruber
- Department of Systematic Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna Vienna, Austria
| | - Dieter Bettelheim
- Division of Obstetrics and Feto-maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna Vienna, Austria
| | - Anke Scharrer
- Clinical Institute for Pathology, Medical University of Vienna Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | | | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| |
Collapse
|
53
|
Inter-hemispheric Claustral Connections in Human Brain: A Constrained Spherical Deconvolution-Based Study. Clin Neuroradiol 2015; 27:275-281. [DOI: 10.1007/s00062-015-0492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|
54
|
Seo EH, Choo ILH. Amyloid-independent functional neural correlates of episodic memory in amnestic mild cognitive impairment. Eur J Nucl Med Mol Imaging 2015; 43:1088-95. [PMID: 26613793 DOI: 10.1007/s00259-015-3261-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Although amnestic mild cognitive impairment (aMCI) could have various biological characteristics, little attention has been given to the nature of episodic memory decline in aMCI with pathophysiologies other than Alzheimer's disease (AD), i.e., aMCI with low beta-amyloid (Aβ) burden. This study aimed to identify the functional neural basis of episodic memory impairment in aMCI with Aβ burden negative (aMCI-Aβ-) and to compare these results with aMCI with Aβ burden positive (aMCI-Aβ+). METHODS Individuals with aMCI (n = 498) were selected from the Alzheimer's Disease Neuroimaging Initiative database. Based on the mean florbetapir standard uptake value ratio, participants were classified as aMCI-Aβ- or aMCI-Aβ+. Correlations between memory scores and regional cerebral glucose metabolism (rCMglc) were analyzed separately for the two subgroups using a multiple regression model. RESULTS For aMCI-Aβ-, significant positive correlations between memory and rCMglc were found in the bilateral claustrum, right thalamus, left anterior cingulate cortex, left insula, and right posterior cingulate. For aMCI-Aβ+, significant positive correlations between memory and rCMglc were found in the temporoparietal areas. These correlation patterns remained unchanged when clinical severity was added as a covariate CONCLUSION Our findings indicate that memory impairment in aMCI-Aβ- is related to multimodal integrative processing and the attentional control system, whereas memory impairment in aMCI-Aβ+ is related to the typical brain memory systems and AD signature. These results suggest that although the two subgroups are clinically in the same category as aMCI, the memory impairment process depends on completely different functional brain regions according to their Aβ burden level.
Collapse
Affiliation(s)
- Eun Hyun Seo
- Premedical Science, College of Medicine, Chosun University, 365 Pilmundaero, Dong-gu, Gwangju, Republic of Korea
| | - I L Han Choo
- Department of Neuropsychiatry, School of Medicine, Chosun University/Chosun University Hospital, 365 Pilmundaero, Dong-gu, Gwangju, Republic of Korea.
| | | |
Collapse
|
55
|
Monnig MA, Yeo RA, Tonigan JS, McCrady BS, Thoma RJ, Sabbineni A, Hutchison KE. Associations of White Matter Microstructure with Clinical and Demographic Characteristics in Heavy Drinkers. PLoS One 2015; 10:e0142042. [PMID: 26529515 PMCID: PMC4631485 DOI: 10.1371/journal.pone.0142042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022] Open
Abstract
Damage to the brain’s white matter is a signature injury of alcohol use disorders (AUDs), yet understanding of risks associated with clinical and demographic characteristics is incomplete. This study investigated alcohol problem severity, recent drinking behavior, and demographic factors in relation to white matter microstructure in heavy drinkers. Magnetic resonance imaging (MRI) scans, including diffusion tensor imaging (DTI), were collected from 324 participants (mean age = 30.9 ± 9.1 years; 30% female) who reported five or more heavy drinking episodes in the past 30 days. Drinking history and alcohol problem severity were assessed. A common white matter factor was created from fractional anisotropy (FA) values of five white matter tracts: body of corpus callosum, fornix, external capsule, superior longitudinal fasciculus, and cingulate gyrus. Previous research has implicated these tracts in heavy drinking. Structural equation modeling (SEM) analyses tested the hypothesis that, after controlling for duration of alcohol exposure, clinical and behavioral measures of alcohol use severity would be associated with lower white matter factor scores. Potential interactions with smoking status, gender, age, treatment-seeking status, and depression or anxiety symptoms also were tested. Controlling for number of years drinking, greater alcohol problem severity and recent drinking frequency were significantly associated with lower white matter factor scores. The effect of drinking frequency differed significantly for men and women, such that higher drinking frequency was linked to lower white matter factor scores in women but not in men. In conclusion, alcohol problem severity was a significant predictor of lower white matter FA in heavy drinkers, after controlling for duration of alcohol exposure. In addition, more frequent drinking contributed to lower FA in women but not men, suggesting gender-specific vulnerability to alcohol neurotoxicity.
Collapse
Affiliation(s)
- Mollie A. Monnig
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - J. Scott Tonigan
- Center on Alcoholism, Substance Abuse, and Addictions, Albuquerque, New Mexico, United States of America
| | - Barbara S. McCrady
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center on Alcoholism, Substance Abuse, and Addictions, Albuquerque, New Mexico, United States of America
| | - Robert J. Thoma
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Amithrupa Sabbineni
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
56
|
Orman R. Claustrum: a case for directional, excitatory, intrinsic connectivity in the rat. J Physiol Sci 2015; 65:533-44. [PMID: 26329935 PMCID: PMC10717944 DOI: 10.1007/s12576-015-0391-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 12/21/2022]
Abstract
Claustrum, a gray matter structure that underlies the neocortex, is reciprocally connected with many neocortical and limbic cortical areas. This connectivity positions claustrum ideally for the integration or coordination of widespread cortical activity. In anatomical studies using multiple planes of section, claustrum has distinct subregions based on latexin immunohistochemistry, and an approximately rostro-caudal alignment of fusiform cells supporting a laminar intrinsic organization. Physiological studies of claustral connectivity in disinhibited brain slices demonstrate (1) intrinsic connectivity sufficient to generate spontaneous synchronized burst discharges, (2) activity spread within the oblique laminae that contained the principal cellular axis, and (3) segregation of activity as evidenced by the absence of spread within coronal planes. Activity spread depended on glutamatergic synaptic transmission, and activity restrictions did not depend on inhibitory circuits. We conclude that the claustrum has an intrinsic excitatory connectivity that is constrained in approximately rostro-caudal laminae, with minimal cross-communication between laminae. Further, claustrum has the intrinsic capability of generating synchronized population activity and facilitating its spread within laminae, a feature that may contribute to seizure generation and spread.
Collapse
Affiliation(s)
- Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, MSC 31, Brooklyn, NY, 11203, USA.
| |
Collapse
|
57
|
Yagmurlu K, Vlasak AL, Rhoton AL. Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery 2015; 11 Suppl 2:274-305; discussion 305. [PMID: 25950888 DOI: 10.1227/neu.0000000000000704] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. OBJECTIVE To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. METHODS Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. RESULTS The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. CONCLUSION An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.
Collapse
Affiliation(s)
- Kaan Yagmurlu
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida
| | | | | |
Collapse
|
58
|
Jankowski MM, O'Mara SM. Dynamics of place, boundary and object encoding in rat anterior claustrum. Front Behav Neurosci 2015; 9:250. [PMID: 26557060 PMCID: PMC4617374 DOI: 10.3389/fnbeh.2015.00250] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Abstract
Discrete populations of brain cells signal differing types of spatial information. These "spatial cells" are largely confined to a closely-connected network of sites. We describe here, for the first time, cells in the anterior claustrum of the freely-moving rat encoding place, boundary and object information. This novel claustral spatial signal potentially directly modulates a wide variety of anterior cortical regions. We hypothesize that one of the functions of the claustrum is to provide information about body position, boundaries and landmark information, enabling dynamic control of behavior.
