51
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
52
|
Li Z, Liu C, Huang C, Meng X, Zhang L, He J, Li J. Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo. Oncotarget 2018; 7:34266-76. [PMID: 27144522 PMCID: PMC5085154 DOI: 10.18632/oncotarget.9088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/16/2016] [Indexed: 12/30/2022] Open
Abstract
The ribozyme-sensitive element NHE-III1 in the P1 promoter region of the important proto-oncogene c-myc contains many guanine (G)-rich sequences. Induction and stabilization of the G-quadruplex formed by NHE-III1 can downregulate c-myc expression. In the present study, we found that QPB-15e, a quinazoline derivative designed and synthesized by our laboratory, binds to and stabilizes the c-myc G-quadruplex in vitro, thereby inhibiting double-stranded DNA replication, downregulating c-myc gene expression and arresting cancer cell proliferation. PCR termination experiments showed that QPB-15e blocked double-stranded DNA replication by inducing or stabilizing the c-myc G-quadruplex. FRET-melting further confirmed that QPB-15e improved the stability of the G-quadruplex, and CD spectroscopy indicated that the compound interacted directly with the G-rich sequence. In competitive dialysis experiments, QPB-15e bound preferentially to quadruplex DNA in various structures, especially the G-quadruplex within the c-myc promoter region. Moreover, QPB-15e reduced the weights and volumes of tumors transplanted into nude mice. These findings strongly suggest that QPB-15e is a c-myc G-quadruplex ligand with anti-tumor properties, and may be efficacious for treating cancer in humans.
Collapse
Affiliation(s)
- Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinhui He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou 510006, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
53
|
Boller S, Li R, Grosschedl R. Defining B Cell Chromatin: Lessons from EBF1. Trends Genet 2018; 34:257-269. [PMID: 29336845 DOI: 10.1016/j.tig.2017.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Hematopoiesis is regulated by signals from the microenvironment, transcription factor networks, and changes of the epigenetic landscape. Transcription factors interact with and shape chromatin to allow for lineage- and cell type-specific changes in gene expression. During B lymphopoiesis, epigenetic regulation is observed in multilineage progenitors in which a specific chromatin context is established, at the onset of the B cell differentiation when early B cell factor 1 (EBF1) induces lineage-specific changes in chromatin, during V(D)J recombination and after antigen-driven activation of B cells and terminal differentiation. In this review, we discuss the epigenetic changes underlying B cell differentiation, focusing on the role of transcription factor EBF1 in B cell lineage priming.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
54
|
Guo M, Price MJ, Patterson DG, Barwick BG, Haines RR, Kania AK, Bradley JE, Randall TD, Boss JM, Scharer CD. EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. THE JOURNAL OF IMMUNOLOGY 2017; 200:1039-1052. [PMID: 29288200 DOI: 10.4049/jimmunol.1701470] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Epigenetic remodeling is required during B cell differentiation. However, little is known about the direct functions of epigenetic enzymes in Ab-secreting cells (ASC) in vivo. In this study, we examined ASC differentiation independent of T cell help and germinal center reactions using mice with inducible or B cell-specific deletions of Ezh2 Following stimulation with influenza virus or LPS, Ezh2-deficient ASC poorly proliferated and inappropriately maintained expression of inflammatory pathways, B cell-lineage transcription factors, and Blimp-1-repressed genes, leading to fewer and less functional ASC. In the absence of EZH2, genes that normally gained histone H3 lysine 27 trimethylation were dysregulated and exhibited increased chromatin accessibility. Furthermore, EZH2 was also required for maximal Ab secretion by ASC, in part due to reduced mitochondrial respiration, impaired glucose metabolism, and poor expression of the unfolded-protein response pathway. Together, these data demonstrate that EZH2 is essential in facilitating epigenetic changes that regulate ASC fate, function, and metabolism.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322.,Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322; and
| | - Robert R Haines
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Anna K Kania
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322;
| | | |
Collapse
|
55
|
Histone methyltransferase MMSET promotes AID-mediated DNA breaks at the donor switch region during class switch recombination. Proc Natl Acad Sci U S A 2017; 114:E10560-E10567. [PMID: 29158395 DOI: 10.1073/pnas.1701366114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In B cells, Ig class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), the activity of which leads to DNA double-strand breaks (DSBs) within IgH switch (S) regions. Preferential targeting of AID-mediated DSBs to S sequences is critical for allowing diversification of antibody functions, while minimizing potential off-target oncogenic events. Here, we used gene targeted inactivation of histone methyltransferase (HMT) multiple myeloma SET domain (MMSET) in mouse B cells and the CH12F3 cell line to explore its role in CSR. We find that deletion of MMSET-II, the isoform containing the catalytic SET domain, inhibits CSR without affecting either IgH germline transcription or joining of DSBs within S regions by classical nonhomologous end joining (C-NHEJ). Instead, we find that MMSET-II inactivation leads to decreased AID recruitment and DSBs at the upstream donor Sμ region. Our findings suggest a role for the HMT MMSET in promoting AID-mediated DNA breaks during CSR.
