51
|
Wang X, Pei Z, Hao T, Ariben J, Li S, He W, Kong X, Chang J, Zhao Z, Zhang B. Prognostic analysis and validation of diagnostic marker genes in patients with osteoporosis. Front Immunol 2022; 13:987937. [PMID: 36311708 PMCID: PMC9610549 DOI: 10.3389/fimmu.2022.987937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Backgrounds As a systemic skeletal dysfunction, osteoporosis (OP) is characterized by low bone mass and bone microarchitectural damage. The global incidences of OP are high. Methods Data were retrieved from databases like Gene Expression Omnibus (GEO), GeneCards, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Gene Expression Profiling Interactive Analysis (GEPIA2), and other databases. R software (version 4.1.1) was used to identify differentially expressed genes (DEGs) and perform functional analysis. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression and random forest algorithm were combined and used for screening diagnostic markers for OP. The diagnostic value was assessed by the receiver operating characteristic (ROC) curve. Molecular signature subtypes were identified using a consensus clustering approach, and prognostic analysis was performed. The level of immune cell infiltration was assessed by the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm. The hub gene was identified using the CytoHubba algorithm. Real-time fluorescence quantitative PCR (RT-qPCR) was performed on the plasma of osteoporosis patients and control samples. The interaction network was constructed between the hub genes and miRNAs, transcription factors, RNA binding proteins, and drugs. Results A total of 40 DEGs, eight OP-related differential genes, six OP diagnostic marker genes, four OP key diagnostic marker genes, and ten hub genes (TNF, RARRES2, FLNA, STXBP2, EGR2, MAP4K2, NFKBIA, JUNB, SPI1, CTSD) were identified. RT-qPCR results revealed a total of eight genes had significant differential expression between osteoporosis patients and control samples. Enrichment analysis showed these genes were mainly related to MAPK signaling pathways, TNF signaling pathway, apoptosis, and Salmonella infection. RT-qPCR also revealed that the MAPK signaling pathway (p38, TRAF6) and NF-kappa B signaling pathway (c-FLIP, MIP1β) were significantly different between osteoporosis patients and control samples. The analysis of immune cell infiltration revealed that monocytes, activated CD4 memory T cells, and memory and naïve B cells may be related to the occurrence and development of OP. Conclusions We identified six novel OP diagnostic marker genes and ten OP-hub genes. These genes can be used to improve the prognostic of OP and to identify potential relationships between the immune microenvironment and OP. Our research will provide insights into the potential therapeutic targets and pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Xing Wang
- Bayannur Hospital, Bayannur City, China
| | - Zhiwei Pei
- Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Siqin Li
- Bayannur Hospital, Bayannur City, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Xiangyu Kong
- Inner Mongolia Medical University, Hohhot, China
| | - Jiale Chang
- Inner Mongolia Medical University, Hohhot, China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
52
|
Liu X, Li J, Wang Q, Bai L, Xing J, Hu X, Li S, Li Q. Analysis on heterogeneity of hepatocellular carcinoma immune cells and a molecular risk model by integration of scRNA-seq and bulk RNA-seq. Front Immunol 2022; 13:1012303. [PMID: 36311759 PMCID: PMC9606610 DOI: 10.3389/fimmu.2022.1012303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Studies have shown that hepatocellular carcinoma (HCC) heterogeneity is a main cause leading to failure of treatment. Technology of single-cell sequencing (scRNA) could more accurately reveal the essential characteristics of tumor genetics. Methods From the Gene Expression Omnibus (GEO) database, HCC scRNA-seq data were extracted. The FindCluster function was applied to analyze cell clusters. Autophagy-related genes were acquired from the MSigDB database. The ConsensusClusterPlus package was used to identify molecular subtypes. A prognostic risk model was built with the Least Absolute Shrinkage and Selection Operator (LASSO)-Cox algorithm. A nomogram including a prognostic risk model and multiple clinicopathological factors was constructed. Results Eleven cell clusters labeled as various cell types by immune cell markers were obtained from the combined scRNA-seq GSE149614 dataset. ssGSEA revealed that autophagy-related pathways were more enriched in malignant tumors. Two autophagy-related clusters (C1 and C2) were identified, in which C1 predicted a better survival, enhanced immune infiltration, and a higher immunotherapy response. LASSO-Cox regression established an eight-gene signature. Next, the HCCDB18, GSA14520, and GSE76427 datasets confirmed a strong risk prediction ability of the signature. Moreover, the low-risk group had enhanced immune infiltration and higher immunotherapy response. A nomogram which consisted of RiskScore and clinical features had better prediction ability. Conclusion To precisely assess the prognostic risk, an eight-gene prognostic stratification signature was developed based on the heterogeneity of HCC immune cells.