Collapse
Affiliation(s)
| | - Shane M O'Mara
- Institute of Neuroscience, Trinity College Dublin, Ireland
| |
Collapse
|
59
|
Martino J, Mato D, de Lucas EM, García-Porrero JA, Gabarrós A, Fernández-Coello A, Vázquez-Barquero A. Subcortical anatomy as an anatomical and functional landmark in insulo-opercular gliomas: implications for surgical approach to the insular region. J Neurosurg 2015; 123:1081-92. [DOI: 10.3171/2014.11.jns141992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Little attention has been given to the functional challenges of the insular approach to the resection of gliomas, despite the potential damage of essential neural networks that underlie the insula. The object of this study is to analyze the subcortical anatomy of the insular region when infiltrated by gliomas, and compare it with the normal anatomy in nontumoral hemispheres.
METHODS
Ten postmortem human hemispheres were dissected, with isolation of the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus. Probabilistic diffusion tensor imaging (DTI) tractography was used to analyze the subcortical anatomy of the insular region in 10 healthy volunteers and in 22 patients with insular Grade II and Grade III gliomas. The subcortical anatomy of the insular region in these 22 insular gliomas was compared with the normal anatomy in 20 nontumoral hemispheres.
RESULTS
In tumoral hemispheres, the distances between the peri-insular sulci and the lateral surface of the IFOF and uncinate fasciculus were enlarged (p < 0.05). Also in tumoral hemispheres, the IFOF was identified in 10 (90.9%) of 11 patients with an extent of resection less than 80%, and in 4 (36.4%) of 11 patients with an extent of resection equal to or greater than 80% (multivariate analysis: p = 0.03).
CONCLUSIONS
Insular gliomas grow in the space between the lateral surface of the IFOF and uncinate fasciculus and the insular surface, displacing and compressing the tracts medially. Moreover, these tracts may be completely infiltrated by the tumor, with a total disruption of the bundles. In the current study, the identification of the IFOF with DTI tractography was significantly associated with the extent of tumor resection. If the IFOF is not identified preoperatively, there is a high probability of achieving a resection greater than 80%.
Collapse
Affiliation(s)
| | - David Mato
- Departments of 1Neurological Surgery and
| | - Enrique Marco de Lucas
- 2Radiology, Hospital Universitario Marqués de Valdecilla and Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL)
| | | | - Andreu Gabarrós
- 4Department of Neurological Surgery, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | |
Collapse
|
60
|
Koutsarnakis C, Liakos F, Liouta E, Themistoklis K, Sakas D, Stranjalis G. The cerebral isthmus: fiber tract anatomy, functional significance, and surgical considerations. J Neurosurg 2015; 124:450-62. [PMID: 26361277 DOI: 10.3171/2015.3.jns142680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The cerebral isthmus is the white matter area located between the periinsular sulcus and the lateral ventricle. Studies demonstrating the fiber tract and topographic anatomy of this entity are lacking in current neurosurgical literature. Hence, the authors' primary aim was to describe the microsurgical white matter anatomy of the cerebral isthmus by using the fiber dissection technique, and they discuss its functional significance. In addition, they sought to investigate its possible surgical utility in approaching lesions located in or adjacent to the lateral ventricle. METHODS This study was divided into 2 parts and included 30 formalin-fixed cerebral hemispheres, 5 of which were injected with colored silicone. In the first part, 15 uncolored specimens underwent the Klinger's procedure and were dissected in a lateromedial direction at the level of the superior, inferior, and anterior isthmuses, and 10 were used for coronal and axial cuts. In the second part, the injected specimens were used to investigate the surgical significance of the superior isthmus in accessing the frontal horn of the lateral ventricle. RESULTS The microsurgical anatomy of the anterior, superior, and inferior cerebral isthmuses was carefully studied and recorded both in terms of topographic and fiber tract anatomy. In addition, the potential role of the proximal part of the superior isthmus as an alternative safe surgical corridor to the anterior part of the lateral ventricle was investigated. CONCLUSIONS Using the fiber dissection technique along with coronal and axial cuts in cadaveric brain specimens remains a cornerstone in the acquisition of thorough anatomical knowledge of narrow white matter areas such as the cerebral isthmus. The surgical significance of the superior isthmus in approaching the frontal horn of the lateral ventricle is stressed, but further studies must be carried out to elucidate its role in ventricular surgery.
Collapse
Affiliation(s)
- Christos Koutsarnakis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Faidon Liakos
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Evangelia Liouta
- Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and
| | - Konstantinos Themistoklis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Damianos Sakas
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and
| | - George Stranjalis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and.,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
61
|
[Diffusion-weighted imaging and diffusion tensor imaging in preoperative diagnostics]. Radiologe 2015; 55:775-81. [PMID: 26293602 DOI: 10.1007/s00117-015-0005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The extent of anisotropy and the direction of diffusion of H protons characterize the tissue structure and qualitative and quantitative evaluation of the appropriate parameters provide inferences for the membrane permeability, axon thickness, integrity and connectivity. The technique of fiber tracking is implemented in the presurgical diagnostics for lesions in the brain to show the relationship of the lesion to the fiber system. The benefit of this technique for preoperative and intraoperative localization of the pyramidal tracts, the primary motor areas, the optic radiation and the speech regions could be confirmed. In focal gliomas the fibers are often displaced to the edge of the tumor; however, in diffusely growing tumors the fiber system is infiltrated by tumor cells. In high-grade gliomas destruction of the fibers often occurs. Limitations are always present in brain regions where several fiber systems cross in different directions, such as the centrum semiovale. Appropriate neuroanatomical knowledge must be present in order to be able to immediately recognize such possible deviant pathways of the fiber tracking.
Collapse
|
62
|
Koutsarnakis C, Liakos F, Kalyvas AV, Sakas DE, Stranjalis G. A Laboratory Manual for Stepwise Cerebral White Matter Fiber Dissection. World Neurosurg 2015; 84:483-93. [DOI: 10.1016/j.wneu.2015.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/29/2022]
|
63
|
Chau A, Salazar AM, Krueger F, Cristofori I, Grafman J. The effect of claustrum lesions on human consciousness and recovery of function. Conscious Cogn 2015; 36:256-64. [PMID: 26186439 DOI: 10.1016/j.concog.2015.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
Abstract
Crick and Koch proposed that the claustrum plays a crucial role in consciousness. Their proposal was based on the structure and connectivity of the claustrum that suggested it had a role in coordinating a set of diverse brain functions. Given the few human studies investigating this claim, we decided to study the effects of claustrum lesions on consciousness in 171 combat veterans with penetrating traumatic brain injuries. Additionally, we studied the effects of claustrum lesions and loss of consciousness on long-term cognitive abilities. Claustrum damage was associated with the duration, but not frequency, of loss of consciousness, indicating that the claustrum may have an important role in regaining, but not maintaining, consciousness. Total brain volume loss, but not claustrum lesions, was associated with long-term recovery of neurobehavioral functions. Our findings constrain the current understanding of the neurobehavioral functions of the claustrum and its role in maintaining and regaining consciousness.
Collapse
Affiliation(s)
- Aileen Chau
- Cognitive Neuroscience Laboratory, Brain Injury Research, Rehabilitation Institute of Chicago, IL, USA.
| | | | - Frank Krueger
- Molecular Neuroscience Department, George Mason University, VA, USA; Department of Psychology, George Mason University, VA, USA.
| | - Irene Cristofori
- Cognitive Neuroscience Laboratory, Brain Injury Research, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, USA.
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
64
|
Ribas EC, Yagmurlu K, Wen HT, Rhoton AL. Microsurgical anatomy of the inferior limiting insular sulcus and the temporal stem. J Neurosurg 2015; 122:1263-73. [DOI: 10.3171/2014.10.jns141194] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The purpose of this study was to describe the location of each white matter pathway in the area between the inferior limiting insular sulcus (ILS) and temporal horn that may be crossed in approaches through the temporal stem to the medial temporal lobe.
METHODS
The fiber tracts in 14 adult cadaveric cerebral hemispheres were examined using the Klingler technique. The fiber dissections were completed in a stepwise manner, identifying each white matter pathway in different planes and describing its position in relation to the anterior end of the ILS.
RESULTS
The short-association fibers from the extreme capsule, which continue toward the operculae, are the most superficial subcortical layer deep to the ILS. The external capsule fibers are found deeper at an intermediate layer and are formed by the uncinate fasciculus, inferior frontooccipital fasciculus, and claustrocortical fibers in a sequential anteroposterior disposition. The anterior commissure forms the next deeper layer, and the optic radiations in the sublenticular part of the internal capsule represent the deepest layer. The uncinate fasciculus is found deep to the anterior third of the ILS, whereas the inferior frontooccipital fasciculus and optic radiations are found superficial and deep, respectively, at the posterior two-thirds of this length.
