51
|
Association of CD33 polymorphism rs3865444 with Alzheimer's disease pathology and CD33 expression in human cerebral cortex. Neurobiol Aging 2014; 36:571-82. [PMID: 25448602 DOI: 10.1016/j.neurobiolaging.2014.09.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/09/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
Abstract
Recent findings identified the minor A allele present in the single-nucleotide polymorphism rs3865444 in the CD33 gene as being associated with the reduced risk of developing Alzheimer's disease (AD). CD33 (Siglec-3) is an immune function protein with anti-inflammatory signaling, cell adhesion, and endocytosis functions with sialic acid-modified proteins or lipids as ligands. Its involvement in AD pathologic mechanisms is still unclear; so, the goal of this study was to investigate if the rs3865444 polymorphism affects the development of AD pathology and the expression of CD33 messenger RNA (mRNA) and protein. For this study, we used DNA from 96 nondemented (ND) and 97 AD neuropathologically diagnosed cases to identify the different rs3865444 alleles and correlate with different measures of AD pathology. Using semiquantitative histologic measures of plaque and tangle pathology, we saw no significant differences between the different genotypes within these disease groups. However, increased expression of CD33 mRNA was associated with increasing AD pathology in temporal cortex brain samples. We also showed that cases with A/A alleles had reduced levels of CD33 protein in temporal cortex but increased levels of the microglia protein IBA-1. Using immunohistochemistry on temporal cortex sections, CD33 was selectively localized to microglia, with greater expression in activated microglia. The factors causing increased CD33 expression by microglia in brain are still unclear, although both genetic and disease factors are involved. Treatment of human microglia isolated from autopsy brains with amyloid-beta peptide and a range of other inflammatory activating agents resulted in reduced CD33 mRNA and protein levels.
Collapse
|
52
|
Ishibashi K, Ishiwata K, Toyohara J, Murayama S, Ishii K. Regional analysis of striatal and cortical amyloid deposition in patients with Alzheimer's disease. Eur J Neurosci 2014; 40:2701-6. [DOI: 10.1111/ejn.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Kenji Ishibashi
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi-ku Tokyo 173-0015 Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi-ku Tokyo 173-0015 Japan
| | - Jun Toyohara
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi-ku Tokyo 173-0015 Japan
| | - Shigeo Murayama
- Department of Neurology; Tokyo Metropolitan Geriatric Hospital; 35-2 Sakae-cho Itabashi-ku Tokyo 173-0015 Japan
| | - Kenji Ishii
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi-ku Tokyo 173-0015 Japan
| |
Collapse
|
53
|
Clinicopathological outcomes of prospectively followed normal elderly brain bank volunteers. J Neuropathol Exp Neurol 2014; 73:244-52. [PMID: 24487796 DOI: 10.1097/nen.0000000000000046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Existing reports on the frequencies of neurodegenerative diseases are typically based on clinical diagnoses. We sought to determine these frequencies in a prospectively assessed, community-based autopsy series. Included subjects had normal cognitive and movement disorder assessments at study entry. Of the 119 cases meeting these criteria, 52% were women; the median age of study entry was 83.5 years (range, 67-99 years), and the median duration from the first visit until death was 4.3 years (range, 0-10 years). At autopsy, clinicopathological diagnoses were made in 30 cases (25%). These diagnoses included 20 with Alzheimer disease (AD) (17%), 7 with vascular dementia (6%), 4 with progressive supranuclear palsy (3%), 3 with Parkinson disease and 1 each with dementia with Lewy bodies, corticobasal degeneration, or multiple system atrophy (0.8% each). Of the 87 subjects still clinically normal at death (73%), 33 had extensive AD pathology (preclinical AD) (38%), 17 had incidental Lewy bodies (20%), and 4 had incidental pathology consistent with progressive supranuclear palsy (5%). The diagnoses were not mutually exclusive. Although limited by a relatively small sample size, the neuropathological outcome of these initially normal elderly subjects represents a rough estimate of the incidence of these neurodegenerative conditions over a defined time period.
Collapse
|
54
|
O'Callaghan C, Bertoux M, Hornberger M. Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry 2014; 85:371-8. [PMID: 23833269 DOI: 10.1136/jnnp-2012-304558] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigations of cognitive and behavioural changes in neurodegeneration have been mostly focussed on how cortical changes can explain these symptoms. In the proposed review, we will argue that the striatum has been overlooked as a critical nexus in understanding the generation of such symptoms. Although the striatum is historically more associated with motor dysfunction, there is increasing evidence from functional neuroimaging studies in the healthy that striatal regions modulate behaviour and cognition. This should not be surprising, as the striatum has strong anatomical connections to many cortical regions including the frontal, temporal and insula lobes, as well as some subcortical regions (amygdala, hippocampus). To date, however, it is largely unclear to what extent striatal regions are affected in many neurodegenerative conditions-and if so, how striatal dysfunction can potentially influence cognition and behaviour. The proposed review will examine the existing evidence of striatal changes across selected neurodegenerative conditions (Parkinson's disease, progressive supranuclear palsy, Huntington's disease, motor neuron disease, frontotemporal dementia and Alzheimer's disease), and will document their link with the cognitive and behavioural impairments observed. Thus, by reviewing the varying degrees of cortical and striatal changes in these conditions, we can start outlining the contributions of the striatal nexus to cognitive and behavioural symptoms. In turn, this knowledge will inform future studies investigating corticostriatal networks and also diagnostic strategies, disease management and future therapeutics of neurodegenerative conditions.