Collapse
Affiliation(s)
- Xiaorui Liu
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingxiang Wang
- Department of physical examination&Blood collection Xuchang Blood Center, Xuchang, China
| | - Lu Bai
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xing
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobo Hu
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Li
- Bioinformatics R&D Department, Hangzhou Mugu Technology Co., Ltd, Hangzhou, China
| | - Qinggang Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
53
|
Wu S, Liu W, Zhang M, Wang K, Liu J, Hu Y, She Q, Li M, Shen S, Chen B, Wu J. Preventive measures significantly reduced the risk of nosocomial infection in elderly inpatients during the COVID-19 pandemic. Exp Ther Med 2022; 24:562. [PMID: 35978917 PMCID: PMC9366284 DOI: 10.3892/etm.2022.11499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
In December 2019, there was an outbreak of pneumonia of unknown causes in Wuhan, China. The etiological pathogen was identified to be a novel coronavirus, named severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). The number of infected patients has markedly increased since the 2019 outbreak and COVID-19 has also proven to be highly contagious. In particular, the elderly are among the group of patients who are the most susceptible to succumbing to COVID-19 within the general population. Cross-infection in the hospital is one important route of SARS-CoV-2 transmission, where elderly patients are more susceptible to nosocomial infections due to reduced immunity. Therefore, the present study was conducted to search for ways to improve the medical management workflow in geriatric departments to ultimately reduce the risk of nosocomial infection in elderly inpatients. The present observational retrospective cohort study analysed elderly patients who were hospitalised in the Geriatric Department of the First Affiliated Hospital with Nanjing Medical University (Nanjing, China). A total of 4,066 elderly patients, who were admitted between January and March in 2019 and 2020 and then hospitalised for >48 h were selected. Among them, 3,073 (75.58%) patients hospitalised from January 2019 to March 2019 were allocated into the non-intervention group, whereas the remaining 933 (24.42%) patients hospitalised from January 2020 to March 2020 after the COVID-19 outbreak were allocated into the intervention group. Following multivariate logistic regression analysis, the risk of nosocomial infections was found to be lower in the intervention group compared with that in the non-intervention group. After age stratification and adjustment for sex, chronic disease, presence of malignant tumour and trauma, both inverse probability treatment weighting and standardised mortality ratio revealed a lower risk of nosocomial infections in the intervention group compared with that in the non-intervention group. To rule out interference caused by changes in the community floating population and social environment during this 1-year study, 93 long-stay patients in stable condition were selected as a subgroup based on 4,066 patients. The so-called floating population refers to patients who have been in hospital for <2 years. Patients aged ≥65 years were included in the geriatrics program. The incidence of nosocomial infections during the epidemic prevention and control period (24 January 2020 to 24 March 2020) and the previous period of hospitalisation (24 January 2019 to 24 March 2019) was also analysed. In the subgroup analysis, a multivariate analysis was also performed on 93 elderly patients who experienced long-term hospitalisation. The risk of nosocomial and pulmonary infections was found to be lower in the intervention group compared with that in the non-intervention group. During the pandemic, the geriatric department took active preventative measures. However, whether these measures can be normalised to reduce the risk of nosocomial infections among elderly inpatients remain unclear. In addition, the present study found that the use of an indwelling gastric tube is an independent risk factor of nosocomial pulmonary infection in elderly inpatients. However, nutritional interventions are indispensable for the long-term wellbeing of patients, especially for those with dysphagia in whom an indwelling gastric tube is the most viable method of providing enteral nutrition. To conclude, the present retrospective analysis of the selected cases showed that enacting preventative and control measures resulted in the effective control of the incidence of nosocomial infections.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Liu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingjiong Zhang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kai Wang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin Liu
- Clinical Research Institute, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yujia Hu