CONCLUSIONS
The authors' findings suggest that in the transsylvian approach, a 6-mm incision beginning just posterior to the limen insula through the ILS will cross the uncinate fasciculus but not the inferior frontooccipital fasciculus or optic radiations, but that longer incisions carry a risk to language and visual functions.
Collapse
Affiliation(s)
- Eduardo Carvalhal Ribas
- 1Department of Neurosurgery, University of Florida, Gainesville, Florida; and
- 2Division of Neurosurgery, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Kaan Yagmurlu
- 1Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| | - Hung Tzu Wen
- 2Division of Neurosurgery, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Albert L. Rhoton
- 1Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| |
Collapse
|
65
|
Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 2015; 221:2075-92. [PMID: 25782434 DOI: 10.1007/s00429-015-1028-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
The subcomponents of the human superior longitudinal fasciculus (SLF) are disputed. The objective of this study was to investigate the segments, connectivity and asymmetry of the SLF. We performed high angular diffusion spectrum imaging (DSI) analysis on ten healthy adults. We also conducted fiber tracking on a 30-subject DSI template (CMU-30) and 488-subject template from the Human Connectome Project (HCP-488). In addition, five normal brains obtained at autopsy were microdissected. Based on tractography and microdissection results, we show that the human SLF differs significantly from that of monkey. The fibers corresponding to SLF-I found in 6 out of 20 hemispheres proved to be part of the cingulum fiber system in all cases and confirmed on both DSI and HCP-488 template. The most common patterns of connectivity bilaterally were as follows: from angular gyrus to caudal middle frontal gyrus and dorsal precentral gyrus representing SLF-II (or dorsal SLF), and from supramarginal gyrus to ventral precentral gyrus and pars opercularis to form SLF-III (or ventral SLF). Some connectivity features were, however, clearly asymmetric. Thus, we identified a strong asymmetry of the dorsal SLF (SLF-II), where the connectivity between the supramarginal gyrus with the dorsal precentral gyrus and the caudal middle frontal gyrus was only present in the left hemisphere. Contrarily, the ventral SLF (SLF-III) showed fairly constant connectivity with pars triangularis only in the right hemisphere. The results provide a novel neuroanatomy of the SLF that may help to better understand its functional role in the human brain.
Collapse
|
66
|
Torgerson CM, Irimia A, Goh SYM, Van Horn JD. The DTI connectivity of the human claustrum. Hum Brain Mapp 2015; 36:827-38. [PMID: 25339630 PMCID: PMC4324054 DOI: 10.1002/hbm.22667] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023] Open
Abstract
The origin, structure, and function of the claustrum, as well as its role in neural computation, have remained a mystery since its discovery in the 17th century. Assessing the in vivo connectivity of the claustrum may bring forth useful insights with relevance to model the overall functionality of the claustrum itself. Using structural and diffusion tensor neuroimaging in N = 100 healthy subjects, we found that the claustrum has the highest connectivity in the brain by regional volume. Network theoretical analyses revealed that (a) the claustrum is a primary contributor to global brain network architecture, and that (b) significant connectivity dependencies exist between the claustrum, frontal lobe, and cingulate regions. These results illustrate that the claustrum is ideally located within the human central nervous system (CNS) connectome to serve as the putative "gate keeper" of neural information for consciousness awareness. Our findings support and underscore prior theoretical contributions about the involvement of the claustrum in higher cognitive function and its relevance in devastating neurological disease.
Collapse
Affiliation(s)
- Carinna M. Torgerson
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| | - Andrei Irimia
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| | - S. Y. Matthew Goh
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| | - John Darrell Van Horn
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
67
|
Akakin A, Yılmaz B, Akakin D, Dagbasi N, Kilic T. Three dimensional anatomical microdissection of rat brain using fiber dissection technique. J ANAT SOC INDIA 2014. [DOI: 10.1016/j.jasi.2014.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
68
|
Torgerson CM, Van Horn JD. A case study in connectomics: the history, mapping, and connectivity of the claustrum. Front Neuroinform 2014; 8:83. [PMID: 25426062 PMCID: PMC4227511 DOI: 10.3389/fninf.2014.00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023] Open
Abstract
The claustrum seems to have been waiting for the science of connectomics. Due to its tiny size, the structure has remained remarkably difficult to study until modern technological and mathematical advancements like graph theory, connectomics, diffusion tensor imaging, HARDI, and excitotoxic lesioning. That does not mean, however, that early methods allowed researchers to assess micro-connectomics. In fact, the claustrum is such an enigma that the only things known for certain about it are its histology, and that it is extraordinarily well connected. In this literature review, we provide background details on the claustrum and the history of its study in the human and in other animal species. By providing an explanation of the neuroimaging and histology methods have been undertaken to study the claustrum thus far—and the conclusions these studies have drawn—we illustrate this example of how the shift from micro-connectomics to macro-connectomics advances the field of neuroscience and improves our capacity to understand the brain.
Collapse
Affiliation(s)
- Carinna M Torgerson
- Department of Neurology, Laboratory of Neuro Imaging, Institute of Neuroimaging and Informatics, University of Southern California Los Angeles, CA, USA
| | - John D Van Horn
- Department of Neurology, Laboratory of Neuro Imaging, Institute of Neuroimaging and Informatics, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
69
|
Bucheli C, Mato D, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A, Martino J. Fascículos asociativos ínsulo-operculares: revisión de su anatomía y de las implicaciones para el abordaje transopercular a la ínsula. Neurocirugia (Astur) 2014; 25:268-74. [DOI: 10.1016/j.neucir.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
|
70
|
Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2286-2297. [PMID: 25127851 DOI: 10.1016/j.bbadis.2014.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022]
Abstract
Diffusion MRI enabled in vivo microstructural imaging of the fiber tracts in the brain resulting in its application in a wide range of settings, including in neurological and neurosurgical disorders. Conventional approaches such as diffusion tensor imaging (DTI) have been shown to have limited applications due to the crossing fiber problem and the susceptibility of their quantitative indices to partial volume effects. To overcome these limitations, the recent focus has shifted to the advanced acquisition methods and their related analytical approaches. Advanced white matter imaging techniques provide superior qualitative data in terms of demonstration of multiple crossing fibers in their spatial orientation in a three dimensional manner in the brain. In this review paper, we discuss the advancements in diffusion MRI and introduce their roles. Using examples, we demonstrate the role of advanced diffusion MRI-based fiber tracking in neuroanatomical studies. Results from its preliminary application in the evaluation of intracranial space occupying lesions, including with respect to future directions for prognostication, are also presented. Building upon the previous DTI studies assessing white matter disease in Huntington's disease and Amyotrophic lateral sclerosis; we also discuss approaches which have led to encouraging preliminary results towards developing an imaging biomarker for these conditions.
Collapse
|
71
|
Remedios R, Logothetis NK, Kayser C. A role of the claustrum in auditory scene analysis by reflecting sensory change. Front Syst Neurosci 2014; 8:44. [PMID: 24772069 PMCID: PMC3983479 DOI: 10.3389/fnsys.2014.00044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/11/2014] [Indexed: 01/01/2023] Open
Abstract
The biological function of the claustrum remains speculative, despite many years of research. On the basis of its widespread connections it is often hypothesized that the claustrum may have an integrative function mainly reflecting objects rather than the details of sensory stimuli. Given the absence of a clear demonstration of any sensory integration in claustral neurons, however, we propose an alternative, data-driven, hypothesis: namely that the claustrum detects the occurrence of novel or salient sensory events. The detection of new events is critical for behavior and survival, as suddenly appearing objects may require rapid and coordinated reactions. Sounds are of particular relevance in this regard, and our conclusions are based on the analysis of neurons in the auditory zone of the primate claustrum. Specifically, we studied the responses to natural sounds, their preference to various sound categories, and to changes in the auditory scene. In a test for sound-category preference claustral neurons responded to but displayed a clear lack of selectivity between monkey vocalizations, other animal vocalizations or environmental sounds (Esnd). Claustral neurons were however able to detect target sounds embedded in a noisy background and their responses scaled with target signal to noise ratio (SNR). The single trial responses of individual neurons suggest that these neurons detected and reflected the occurrence of a change in the auditory scene. Given its widespread connectivity with sensory, motor and limbic structures the claustrum could play the essential role of identifying the occurrence of important sensory changes and notifying other brain areas-hence contributing to sensory awareness.