Collapse
|
56
|
Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci Rep 2017; 7:14884. [PMID: 29097662 PMCID: PMC5668238 DOI: 10.1038/s41598-017-13851-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are well known regulators of mRNA stability and translation. However, the magnitude of both translational repression and mRNA decay induced by miRNA binding varies greatly between miRNA targets. This can be the result of cis and trans factors that affect miRNA binding or action. We set out to address this issue by studying how various mRNA characteristics affect miRNA-mediated repression. Using a dual luciferase reporter system, we systematically analyzed the ability of selected mRNA elements to modulate miRNA-mediated repression. We found that changing the 3'UTR of a miRNA-targeted reporter modulates translational repression by affecting the translation efficiency. This 3'UTR dependent modulation can be further altered by changing the codon-optimality or 5'UTR of the luciferase reporter. We observed maximal repression with intermediate codon optimality and weak repression with very high or low codon optimality. Analysis of ribosome profiling and RNA-seq data for endogenous miRNA targets revealed translation efficiency as a key determinant of the magnitude of miRNA-mediated translational repression. Messages with high translation efficiency were more robustly repressed. Together our results reveal modulation of miRNA-mediated repression by characteristics and features of the 5'UTR, CDS and 3'UTR.
Collapse
|
57
|
Sanchez HN, Shen T, Garcia D, Lai Z, Casali P, Zan H. Genome-wide Analysis of HDAC Inhibitor-mediated Modulation of microRNAs and mRNAs in B Cells Induced to Undergo Class-switch DNA Recombination and Plasma Cell Differentiation. J Vis Exp 2017. [PMID: 28994753 DOI: 10.3791/55135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antibody responses are accomplished through several critical B cell-intrinsic processes, including somatic hypermutation (SHM), class-switch DNA recombination (CSR), and plasma cell differentiation. In recent years, epigenetic modifications or factors, such as histone deacetylation and microRNAs (miRNAs), have been shown to interact with B-cell genetic programs to shape antibody responses, while the dysfunction of epigenetic factors has been found to lead to autoantibody responses. Analyzing genome-wide miRNA and mRNA expression in B cells in response to epigenetic modulators is important for understanding the epigenetic regulation of B-cell function and antibody response. Here, we demonstrate a protocol for inducing B cells to undergo CSR and plasma cell differentiation, treating these B cells with histone deacetylase (HDAC) inhibitors (HDIs), and analyzing mRNA and microRNA expression. In this protocol, we directly analyze complementary DNA (cDNA) sequences using next-generation mRNA sequencing (mRNA-seq) and miRNA-seq technologies, mapping of the sequencing reads to the genome, and quantitative reverse transcription (qRT)-PCR. With these approaches, we have defined that, in B cells induced to undergo CSR and plasma cell differentiation, HDI, an epigenetic regulator, selectively modulates miRNA and mRNA expression and alters CSR and plasma cell differentiation.
Collapse
Affiliation(s)
- Helia N Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine at San Antonio
| | - Tian Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine at San Antonio; Xiangya School of Medicine, Cental South University
| | - Dawn Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine at San Antonio; Greehey Children's Cancer Research Institute, University of Texas Long School of Medicine at San Antonio
| | - Zhao Lai
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine at San Antonio; Greehey Children's Cancer Research Institute, University of Texas Long School of Medicine at San Antonio
| | - Paolo Casali
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine at San Antonio
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine at San Antonio;
| |
Collapse
|
58
|
Charting the dynamic epigenome during B-cell development. Semin Cancer Biol 2017; 51:139-148. [PMID: 28851627 DOI: 10.1016/j.semcancer.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
The epigenetic landscape undergoes a widespread modulation during embryonic development and cell differentiation. Within the hematopoietic system, B cells are perhaps the cell lineage with a more dynamic DNA methylome during their maturation process, which involves approximately one third of all the CpG sites of the genome. Although each B-cell maturation step displays its own DNA methylation fingerprint, the DNA methylome is more extensively modified in particular maturation transitions. These changes are gradually accumulated in specific chromatin environments as cell differentiation progresses and reflect different features and functional states of B cells. Promoters and enhancers of B-cell transcription factors acquire activation-related epigenetic marks and are sequentially expressed in particular maturation windows. These transcription factors further reconfigure the epigenetic marks and activity state of their target sites to regulate the expression of genes related to B-cell functions. Together with this observation, extensive DNA methylation changes in areas outside gene regulatory elements such as hypomethylation of heterochromatic regions and hypermethylation of CpG-rich regions, also take place in mature B cells, which intriguingly have been described as hallmarks of cancer. This process starts in germinal center B cells, a highly proliferative cell type, and becomes particularly apparent in long-lived cells such as memory and plasma cells. Overall, the characterization of the DNA methylome during B-cell differentiation not only provides insights into the complex epigenetic network of regulatory elements that mediate the maturation process but also suggests that late B cells also passively accumulate epigenetic changes related to cell proliferation and longevity.