- Department of Business Analytics, Management School, Lancaster University, Lancaster, LA1 4YW, UK
| | - Quan She
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shaoran Shen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bo Chen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianqing Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
54
|
Wang Y, Sun Z, Lu S, Zhang X, Xiao C, Li T, Wu J. Identification of PLAUR-related ceRNA and immune prognostic signature for kidney renal clear cell carcinoma. Front Oncol 2022; 12:834524. [PMID: 36052236 PMCID: PMC9424644 DOI: 10.3389/fonc.2022.834524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) represents one of the most fatal cancers, usually showing malignant progression and a high tumor recurrence rate. The urokinase-type plasminogen activator receptor (PLAUR) plays a critical role in the initiation and progression of several cancers, including KIRC. However, the function and mechanism of PLAUR in patients with KIRC are still unclear and require further investigation. In the present study, we first explored the expression profile and prognostic values of PLAUR in pan-cancer based on The Cancer Genome Atlas and Genotype-Tissue Expression databases. PLAUR was upregulated in multiple cancers and was significantly associated with poor overall survival and disease-free survival only in patients with KIRC. Subsequently, the PVT1/SNHG15-hsa-miR-532-3p axis was identified as the most potential upstream regulatory network of PLAUR in KIRC. In addition, PLAUR expression was closely associated with tumor-infiltrating immune cells, tumor immunity biomarkers, and immunomodulator expression. Furthermore, we constructed a multiple-gene risk prediction signature according to the PLAUR-related immunomodulators (PRIs). A prognostic nomogram was then developed to predict the 1-, 3-, and 5-year survival probabilities of individuals. In conclusion, our study identified the PVT1/SNHG15-hsa-miR-532-3p-PLAUR axis and a prognostic signature of PRIs, which could be a reference for future clinical research.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuolun Sun
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuo Lu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chutian Xiao
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tengcheng Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Tengcheng Li, ; Jieying Wu,
| | - Jieying Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Tengcheng Li, ; Jieying Wu,
| |
Collapse
|
55
|
Gu H, Song J, Chen Y, Wang Y, Tan X, Zhao H. Inflammation-Related LncRNAs Signature for Prognosis and Immune Response Evaluation in Uterine Corpus Endometrial Carcinoma. Front Oncol 2022; 12:923641. [PMID: 35719911 PMCID: PMC9201290 DOI: 10.3389/fonc.2022.923641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Backgrounds Uterine corpus endometrial carcinoma (UCEC) is one of the greatest threats on the female reproductive system. The aim of this study is to explore the inflammation-related LncRNA (IRLs) signature predicting the clinical outcomes and response of UCEC patients to immunotherapy and chemotherapy. Methods Consensus clustering analysis was employed to determine inflammation-related subtype. Cox regression methods were used to unearth potential prognostic IRLs and set up a risk model. The prognostic value of the prognostic model was calculated by the Kaplan-Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate analyses. Differential abundance of immune cell infiltration, expression levels of immunomodulators, the status of tumor mutation burden (TMB), the response to immune checkpoint inhibitors (ICIs), drug sensitivity, and functional enrichment in different risk groups were also explored. Finally, we used quantitative real-time PCR (qRT-PCR) to confirm the expression patterns of model IRLs in clinical specimens. Results All UCEC cases were divided into two clusters (C1 = 454) and (C2 = 57) which had significant differences in prognosis and immune status. Five hub IRLs were selected to develop an IRL prognostic signature (IRLPS) which had value in forecasting the clinical outcome of UCEC patients. Biological processes related to tumor and immune response were screened. Function enrichment algorithm showed tumor signaling pathways (ERBB signaling, TGF-β signaling, and Wnt signaling) were remarkably activated in high-risk group scores. In addition, the high-risk group had a higher infiltration level of M2 macrophages and lower TMB value, suggesting patients with high risk were prone to a immunosuppressive status. Furthermore, we determined several potential molecular drugs for UCEC. Conclusion We successfully identified a novel molecular subtype and inflammation-related prognostic model for UCEC. Our constructed risk signature can be employed to assess the survival of UCEC patients and offer a valuable reference for clinical treatment regimens.