Collapse
Affiliation(s)
- Ryan Remedios
- Max Planck Institute for Biological Cybernetics Tübingen, Germany ; Division of Biology,California Institute of Technology Pasadena, CA, USA
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics Tübingen, Germany ; Division of Imaging Science and Biomedical Engineering, University of Manchester Manchester, UK
| | - Christoph Kayser
- Max Planck Institute for Biological Cybernetics Tübingen, Germany ; Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| |
Collapse
|
72
|
Fernández-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstynen T, Yeh FC. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 2014; 220:1665-80. [PMID: 24633827 DOI: 10.1007/s00429-014-0751-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Abstract
The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.
Collapse
Affiliation(s)
- Juan C Fernández-Miranda
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St, Suite B-400, Pittsburgh, PA, 15213, USA,
| | | | | | | | | | | |
Collapse
|
73
|
Monnig MA, Thayer RE, Caprihan A, Claus ED, Yeo RA, Calhoun VD, Hutchison KE. White matter integrity is associated with alcohol cue reactivity in heavy drinkers. Brain Behav 2014; 4:158-70. [PMID: 24683509 PMCID: PMC3967532 DOI: 10.1002/brb3.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/17/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Neuroimaging studies have shown that white matter damage accompanies excessive alcohol use, but the functional correlates of alcohol-related white matter disruption remain unknown. This study applied tract-based spatial statistics (TBSS) to diffusion tensor imaging (DTI) data from 332 heavy drinkers (mean age = 31.2 ± 9.4; 31% female) to obtain averaged fractional anisotropy (FA) values of 18 white matter tracts. Statistical analyses examined correlations of FA values with blood-oxygenation-level-dependent (BOLD) response to an alcohol taste cue, measured with functional magnetic resonance imaging (fMRI). FA values of nine white matter tracts (anterior corona radiata, body of corpus callosum, cingulate gyrus, external capsule, fornix, inferior frontooccipital fasciculus, posterior corona radiata, retrolenticular limb of internal capsule, and superior longitudinal fasciculus) were significantly, negatively correlated with BOLD activation in medial frontal gyrus, parahippocampal gyrus, fusiform gyrus, cingulum, thalamus, caudate, putamen, insula, and cerebellum. The inverse relation between white matter integrity and functional activation during the alcohol taste cue provides support for the hypothesis that lower white matter integrity in frontoparietal and corticolimbic networks is a factor in loss of control over alcohol consumption.
Collapse
Affiliation(s)
- Mollie A Monnig
- Mind Research Network Albuquerque, 87106, New Mexico ; University of New Mexico Albuquerque, 87106, New Mexico
| | | | | | - Eric D Claus
- Mind Research Network Albuquerque, 87106, New Mexico ; University of New Mexico Albuquerque, 87106, New Mexico
| | - Ronald A Yeo
- Mind Research Network Albuquerque, 87106, New Mexico ; University of New Mexico Albuquerque, 87106, New Mexico
| | - Vince D Calhoun
- Mind Research Network Albuquerque, 87106, New Mexico ; University of New Mexico Albuquerque, 87106, New Mexico
| | | |
Collapse
|
74
|
Patzke N, Innocenti GM, Manger PR. The claustrum of the ferret: afferent and efferent connections to lower and higher order visual cortical areas. Front Syst Neurosci 2014; 8:31. [PMID: 24616671 PMCID: PMC3937871 DOI: 10.3389/fnsys.2014.00031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/11/2014] [Indexed: 01/16/2023] Open
Abstract
The claustrum, a subcortical telencephalic structure, is known to be reciprocally interconnected to almost all cortical regions; however, a systematic analysis of claustrocortical connectivity with physiologically identified lower and higher order visual cortical areas has not been undertaken. In the current study we used biotinylated dextran amine to trace the connections of the ferret claustrum with lower (occipital areas 17, 18, 19 and 21) and higher (parietal and temporal areas posterior parietal caudal visual area (PPc), posterior parietal rostral visual area (PPr), 20a, 20b, anterior ectosylvian visual area (AEV)) order visual cortical areas. No connections between the claustrum and area 17 were observed. Occipital visual areas 18, 19 and 21 revealed a reciprocal connectivity mainly to the caudal part of the claustrum. After injection into parietal areas PPc and PPr labeled neurons and terminals were found throughout almost the entire rostrocaudal extent of the dorsal claustrum. Area 20b revealed reciprocal connections mainly to the caudal-ventral claustrum, although some labeled neurons and terminals were observed in the dorso-central claustrum. No projection from the claustrum to areas AEV and 20a could be observed, though projections from AEV and 20a to the claustrum were found. Only injections placed in areas PPr and AEV resulted in anterogradely labeled terminals in the contralateral claustrum. Our results suggest that lower order visual areas have clearly defined connectivity zones located in the caudal claustrum, whereas higher order visual areas, even if not sending and/or receiving projections from the entire claustrum, show a more widespread connectivity.
Collapse
Affiliation(s)
- Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, South Africa
| | - Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden ; Brain and Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, South Africa
| |
Collapse
|
75
|
Kucukyuruk B, Yagmurlu K, Tanriover N, Uzan M, Rhoton AL. Microsurgical Anatomy of the White Matter Tracts in Hemispherotomy. Oper Neurosurg (Hagerstown) 2014; 10 Suppl 2:305-24; discussion 324. [DOI: 10.1227/neu.0000000000000288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
BACKGROUND:
Hemispherotomy is a surgical procedure performed for refractory epileptic seizures due to wide hemispheric damage.
OBJECTIVE:
To describe the microanatomy of the white matter tracts transected in a hemispherotomy and the relationship of the surgical landmarks used during the intraventricular callosotomy.
METHODS:
The cortical and subcortical structures were examined in 32 hemispheres.
RESULTS:
Incision of the temporal stem along the inferior limiting sulcus crosses the insulo-opercular fibers, uncinate, inferior occipitofrontal and middle longitudinal fasciculi, anterior commissure, and optic and auditory radiations. The incision along the superior limiting sulcus transects insulo-opercular fibers and the genu and posterior limb of internal capsule. The incision along the anterior limiting sulcus crosses the insulo-opercular fibers, anterior limb of the internal capsule, anterior commissure, and the anterior thalamic bundle. The disconnection of the posterior part of the corpus callosum may be incomplete if the point at which the last cortical branch of the anterior cerebral artery (ACA) turns upward and disappears from the view through the intraventricular exposure is used as the landmark for estimating the posterior extent of the callosotomy. This ACA branch turns upward before reaching the posterior edge of the splenium in 85% of hemispheres. The falx, followed to the posterior edge of the splenium, is a more reliable landmark for completing the posterior part of an intraventricular callosotomy.
CONCLUSION:
The fiber tracts disconnected in hemispherotomy were reviewed. The falx is a more reliable guide than the ACA in completing the posterior part of the intraventricular callosotomy.