Collapse
|
59
|
Peters FS, Peeters AMA, Hofland LJ, Betjes MGH, Boer K, Baan CC. Interferon-Gamma DNA Methylation Is Affected by Mycophenolic Acid but Not by Tacrolimus after T-Cell Activation. Front Immunol 2017; 8:822. [PMID: 28747916 PMCID: PMC5506181 DOI: 10.3389/fimmu.2017.00822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Immunosuppressive drug therapy is required to treat patients with autoimmune disease and patients who have undergone organ transplantation. The main targets of the immunosuppressive drugs tacrolimus and mycophenolic acid (MPA; the active metabolite of mycophenolate mofetil) are T cells. It is currently unknown whether these immunosuppressive drugs have an effect on DNA methylation—an epigenetic regulator of cellular function. Here, we determined the effect of tacrolimus and MPA on DNA methylation of the gene promoter region of interferon gamma (IFNγ), a pro-inflammatory cytokine. Total T cells, naive T cells (CCR7+CD45RO−), and memory T cells (CD45RO+ and CCR7−CD45RO−) were isolated from CMV seropositive healthy controls and stimulated with α-CD3/CD28 in the presence or absence of tacrolimus or MPA. DNA methylation of the IFNγ promoter region was quantified by pyrosequencing at 4 h, days 1, 3, and 4 after stimulation. In parallel, T-cell differentiation, and IFNγ protein production were analyzed by flow cytometry at days 1 and 3 after stimulation. Our results show that MPA induced changes in IFNγ DNA methylation of naive T cells; MPA counteracted the decrease in methylation after stimulation. Tacrolimus did not affect IFNγ DNA methylation of naive T cells. In the memory T cells, both immunosuppressive drugs did not affect IFNγ DNA methylation. Differentiation of naive T cells into a central-memory-like phenotype (CD45RO+) was inhibited by both immunosuppressive drugs, while differentiation of memory T cells remained unaffected by both MPA and tacrolimus. IFNγ protein production was suppressed by tacrolimus. Our results demonstrate that MPA influenced IFNγ DNA methylation of naive T cells after stimulation of T cells, while tacrolimus had no effect. Both tacrolimus and MPA did not affect IFNγ DNA methylation of memory T cells.
Collapse
Affiliation(s)
- Fleur S Peters
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Annemiek M A Peeters
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Leo J Hofland
- Endocrinology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Michiel G H Betjes
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Karin Boer
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
60
|
Mou W, Han W, Ma X, Wang X, Qin H, Zhao W, Ren X, Chen X, Yang W, Cheng H, Wang X, Zhang H, Ni X, Wang H, Gui J. γδTFH cells promote B cell maturation and antibody production in neuroblastoma. BMC Immunol 2017; 18:36. [PMID: 28687069 PMCID: PMC5500960 DOI: 10.1186/s12865-017-0216-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have shown that γδ TFH cells are capable of modulating antibody production in immunized and infected mouse model. In recent studies, human γδ TFH cells are shown to contribute to the activation of humoral immunity and promote the maturation of B cells. However, little information is available on their involvement in neuroblastoma (NB) pathogenesis. RESULTS In the present study, the frequency of γδ TFH cells in 74 NB patients was significantly higher compared with that in 60 healthy controls. Moreover, most γδ TFH cells in NB patients had a naive phenotype with up-regulation of CD25, CD69, HLA-DR and CD40L and down-regulation of ICOS. Importantly, γδ TFH cells in NB patients produced more IL-4 and IL-10 than those in healthy controls. Furthermore, serum total IgG level was significantly increased in NB patients compared with healthy controls. The expression of CD23 on B cells was up-regulated while CD80 expression was significantly down-regulated in NB patients. Further analysis of B cell compartment showed that the frequency of CD19+CD27hi plasma cells was enhanced in NB patients. Spearman's correlation analysis revealed that the frequency of γδ TFH cells was positively correlated to serum total IgG level and CD19+CD27hi plasma cells in NB patients, but negatively correlated to CD19+ B cells. CONCLUSIONS We concluded that γδ TFH cells might promote B cell maturation and antibody production in NB patients.