Collapse
Affiliation(s)
- Hongmei Gu
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Tan
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
56
|
Cai W, Jing M, Wen J, Guo H, Xue Z. Epigenetic Alterations of DNA Methylation and miRNA Contribution to Lung Adenocarcinoma. Front Genet 2022; 13:817552. [PMID: 35711943 PMCID: PMC9194831 DOI: 10.3389/fgene.2022.817552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
This study focused on the epigenetic alterations of DNA methylation and miRNAs for lung adenocarcinoma (LUAD) diagnosis and treatment using bioinformatics analyses. DNA methylation data and mRNA and miRNA expression microarray data were obtained from The Cancer Genome Atlas (TCGA) database. The differentially methylated genes (DMGs), differentially expressed genes (DEGs), and differentially expressed miRNAs were analyzed by using the limma package. The DAVID database performed GO and KEGG pathway enrichment analyses. Using STRING and Cytoscape, we constructed the protein-protein interaction (PPI) network and achieved visualization. The online analysis tool CMap was used to identify potential small-molecule drugs for LUAD. In LUAD, 607 high miRNA-targeting downregulated genes and 925 low miRNA-targeting upregulated genes, as well as 284 hypermethylated low-expression genes and 315 hypomethylated high-expression genes, were obtained. They were mainly enriched in terms of pathways in cancer, neuroactive ligand-receptor interaction, cAMP signaling pathway, and cytosolic DNA-sensing pathway. In addition, 40 upregulated and 84 downregulated genes were regulated by both aberrant alternations of DNA methylation and miRNAs. Five small-molecule drugs were identified as a potential treatment for LUAD, and five hub genes (SLC2A1, PAX6, LEP, KLF4, and FGF10) were found in PPI, and two of them (SLC2A1 and KLF4) may be related to the prognosis of LUAD. In summary, our study identified a series of differentially expressed genes associated with epigenetic alterations of DNA methylation and miRNA in LUAD. Five small-molecule drugs and five hub genes may be promising drugs and targets for LUAD treatment.
Collapse
Affiliation(s)
- Wenhan Cai
- Medical School of Chinese PLA, Beijing, China
| | - Miao Jing
- Medical School of Chinese PLA, Beijing, China
| | - Jiaxin Wen
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hua Guo
- Medical School of Chinese PLA, Beijing, China
| | - Zhiqiang Xue
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
57
|
Wang B, Liu L, Wu J, Mao X, Fang Z, Chen Y, Li W. Construction and Verification of a Combined Hypoxia and Immune Index for Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:711142. [PMID: 35222525 PMCID: PMC8863964 DOI: 10.3389/fgene.2022.711142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in humans. Hypoxia-related genes are now recognized as a reflection of poor prognosis in cancer patients with cancer. Meanwhile, immune-related genes play an important role in the occurrence and progression of ccRCC. Nevertheless, reliable prognostic indicators based on hypoxia and immune status have not been well established in ccRCC. The aims of this study were to develop a new gene signature model using bioinformatics and open databases and to validate its prognostic value in ccRCC. The data used for the model structure can be accessed from The Cancer Genome Atlas database. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were used to identify the hypoxia- and immune-related genes associated with prognostic risk, which were used to develop a characteristic model of prognostic risk. Kaplan-Meier and receiver-operating characteristic curve analyses were performed as well as independent prognostic factor analyses and correlation analyses of clinical characteristics in both the training and validation cohorts. In addition, differences in tumor immune cell infiltrates were compared between the high and low risk groups. Overall, 30 hypoxia- and immune-related genes were identified, and five hypoxia- and immune-related genes (EPO, PLAUR, TEK, TGFA, TGFB1) were ultimately selected. Survival analysis showed that the high-risk score on the hypoxia- and immune-related gene signature was significantly associated with adverse survival outcomes. Furthermore, clinical ccRCC samples from our medical center were used to validate the differential expression of the five genes in tumor tissue compared to normal tissue through quantitative real-time polymerase chain reaction (qRT-PCR). However, more clinical trials are needed to confirm these results, and future experimental studies must verify the potential mechanism behind the predictive value of the hypoxia- and immune-related gene signature.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinting Wu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Mao