Collapse
Affiliation(s)
- Baris Kucukyuruk
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Kaan Yagmurlu
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Necmettin Tanriover
- Department of Neurosurgery, Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Mustafa Uzan
- Department of Neurosurgery, Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Albert L. Rhoton
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| |
Collapse
|
76
|
Arnts H, Kleinnijenhuis M, Kooloos JGM, Schepens-Franke AN, van Cappellen van Walsum AM. Combining fiber dissection, plastination, and tractography for neuroanatomical education: Revealing the cerebellar nuclei and their white matter connections. ANATOMICAL SCIENCES EDUCATION 2014; 7:47-55. [PMID: 23839938 DOI: 10.1002/ase.1385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
In recent years, there has been a growing interest in white matter anatomy of the human brain. With advances in brain imaging techniques, the significance of white matter integrity for brain function has been demonstrated in various neurological and psychiatric disorders. As the demand for interpretation of clinical and imaging data on white matter increases, the needs for white matter anatomy education are changing. Because cross-sectional images and formalin-fixed brain specimens are often insufficient in visualizing the complexity of three-dimensional (3D) white matter anatomy, obtaining a comprehensible conception of fiber tract morphology can be difficult. Fiber dissection is a technique that allows isolation of whole fiber pathways, revealing 3D structural and functional relationships of white matter in the human brain. In this study, we describe the use of fiber dissection in combination with plastination to obtain durable and easy to use 3D white matter specimens that do not require special care or conditions. The specimens can be used as a tool in teaching white matter anatomy and structural connectivity. We included four human brains and show a series of white matter specimens of both cerebrum and cerebellum focusing on the cerebellar nuclei and associated white matter tracts, as these are especially difficult to visualize in two-dimensional specimens and demonstrate preservation of detailed human anatomy. Finally, we describe how the integration of white matter specimens with radiological information of new brain imaging techniques such as diffusion tensor imaging tractography can be used in teaching modern neuroanatomy with emphasis on structural connectivity.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Neurosurgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
77
|
Alarcon C, de Notaris M, Palma K, Soria G, Weiss A, Kassam A, Prats-Galino A. Anatomic Study of the Central Core of the Cerebrum Correlating 7-T Magnetic Resonance Imaging and Fiber Dissection With the Aid of a Neuronavigation System. Oper Neurosurg (Hagerstown) 2013; 10 Suppl 2:294-304; discussion 304. [DOI: 10.1227/neu.0000000000000271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Different strategies have been used to study the fiber tract anatomy of the human brain in vivo and ex vivo. Nevertheless, the ideal method to study white matter anatomy has yet to be determined because it should integrate information obtained from multiple sources.
OBJECTIVE:
We developed an anatomic method in cadaveric specimens to study the central core of the cerebrum combining traditional white matter dissection with high-resolution 7-T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system.
METHODS:
Ten cerebral hemispheres were prepared using the traditional Klingler technique. Before dissection, a structural ultrahigh magnetic field 7-T MRI study was performed on each hemisphere specifically prepared with surface fiducials for neuronavigation. The dissection was then performed from the medial hemispheric surface using the classic white fiber dissection technique. During each step of the dissection, the correlation between the anatomic findings and the 7-T MRI was evaluated with the neuronavigation system.
RESULTS:
The anatomic study was divided in 2 stages: diencephalic and limbic. The diencephalic stage included epithalamic, thalamic, hypothalamic, and subthalamic components. The limbic stage consisted of extending the dissection to complete the Papez circuit. The detailed information given by the combination of both methods allowed us to identify and validate the position of fibers that may be difficult to appreciate and dissect (ie, the medial forebrain bundle).
CONCLUSION:
The correlation of high-definition 7-T MRI and the white matter dissection technique with neuronavigation significantly improves the understanding of the structural connections in complex areas of the human cerebrum.
Collapse
Affiliation(s)
- Carlos Alarcon
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Matteo de Notaris
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Kenneth Palma
- Experimental MRI 7T Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
- Department of Neurosurgery, University of Pisa, Pisa, Italy
| | - Alessandro Weiss
- Department of Neurosurgery, Division of Neurosurgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Amin Kassam
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
78
|
Axer H, Klingner CM, Prescher A. Fiber anatomy of dorsal and ventral language streams. BRAIN AND LANGUAGE 2013; 127:192-204. [PMID: 22632814 DOI: 10.1016/j.bandl.2012.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/05/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Recent advances in neuroimaging have led to new insights into the organization of language related networks. Increasing evidence supports the model of dorsal and ventral streams of information flow between language-related areas. Therefore, a review of the descriptions of language-related fiber anatomy in the human and monkey brain was performed. In addition, case studies of macroscopical fiber dissection and polarized light imaging (PLI) with special focus on the ventral stream were done. Several fiber structures can be identified to play a role in language, i.e. the arcuate fasciculus as a part of the superior longitudinal fasciculus, the middle longitudinal fasciculus, the inferior fronto-occipital fasciculus, and extreme and external capsules. Substantial differences between human and monkey fiber architecture have been identified. Despite inconsistencies based on different terminologies used, there can be no doubt that dorsal and ventral language streams have a clear correlation in the structure of white matter tracts.
Collapse
Affiliation(s)
- Hubertus Axer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | | | | |
Collapse
|
79
|
Milardi D, Bramanti P, Milazzo C, Finocchio G, Arrigo A, Santoro G, Trimarchi F, Quartarone A, Anastasi G, Gaeta M. Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography. Cereb Cortex 2013; 25:406-14. [PMID: 24014669 DOI: 10.1093/cercor/bht231] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The claustrum is a thin layer of gray matter that is at the center of an active scientific debate. Recently, Constrained Spherical Deconvolution (CSD) tractography has proved to be an extraordinary tool allowing to track white matter fibers from cortex to cortical and subcortical targets with subvoxel resolution. The aim of this study was to evaluate claustral connectivity in the human brain. Ten normal brains were analyzed by using the High Angular Resolution Diffusion Imaging CSD-based technique. Tractography revealed 4 groups of white matter fibers connecting the claustrum with the brain cortex: Anterior, posterior, superior, and lateral. The anterior and posterior cortico-claustral tracts connected the claustrum to prefrontal cortex and visual areas. The superior tract linked the claustrum with sensory-motor areas, while the lateral pathway connected the claustrum to the auditory cortex. In addition, we demonstrated a claustral medial pathway connecting the claustrum with the basal ganglia, specifically with caudate nucleus, putamen, and globus pallidus. An interesting and exciting new finding was the demonstration of a bilateral connection between claustrum and contralateral cortical areas and a well-represented interclaustral communication with interconnection bundles interspersed within the bulk of the trunk of the corpus callosum. The physiological and pathophysiological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Demetrio Milardi
- Department of Biomedical Sciences and Morphological and Functional Imaging, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Carmelo Milazzo
- Department of Biomedical Sciences and Morphological and Functional Imaging
| | | | - Alessandro Arrigo
- Department of Biomedical Sciences and Morphological and Functional Imaging
| | - Giuseppe Santoro
- Department of Biomedical Sciences and Morphological and Functional Imaging, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Fabio Trimarchi
- Department of Biomedical Sciences and Morphological and Functional Imaging, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Angelo Quartarone
- Department Electronic Engineering, Chemistry and Industrial Engineering, Department of Neurosciences, University of Messina, Messina, Italy and
| | - Giuseppe Anastasi
- Department of Biomedical Sciences and Morphological and Functional Imaging, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Michele Gaeta
- Department of Biomedical Sciences and Morphological and Functional Imaging, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
80
|
Poeppl TB, Langguth B, Laird AR, Eickhoff SB. The functional neuroanatomy of male psychosexual and physiosexual arousal: a quantitative meta-analysis. Hum Brain Mapp 2013; 35:1404-21. [PMID: 23674246 DOI: 10.1002/hbm.22262] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/28/2012] [Accepted: 01/03/2013] [Indexed: 01/14/2023] Open
Abstract
Reproductive behavior is mandatory for conservation of species and mediated by a state of sexual arousal (SA), involving both complex mental processes and bodily reactions. An early neurobehavioral model of SA proposes cognitive, emotional, motivational, and autonomic components. In a comprehensive quantitative meta-analysis on previous neuroimaging findings, we provide here evidence for distinct brain networks underlying psychosexual and physiosexual arousal. Psychosexual (i.e., mental sexual) arousal recruits brain areas crucial for cognitive evaluation, top-down modulation of attention and exteroceptive sensory processing, relevance detection and affective evaluation, as well as regions implicated in the representation of urges and in triggering autonomic processes. In contrast, physiosexual (i.e., physiological sexual) arousal is mediated by regions responsible for regulation and monitoring of initiated autonomic processes and emotions and for somatosensory processing. These circuits are interconnected by subcortical structures (putamen and claustrum) that provide exchange of sensorimotor information and crossmodal processing between and within the networks. Brain deactivations may imply attenuation of introspective processes and social cognition, but be necessary to release intrinsic inhibition of SA.