Collapse
|
55
|
Nation DA, Wierenga CE, Clark LR, Dev SI, Stricker NH, Jak AJ, Salmon DP, Delano-Wood L, Bangen KJ, Rissman RA, Liu TT, Bondi MW. Cortical and subcortical cerebrovascular resistance index in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2014; 36:689-98. [PMID: 23666173 DOI: 10.3233/jad-130086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reduced regional cerebral blood flow (rCBF) is a well-established finding in Alzheimer's disease (AD), although fewer studies have examined the role of increased regional cerebrovascular resistance. By calculating the ratio of mean arterial pressure to rCBF, it is possible to estimate an index of regional cerebrovascular resistance (CVRi) that may be a sensitive measure of occult cerebrovascular disease. OBJECTIVE To compare probable AD patients to mild cognitive impairment (MCI) and normal control (NC) participants on CVRi, the ratio of mean arterial pressure to rCBF. METHODS Eighty-one participants (12 AD, 23 MCI, 46 NC) were compared on CVRi using voxel-wise analyses. Region-of-interest analyses examined correlations between subcortical CVRi and both cognition and white matter lesion (WML) volume. RESULTS Voxel-wise analyses revealed CVRi elevation in AD relative to NCs (subcortical, medial temporal, posterior cingulate, precuneus, inferior parietal, superior temporal) and MCI (subcortical, posterior cingulate). MCI participants exhibited intermediate CVRi values within cortical and medial temporal areas. Significant CVRi clusters were larger and more widespread than those of parallel CBF analyses. Among MCI and AD participants, subcortical CVRi elevation was associated with lower Dementia Rating Scale score (r = -0.52, p = 0.001, for both thalamus and caudate), and caudate CVRi correlated with WML volume (r = 0.45, p = 0.001). CONCLUSIONS Cortical and subcortical CVRi is elevated in AD, particularly within the caudate and thalamus, where it is associated with decreased cognitive performance and increased WMLs. Findings suggest CVRi may play a role in cognitive decline and cerebrovascular disease in MCI and AD.
Collapse
Affiliation(s)
- Daniel A Nation
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576887 PMCID: PMC3622466 DOI: 10.31887/dcns.2013.15.1/kjellinger] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in “healthy” aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
57
|
Amyloid-β may be released from non-junctional varicosities of axons generated from abnormal tau-containing brainstem nuclei in sporadic Alzheimer's disease: a hypothesis. Acta Neuropathol 2013; 126:303-6. [PMID: 23824268 DOI: 10.1007/s00401-013-1153-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
58
|
Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging 2013; 34:2091-9. [PMID: 23582657 DOI: 10.1016/j.neurobiolaging.2013.02.021] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 11/21/2022]
Abstract
Epigenetic dysregulation of gene expression is thought to be critically involved in the pathophysiology of Alzheimer's disease (AD). Recent studies indicate that DNA methylation and DNA hydroxymethylation are 2 important epigenetic mechanisms that regulate gene expression in the aging brain. However, very little is known about the levels of markers of DNA methylation and hydroxymethylation in the brains of patients with AD, the cell-type specificity of putative AD-related alterations in these markers, as well as the link between epigenetic alterations and the gross pathology of AD. The present quantitative immunohistochemical study investigated the levels of the 2 most important markers of DNA methylation and hydroxymethylation, that is, 5-methylcytidine (5-mC) and 5-hydroxymethylcytidine (5-hmC), in the hippocampus of AD patients (n = 10) and compared these to non-demented, age-matched controls (n = 10). In addition, the levels of 5-hmC in the hippocampus of a pair of monozygotic twins discordant for AD were assessed. The levels of 5-mC and 5-hmC were furthermore analyzed in a cell-type and hippocampal subregion-specific manner, and were correlated with amyloid plaque load and neurofibrillary tangle load. The results showed robust decreases in the hippocampal levels of 5-mC and 5-hmC in AD patients (19.6% and 20.2%, respectively). Similar results were obtained for the twin with AD when compared to the non-demented co-twin. Moreover, levels of 5-mC as well as the levels of 5-hmC showed a significant negative correlation with amyloid plaque load in the hippocampus (r(p) = -0.539, p = 0.021 for 5-mC and r(p) = -0.558, p = 0.016 for 5-hmC). These human postmortem results thus strengthen the notion that AD is associated with alterations in DNA methylation and hydroxymethylation, and provide a basis for further epigenetic studies identifying the exact genetic loci with aberrant epigenetic signatures.