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Fang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingyu Chen
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenfeng Li,
| |
Collapse
|
58
|
Identification of MAD2L1 as a Potential Biomarker in Hepatocellular Carcinoma via Comprehensive Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9868022. [PMID: 35132379 PMCID: PMC8817109 DOI: 10.1155/2022/9868022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is widely acknowledged as a malignant tumor with rapid progression, high recurrence rate, and poor prognosis. At present, there is a paucity of reliable biomarkers at the clinical level to guide the management of HCC and improve patient outcomes. Our research is aimed at assessing the prognostic value of MAD2L1 in HCC. Methods Four datasets, GSE121248, GSE101685, GSE85598, and GSE62232, were selected from the GEO database to analyze differentially expressed genes (DEGs) between HCC and normal liver tissues. After functional analysis, we constructed a protein-protein interaction network (PPI) for DEGs and identified core genes in this network with high connectivity with other genes. We assessed the relationship between core genes and the pathogenesis and prognosis of HCC. Finally, we explored the gene regulatory signaling mechanisms involved in HCC pathogenesis. Results 145 DEGs were screened from the intersection of the four GEO datasets. MAD2L1 was associated with most genes according to the PPI network and was selected as a candidate gene for further study. Survival analysis suggested that high MAD2L1 expression in HCC correlated with a worse prognosis. In addition, real-time quantitative PCR (RT-qPCR), western blot (WB), and immunohistochemistry (IHC) findings suggested that the expression of MAD2L1 was abnormally increased in HCC tissues and cells compared to paraneoplastic tissues and normal hepatocytes. Conclusion We found that high MAD2L1 expression in HCC was significantly associated with overall patient survival and clinical features. We also explored the potential biological properties of this gene.
Collapse
|
59
|
Yi J, Zhong W, Wu H, Feng J, Zouxu X, Huang X, Li S, Shuang Z. Identification of Key Genes Affecting the Tumor Microenvironment and Prognosis of Triple-Negative Breast Cancer. Front Oncol 2021; 11:746058. [PMID: 34745969 PMCID: PMC8567753 DOI: 10.3389/fonc.2021.746058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Although the tumor microenvironment (TME) plays an important role in the development of many cancers, its roles in breast cancer, especially triple-negative breast cancer (TNBC), are not well studied. This study aimed to identify genes related to the TME and prognosis of TNBC. Firstly, we identified differentially expressed genes (DEG) in the TME of TNBC, using Expression data (ESTIMATE) datasets obtained from the Cancer Genome Atlas (TCGA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues. Next, survival analysis was performed to analyze the relationship between TME and prognosis of TNBC, as well as determine DEGs. Genes showing significant differences were scored as alternative genes. A protein-protein interaction (PPI) network was constructed and functional enrichment analysis conducted using the DEG. Proteins with a degree greater than 5 and 10 in the PPI network correspond with hub genes and key genes, respectively. Finally, CCR2 and CCR5 were identified as key genes in TME and prognosis of TNBC. Finally, these results were verified using Gene Expression Omnibus (GEO) datasets and immunohistochemistry of TNBC patients. In conclusion, CCR2 and CCR5 are key genes in the TME and prognosis of TNBC with the potential of prognostic biomarkers in TNBC.
Collapse
Affiliation(s)
- Jiarong Yi
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenjing Zhong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haoming Wu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jikun Feng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiazi Zouxu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinjian Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Siqi Li
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeyu Shuang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|