Collapse
Affiliation(s)
- Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
81
|
Grasby K, Talk A. The anterior claustrum and spatial reversal learning in rats. Brain Res 2013; 1499:43-52. [PMID: 23318254 DOI: 10.1016/j.brainres.2013.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
The claustrum is a small structure of poorly understood function situated subcortically in the basal forebrain. The fact that it is extensively and reciprocally connected with the cerebral cortex has led to suggestions that it is involved in coordination of cortical activity. In this study, we created excitotoxic lesions to the anterior claustrum of rats and tested performance on three tasks that involve neural processing in one or more frontal and limbic cortical structures. We tested reversal learning and spatial working memory in a water maze and tested latent inhibition using conditioned taste aversion. Lesioned rats were not impaired at acquiring the initial location of the platform in a water maze, but were impaired at acquiring a switched location in the reversal phase. The lesioned rats also exhibited an increased rate of perseverance errors compared to control rats during reversal. Lesioned rats were not impaired in the working memory task or latent inhibition. These results indicate that cell loss in the claustrum may lead to deficits in behavioral flexibility, and are consistent with theories of claustral function that suggest it may help coordinate information necessary for at least some cortical-dependent tasks.
Collapse
Affiliation(s)
- Katrina Grasby
- Discipline of Psychology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
82
|
Martino J, de Lucas EM, Ibáñez-Plágaro FJ, Valle-Folgueral JM, Vázquez-Barquero A. Foix-Chavany-Marie syndrome caused by a disconnection between the right pars opercularis of the inferior frontal gyrus and the supplementary motor area. J Neurosurg 2012; 117:844-50. [DOI: 10.3171/2012.7.jns12404] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Foix-Chavany-Marie syndrome (FCMS) is a rare type of suprabulbar palsy characterized by an automaticvoluntary dissociation of the orofacial musculature. Here, the authors report an original case of FCMS that occurred intraoperatively while resecting the pars opercularis of the inferior frontal gyrus.
This 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged.
This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient.
Collapse
Affiliation(s)
| | - Enrique Marco de Lucas
- 2Radiology, Hospital Universitario Marqués de Valdecilla and Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Cantabria; and
| | | | | | | |
Collapse
|
83
|
Pirone A, Cozzi B, Edelstein L, Peruffo A, Lenzi C, Quilici F, Antonini R, Castagna M. Topography of Gng2- and NetrinG2-expression suggests an insular origin of the human claustrum. PLoS One 2012; 7:e44745. [PMID: 22957104 PMCID: PMC3434180 DOI: 10.1371/journal.pone.0044745] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 08/06/2012] [Indexed: 01/01/2023] Open
Abstract
The claustrum has been described in the forebrain of all mammals studied so far. It has been suggested that the claustrum plays a role in the integration of multisensory information: however, its detailed structure and function remain enigmatic. The human claustrum is a thin, irregular, sheet of grey matter located between the inner surface of the insular cortex and the outer surface of the putamen. Recently, the G-protein gamma2 subunit (Gng2) was proposed as a specific claustrum marker in the rat, and used to better delineate its anatomical boundaries and connections. Additional claustral markers proposed in mammals include Netrin-G2 in the monkey and latexin in the cat. Here we report the expression and distribution of Gng2 and Netrin-G2 in human post-mortem samples of the claustrum and adjacent structures. Gng2 immunoreactivity was detected in the neuropil of the claustrum and of the insular cortex but not in the putamen. A faint labelling was present also in the external and extreme capsules. Double-labelling experiments indicate that Gng2 is also expressed in glial cells. Netrin-G2 labelling was seen in neuronal cell bodies throughout the claustrum and the insular cortex but not in the medially adjacent putamen. No latexin immunoreactive element was detected in the claustrum or adjacent structures. Our results confirm that both the Gng2 and the Netrin-G2 proteins show an affinity to the claustrum and related formations also in the human brain. The presence of Gng2 and Netrin-G2 immunoreactive elements in the insular cortex, but not in the putamen, suggests a possible common ontogeny of the claustrum and insula.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Physiological Science, University of Pisa, Pisa, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
- * E-mail:
| | - Larry Edelstein
- P.O. Box 2316, Del Mar, California, United States of America
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Carla Lenzi
- Department of Physiological Science, University of Pisa, Pisa, Italy
| | | | - Rita Antonini
- Department of Surgery, University of Pisa, Pisa, Italy
| | | |
Collapse
|
84
|
Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. ACTA ACUST UNITED AC 2012; 23:2347-56. [PMID: 22875865 DOI: 10.1093/cercor/bhs225] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The middle longitudinal fascicle (MdLF) was originally described in the monkey brain as a pathway that interconnects the superior temporal and angular gyri. Only recently have diffusion tensor imaging studies provided some evidence of its existence in humans, with a connectivity pattern similar to that in monkeys and a potential role in the language system. In this study, we combine high-angular-resolution fiber tractography and fiber microdissection techniques to determine the trajectory, cortical connectivity, and a quantitative analysis of the MdLF. Here, we analyze diffusion spectrum imaging (DSI) studies in 6 subjects (subject-specific approach) and in a template of 90 DSI studies (NTU-90 Atlas). Our tractography and microdissection results show that the human MdLF differs significantly from the monkey. Indeed, the human MdLF interconnects the superior temporal gyrus with the superior parietal lobule and parietooccipital region, and has only minor connections with the angular gyrus. On the basis of the roles of these interconnected cortical regions, we hypothesize that, rather than a language-related tract, the MdLF may contribute to the dorsal "where" pathway of the auditory system.
Collapse
Affiliation(s)
- Yibao Wang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
85
|
Park S, Tyszka JM, Allman JM. The Claustrum and Insula in Microcebus murinus: A High Resolution Diffusion Imaging Study. Front Neuroanat 2012; 6:21. [PMID: 22707933 PMCID: PMC3374366 DOI: 10.3389/fnana.2012.00021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/22/2012] [Indexed: 01/25/2023] Open
Abstract
The claustrum and the insula are closely juxtaposed in the brain of the prosimian primate, the gray mouse lemur (Microcebus murinus). Whether the claustrum has closer affinities with the cortex or the striatum has been debated for many decades. Our observation of histological sections from primate brains and genomic data in the mouse suggest former. Given this, the present study compares the connections of the two structures in Microcebus using high angular resolution diffusion imaging (HARDI, with 72 directions), with a very small voxel size (90 micra), and probabilistic fiber tractography. High angular and spatial resolution diffusion imaging is non-destructive, requires no surgical interventions, and the connection of each and every voxel can be mapped, whereas in conventional tract tracer studies only a few specific injection sites can be assayed. Our data indicate that despite the high genetic and spatial affinities between the two structures, their connectivity patterns are very different. The claustrum connects with many cortical areas and the olfactory bulb; its strongest probabilistic connections are with the entorhinal cortex, suggesting that the claustrum may have a role in spatial memory and navigation. By contrast, the insula connects with many subcortical areas, including the brainstem and thalamic structures involved in taste and visceral feelings. Overall, the connections of the Microcebus claustrum and insula are similar to those of the rodents, cat, macaque, and human, validating our results. The insula in the Microcebus connects with the dorsolateral frontal cortex in contrast to the mouse insula, which has stronger connections with the ventromedial frontal lobe, yet this is consistent with the dorsolateral expansion of the frontal cortex in primates. In addition to revealing the connectivity patterns of the Microcebus brain, our study demonstrates that HARDI, at high resolutions, can be a valuable tool for mapping fiber pathways for multiple sites in fixed brains in rare and difficult-to-obtain species.
Collapse
Affiliation(s)
- Soyoung Park
- Computation and Neural Systems, California Institute of Technology Pasadena, CA, USA
| | | | | |
Collapse
|
86
|
Microsurgical anatomy of the temporal lobe and its implications on temporal lobe epilepsy surgery. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:769825. [PMID: 22957242 PMCID: PMC3420566 DOI: 10.1155/2012/769825] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/17/2022]
Abstract
Objective. We review the neuroanatomical aspects of the temporal lobe related to the temporal lobe epilepsy. The neuronal, the ventricular, and the vascular structures are demonstrated. Methods. The previous articles published from the laboratory of the senior author are reviewed. Results. The temporal lobe has four surfaces. The medial surface has a complicated microanatomy showing close relation to the intraventricular structures, such as the amygdala or the hippocampus. There are many white matter bundles in the temporal lobe showing relation to the extra- and intraventricular structures. The surgical approaches commonly performed to treat temporal lobe epilepsy are discussed under the light of these data. Conclusion. A thorough knowledge of the microanatomy is necessary in cortical, subcortical, and intraventricular structures of the temporal lobe to achieve better results.