Collapse
|
59
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013; 15:29-43. [PMID: 23576887 PMCID: PMC3622466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in "healthy" aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
60
|
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012; 71:362-81. [PMID: 22487856 PMCID: PMC3560290 DOI: 10.1097/nen.0b013e31825018f7] [Citation(s) in RCA: 1406] [Impact Index Per Article: 117.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. β-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of Aβ plaques and neurofibrillary tangles. Although Aβ plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington 40536-0230, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol 2012; 71:266-73. [PMID: 22437338 PMCID: PMC3331862 DOI: 10.1097/nen.0b013e31824b211b] [Citation(s) in RCA: 710] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The neuropathologic examination is considered to provide the gold standard for Alzheimer disease (AD). To determine the accuracy of currently used clinical diagnostic methods, clinical and neuropathologic data from the National Alzheimer's Coordinating Center, which gathers information from the network of National Institute on Aging (NIA)-sponsored Alzheimer Disease Centers (ADCs), were collected as part of the National Alzheimer's Coordinating Center Uniform Data Set (UDS) between 2005 and 2010. A database search initially included all 1198 subjects with at least one UDS clinical assessment and who had died and been autopsied; 279 were excluded as being not demented or because critical data fields were missing. The final subject number was 919. Sensitivity and specificity were determined based on "probable" and "possible" AD levels of clinical confidence and 4 levels of neuropathologic confidence based on varying neuritic plaque densities and Braak neurofibrillary stages. Sensitivity ranged from 70.9% to 87.3%; specificity ranged from 44.3% to 70.8%. Sensitivity was generally increased with more permissive clinical criteria and specificity was increased with more restrictive criteria, whereas the opposite was true for neuropathologic criteria. When a clinical diagnosis was not confirmed by minimum levels of AD histopathology, the most frequent primary neuropathologic diagnoses were tangle-only dementia or argyrophilic grain disease, frontotemporal lobar degeneration, cerebrovascular disease, Lewy body disease and hippocampal sclerosis. When dementia was not clinically diagnosed as AD, 39% of these cases met or exceeded minimum threshold levels of AD histopathology. Neurologists of the NIA-ADCs had higher predictive accuracy when they diagnosed AD in subjects with dementia than when they diagnosed dementing diseases other than AD. The misdiagnosis rate should be considered when estimating subject numbers for AD studies, including clinical trials and epidemiologic studies.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona 85351, USA.
| | | | | | | |
Collapse
|
62
|
Dugger BN, Serrano GE, Sue LI, Walker DG, Adler CH, Shill HA, Sabbagh MN, Caviness JN, Hidalgo J, Saxon-Labelle M, Chiarolanza G, Mariner M, Henry-Watson J, Beach TG. Presence of Striatal Amyloid Plaques in Parkinson's Disease Dementia Predicts Concomitant Alzheimer's Disease: Usefulness for Amyloid Imaging. JOURNAL OF PARKINSONS DISEASE 2012; 2:57-65. [PMID: 22924088 DOI: 10.3233/jpd-2012-11073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dementia is a frequent complication of Parkinson's disease (PD). About half of PD dementia (PDD) is hypothesized to be due to progression of the underlying Lewy body pathology into limbic regions and the cerebral cortex while the other half is thought to be due to coexistent Alzheimer's disease. Clinically, however, these are indistinguishable. The spread of amyloid plaques to the striatum has been reported to be a sensitive and specific indicator of dementia due to Alzheimer's disease (AD). The purpose of the present study was to determine if the presence of striatal plaques might also be a useful indicator of the presence of diagnostic levels of AD pathology within PD subjects. We analyzed neuropathologically-confirmed cases of PD without dementia (PDND, N = 31), PDD without AD (PDD, N = 31) and PD with dementia meeting clinicopathological criteria for AD (PDAD, N =40). The minimum diagnostic criterion for AD was defined as including a clinical history of dementia, moderate or frequent CERAD cortical neuritic plaque density and Braak neurofibrillary stage III-VI. Striatal amyloid plaque densities were determined using Campbell-Switzer and Thioflavine S stains. Striatal plaque densities were significantly higher in PDAD compared to PDD (p<0.001). The presence of striatal plaques was approximately 80% sensitive and 80% specific for predicting AD. In comparison, the presence of cerebral cortex plaques alone was highly sensitive (100%) but had poor specificity (48% to 55%). The results suggest that striatal amyloid imaging may be clinically useful for making the distinction between PDD and PDAD.
Collapse
|