Collapse
|
87
|
Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, Wang Y, Mintz A, Boada F, Schneider W, Friedlander R. High-Definition Fiber Tractography of the Human Brain. Neurosurgery 2012; 71:430-53. [PMID: 22513841 DOI: 10.1227/neu.0b013e3182592faa] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
High-definition fiber tracking (HDFT) is a novel combination of processing, reconstruction, and tractography methods that can track white matter fibers from cortex, through complex fiber crossings, to cortical and subcortical targets with subvoxel resolution.
OBJECTIVE:
To perform neuroanatomical validation of HDFT and to investigate its neurosurgical applications.
METHODS:
Six neurologically healthy adults and 36 patients with brain lesions were studied. Diffusion spectrum imaging data were reconstructed with a Generalized Q-Ball Imaging approach. Fiber dissection studies were performed in 20 human brains, and selected dissection results were compared with tractography.
RESULTS:
HDFT provides accurate replication of known neuroanatomical features such as the gyral and sulcal folding patterns, the characteristic shape of the claustrum, the segmentation of the thalamic nuclei, the decussation of the superior cerebellar peduncle, the multiple fiber crossing at the centrum semiovale, the complex angulation of the optic radiations, the terminal arborization of the arcuate tract, and the cortical segmentation of the dorsal Broca area. From a clinical perspective, we show that HDFT provides accurate structural connectivity studies in patients with intracerebral lesions, allowing qualitative and quantitative white matter damage assessment, aiding in understanding lesional patterns of white matter structural injury, and facilitating innovative neurosurgical applications. High-grade gliomas produce significant disruption of fibers, and low-grade gliomas cause fiber displacement. Cavernomas cause both displacement and disruption of fibers.
CONCLUSION:
Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain. Further studies to validate the clinical findings are needed.
Collapse
Affiliation(s)
| | - Sudhir Pathak
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Kevin Jarbo
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Timothy Verstynen
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fang-Cheng Yeh
- Learning and Research Development Center, Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Fernando Boada
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania
| | - Walter Schneider
- Department of Neurological Surgery
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
88
|
Lopez C, Blanke O, Mast FW. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 2012; 212:159-79. [PMID: 22516007 DOI: 10.1016/j.neuroscience.2012.03.028] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.
Collapse
Affiliation(s)
- C Lopez
- Department of Psychology, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
89
|
Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 2012; 218:105-21. [PMID: 22422148 DOI: 10.1007/s00429-012-0386-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 01/18/2012] [Indexed: 10/28/2022]
Abstract
The anatomy of the perisylvian component of the superior longitudinal fasciculus (SLF) has recently been reviewed by numerous diffusion tensor imaging tractography (DTI) studies. However, little is known about the exact cortical terminations of this tract. The aim of the present work is to isolate the different subcomponents of this tract with fiber dissection and DTI tractography, and to identify the exact cortical connections. Twelve postmortem human hemispheres (6 right and 6 left) were dissected using the cortex-sparing fiber dissection. In addition, three healthy brains were analyzed using DTI-based tractography software. The different components of the perisylvian SLF were isolated and the fibers were followed until the cortical terminations. Three segments of the perisylvian SLF were identified: (1) anterior segment, connecting the supramarginal gyrus and superior temporal gyrus with the precentral gyrus, (2) posterior segment, connecting the posterior portion of the middle temporal gyrus with the angular gyrus, and (3) long segment of the arcuate fasciculus that connects the middle and inferior temporal gyri with the precentral gyrus and posterior portion of the inferior and middle frontal gyri. In the present study, three different components of the perisylvian SLF were identified. For the first time, our dissections revealed that each component was connected to a specific cortical area within the frontal, parietal and temporal lobes. By accurately depicting not only the trajectory but also cortical connections of this bundle, it is possible to develop new insights into the putative functional role of this tract.
Collapse
|
90
|
Wang P, Wu MC, Chen SJ, Xu XP, Yang Y, Cai J. Microsurgery Resection of Intrinsic Insular Tumors via Transsylvian Surgical Approach in 12 Cases. Cancer Biol Med 2012; 9:44-7. [PMID: 23691454 PMCID: PMC3643643 DOI: 10.3969/j.issn.2095-3941.2012.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/14/2012] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the clinical characteristics, operative methods, and diffusion tensor imaging (DTI) in the resection of intrinsic insular gliomas via transsylvian approach. METHODS From June 2008 to June 2010, 12 patients with intrinsic insular gliomas were treated via transsylvian microsurgical approach, with preoperative magnetic resonance imaging diffusion tensor imaging (MR DTI) evaluation. The data of these patients were retrospectively analyzed. RESULTS All patients had astrocytoma, including 8 patients of Grades I to II, 2 patients of Grades III to IV, and 2 patients of mixed glial tumors. The insular tumors were completely removed in 9 patients, whereas they were only partially removed from 3 patients. No death was related to the operations. Two patients had transient aphasia, 2 experienced worsened hemiplegia on opposite sides of their bodies, and 2 had mild hemiplegia and language function disturbance. CONCLUSIONS Most of the insular gliomas are of low grade. By evaluating the damage of the corticospinal tract through DTI and using ultrasonography to locate the tumors during operation, microsurgery treatment removes the lesions as much as possible, protects the surrounding areas, reduces the mobility rate, and improves the postoperative quality of life.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Neuroscience Center, Nanjing Medical University, Affiliated Wuxi No.2 Hospital, Wuxi 214002, China
| | | | | | | | | | | |
Collapse
|
91
|
Agrawal A, Kapfhammer JP, Kress A, Wichers H, Deep A, Feindel W, Sonntag VKH, Spetzler RF, Preul MC. Josef Klingler's models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery 2012; 69:238-52; discussion 252-4. [PMID: 21368687 DOI: 10.1227/neu.0b013e318214ab79] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the 1930s, white matter tracts began to assume relevance for neurosurgery, especially after Cajal's work. In many reviews of white matter neurobiology, the seminal contributions of Josef Klingler (1888-1963) and their neurological applications have been overlooked. In 1934 at the University of Basel under Eugen Ludwig, Klingler developed a new method of dissection based on a freezing technique for brain tissue that eloquently revealed the white matter tracts. Klingler worked with anatomists, surgeons, and other scientists, and his models and dissections of white matter tracts remain arguably the most elegant ever created. He stressed 3-dimensional anatomic relationships and laid the foundation for defining mesial temporal, limbic, insular, and thalamic fiber and functional relationships and contributed to the potential of stereotactic neurosurgery. Around 1947, Klingler was part of a Swiss-German group that independently performed the first stereotactic thalamotomies, basing their targeting and logic on Klingler's white matter studies, describing various applications of stereotaxy and showing Klingler's work integrated into a craniocerebral topographic system for targeting with external localization of eloquent brain structures and stimulation of deep thalamic nuclei. Klingler's work has received renewed interest because it is applicable for correlating the results of the fiber-mapping paradigms from diffusion tensor imaging to actual anatomic evidence. Although others have described white matter tracts, none have had as much practical impact on neuroscience as Klinger's work. More importantly, Josef Klingler was an encouraging mentor, influencing neurosurgeons, neuroscientists, and brain imaging for more than three quarters of a century.
Collapse
Affiliation(s)
- Abhishek Agrawal
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Prats-Galino A, Soria G, Notaris MD, Puig J, Pedraza S. Functional anatomy of subcortical circuits issuing from or integrating at the human brainstem. Clin Neurophysiol 2012; 123:4-12. [DOI: 10.1016/j.clinph.2011.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/08/2011] [Accepted: 06/11/2011] [Indexed: 11/16/2022]
|
93
|
Artifact quantification and tractography from 3T MRI after placement of aneurysm clips in subarachnoid hemorrhage patients. BMC Med Imaging 2011; 11:19. [PMID: 21970560 PMCID: PMC3198881 DOI: 10.1186/1471-2342-11-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/04/2011] [Indexed: 12/29/2022] Open
Abstract
Background The application of advanced 3T MRI imaging techniques to study recovery after subarachnoid hemorrhage (SAH) is complicated by the presence of image artifacts produced by implanted aneurysm clips. To characterize the effect of these artifacts on image quality, we sought to: 1) quantify extent of image artifact in SAH patients with implanted aneurysm clips across a range of MR sequences typically used in studies of volumetry, blood oxygen level dependent signal change (BOLD-fMRI), and diffusion-weighted imaging (DW-MRI) and 2) to explore the ability to reconstruct white matter pathways in these patients. Methods T1- and T2-weighted structural, BOLD-fMRI, and DW-MRI scans were acquired at 3T in two patients with titanium alloy clips in ACOM and left ACA respectively. Intensity-based planimetric contouring was performed on aligned image volumes to define each artifact. Artifact volumes were quantified by artifact/clip length and artifact/brain volume ratios and analyzed by two-way (scan-by-rater) ANOVAs. Tractography pathways were reconstructed from DW-MRI at varying distances from the artifacts using deterministic methods. Results Artifact volume varied by MR sequence for length (p = 0.007) and volume (p < 0.001) ratios: it was smallest for structural images, larger for DW-MRI acquisitions, and largest on fMRI images. Inter-rater reliability was high (r = 0.9626, p < 0.0001), and reconstruction of white matter connectivity characteristics increased with distance from the artifact border. In both patients, reconstructed white matter pathways of the uncinate fasciculus and inferior fronto-occipital fasciculus were clearly visible within 2 mm of the artifact border. Conclusions Advanced 3T MR can successfully image brain tissue around implanted titanium aneurysm clips at different spatial ranges depending on sequence type. White matter pathways near clip artifacts can be reconstructed and visualized. These findings provide a reference for designing functional and structural neuroimaging studies of recovery in aSAH patients after clip placement.
Collapse
|
94
|
Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vázquez-Barquero A, García-Porrero JA, Duffau H. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat 2011. [DOI: 10.1111/j.1469-7580.2011.01414.x (2011)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
95
|
Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vázquez-Barquero A, García-Porrero JA, Duffau H. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat 2011; 219:531-41. [PMID: 21767263 DOI: 10.1111/j.1469-7580.2011.01414.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. 'cortex-sparing fiber dissection'. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex-sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)-based tractography software. DTI fiber tract reconstructions were compared with cortex-sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo-basal cortex. The UF crosses the limen insulae and connects the orbito-frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex-sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research.
Collapse
Affiliation(s)
- Juan Martino
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla, Cantabria, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Cerliani L, Thomas RM, Jbabdi S, Siero JCW, Nanetti L, Crippa A, Gazzola V, D'Arceuil H, Keysers C. Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Hum Brain Mapp 2011; 33:2005-34. [PMID: 21761507 PMCID: PMC3443376 DOI: 10.1002/hbm.21338] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white‐matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonardo Cerliani
- BCN NeuroImaging Center, University of Groningen, A. Deusinglaan, 2-9713AW Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lopez-Barroso D, de Diego-Balaguer R, Cunillera T, Camara E, Münte TF, Rodriguez-Fornells A. Language learning under working memory constraints correlates with microstructural differences in the ventral language pathway. ACTA ACUST UNITED AC 2011; 21:2742-50. [PMID: 21527790 DOI: 10.1093/cercor/bhr064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The present study combined behavioral measures and diffusion tensor imaging to investigate the neuroanatomical basis of language learning in relation to phonological working memory (WM). Participants were exposed to simplified artificial languages under WM constraints. The results underscore the role of the rehearsal subcomponent of WM in successful speech segmentation and rule learning. Moreover, when rehearsal was blocked task performance was correlated to the white matter microstructure of the left ventral pathway connecting frontal and temporal language-related cortical areas through the extreme/external capsule. This ventral pathway may therefore play an important additional role in language learning when the main dorsal pathway-dependent rehearsal mechanisms are not available.
Collapse
Affiliation(s)
- Diana Lopez-Barroso
- Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, 08097 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
98
|
Fernandez-Miranda JC, Engh JA, Pathak SK, Madhok R, Boada FE, Schneider W, Kassam AB. High-definition fiber tracking guidance for intraparenchymal endoscopic port surgery. J Neurosurg 2010; 113:990-9. [DOI: 10.3171/2009.10.jns09933] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors have applied high-definition fiber tracking (HDFT) to the resection of an intraparenchymal dermoid cyst by using a minimally invasive endoscopic port. The lesion was located within the mesial frontal lobe, septal area, hypothalamus, and suprasellar recess. Using high-dimensional (256 directions) diffusion imaging, more than 250,000 fiber tracts were imaged before and after surgery. Trajectory planning using HDFT in a computer model was used to facilitate cannulation of the cyst with the endoscopic port. Analysis of the proposed initial surgical route was overlaid onto the fiber tracts and was predicted to produce substantial disruption to prefrontal projection fibers (anterior limb of the internal capsule) and the cingulum. Adjustment of the cannulation entry point 1 cm medially was predicted to cross the corpus callosum instead of the anterior limb of the internal capsule or the cingulum. Following cyst resection performed using endoscopic port surgery, postoperative imaging demonstrated accurate cannulation of the lesion, with improved quantitative signal from both the anterior limb of the internal capsule and the cingulum. The observed fiber preservation from the cingulum and the anterior limb of the internal capsule, with minor injury to the corpus callosum, was in close agreement with preoperative trajectory modeling. Comparison of pre- and postoperative HDFT data facilitated quantification of the benefits and costs of the surgical trajectory. Future studies will help to determine whether HDFT combined with endoscopic port surgery facilitates anatomical and functional preservation in such challenging cases.
Collapse
Affiliation(s)
| | - Johnathan A. Engh
- 1Department of Neurological Surgery, University of Pittsburgh Medical Center; and
| | | | - Ricky Madhok
- 1Department of Neurological Surgery, University of Pittsburgh Medical Center; and
| | | | | | - Amin B. Kassam
- 1Department of Neurological Surgery, University of Pittsburgh Medical Center; and
| |
Collapse
|
99
|
Abstract
The claustrum is a subcortical structure reciprocally connected with most areas of neocortex. This strategic location suggests an integrative role of the claustrum across different sensory modalities. However, our knowledge of the synaptic relationship between the neocortex and the claustrum is basic. In this study, we address this question through a structural investigation of the claustral projection to the ipsilateral primary visual cortex of the cat. Light microscopic reconstructions of axons from the entire thickness of cortex showed a very sparse innervation of the entire cortical depth, with most synaptic boutons in layers 2/3 and 6. Axons bearing numerous boutons terminaux and boutons en passant branched in these laminae. The sparse innervation did not seem to be compensated by particularly large synapses, given that the postsynaptic densities in the superficial layers are of comparable sizes (0.1 μm(2)) to other cortical synapses. All claustral synapses were asymmetric and in most cases targeted spines (87% in layer 4, 94% in layers 2/3 and 97% in layer 6). The pattern of innervation together with the known physiology of this projection suggests that the claustrum has a modulatory effect on visual cortex.
Collapse
|
100
|
Abstract
The claustrum receives afferent inputs from multiple sensory-related brain areas, prompting speculation about a role in integrating information across sensory modalities. Here we directly test this hypothesis by probing neurons in the primate claustrum for functional characteristics of multisensory processing. To this end we recorded neuronal responses to naturalistic audio-visual stimuli from the claustra of alert monkeys. Our results reveal the existence of distinct claustral zones comprised of unimodal neurons associated with the auditory and visual modalities. In a visual zone within the ventral claustrum neurons responded to visual stimuli but not to sounds, whereas in an auditory zone located within the central claustrum neurons responded to sounds but not to visual stimuli. Importantly, we find that neurons within either zone are not influenced by stimuli in the other modality and do not exhibit the typical response characteristics usually associated with multisensory processing. While these results confirm the notion of the claustrum as a multisensory structure per se, they argue against the hypothesis of the claustrum serving as an integrator of sensory information.
Collapse
|