Collapse
Affiliation(s)
- Wenjun Mou
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoli Ma
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaolin Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong Qin
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wen Zhao
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoya Ren
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xi Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xisi Wang
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hui Zhang
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Jingang Gui
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. .,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
61
|
Saintamand A, Vincent-Fabert C, Marquet M, Ghazzaui N, Magnone V, Pinaud E, Cogné M, Denizot Y. E μ and 3'RR IgH enhancers show hierarchic unilateral dependence in mature B-cells. Sci Rep 2017; 7:442. [PMID: 28348365 PMCID: PMC5428668 DOI: 10.1038/s41598-017-00575-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 01/18/2023] Open
Abstract
Enhancer and super-enhancers are master regulators of cell fate. While they act at long-distances on adjacent genes, it is unclear whether they also act on one another. The immunoglobulin heavy chain (IgH) locus is unique in carrying two super-enhancers at both ends of the constant gene cluster: the 5'Eμ super-enhancer promotes VDJ recombination during the earliest steps of B-cell ontogeny while the 3' regulatory region (3'RR) is essential for late differentiation. Since they carry functional synergies in mature B-cells and physically interact during IgH locus DNA looping, we investigated if they were independent engines of locus remodelling or if their function was more intimately intermingled, their optimal activation then requiring physical contact with each other. Analysis of chromatin marks, enhancer RNA transcription and accessibility in Eμ- and 3'RR-deficient mice show, in mature activated B-cells, an unilateral dependence of this pair of enhancers: while the 3'RR acts in autonomy, Eμ in contrast likely falls under control of the 3'RR.
Collapse
Affiliation(s)
- A Saintamand
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France. .,INSERM U1236, Université Rennes 1, Rennes, France.
| | | | - M Marquet
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | - N Ghazzaui
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | - V Magnone
- CNRS et Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 6097, Sophia, Antipolis, France
| | - E Pinaud
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | - M Cogné
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France
| | - Y Denizot
- CNRS UMR 7276, CRIBL, Université de Limoges, Limoges, France.
| |
Collapse
|
62
|
Epigenetic Changes in Chronic Inflammatory Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:139-189. [DOI: 10.1016/bs.apcsb.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
63
|
Lam T, Kulp DV, Wang R, Lou Z, Taylor J, Rivera CE, Yan H, Zhang Q, Wang Z, Zan H, Ivanov DN, Zhong G, Casali P, Xu Z. Small Molecule Inhibition of Rab7 Impairs B Cell Class Switching and Plasma Cell Survival To Dampen the Autoantibody Response in Murine Lupus. THE JOURNAL OF IMMUNOLOGY 2016; 197:3792-3805. [PMID: 27742832 DOI: 10.4049/jimmunol.1601427] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
IgG autoantibodies mediate pathology in systemic lupus patients and lupus-prone mice. In this study, we showed that the class-switched IgG autoantibody response in MRL/Faslpr/lpr and C57/Sle1Sle2Sle2 mice was blocked by the CID 1067700 compound, which specifically targeted Ras-related in brain 7 (Rab7), an endosome-localized small GTPase that was upregulated in activated human and mouse lupus B cells, leading to prevention of disease development and extension of lifespan. These were associated with decreased IgG-expressing B cells and plasma cells, but unchanged numbers and functions of myeloid cells and T cells. The Rab7 inhibitor suppressed T cell-dependent and T cell-independent Ab responses, but it did not affect T cell-mediated clearance of Chlamydia infection, consistent with a B cell-specific role of Rab7. Indeed, B cells and plasma cells were inherently sensitive to Rab7 gene knockout or Rab7 activity inhibition in class switching and survival, respectively, whereas proliferation/survival of B cells and generation of plasma cells were not affected. Impairment of NF-κB activation upon Rab7 inhibition, together with the rescue of B cell class switching and plasma cell survival by enforced NF-κB activation, indicated that Rab7 mediates these processes by promoting NF-κB activation, likely through signal transduction on intracellular membrane structures. Thus, a single Rab7-inhibiting small molecule can target two stages of B cell differentiation to dampen the pathogenic autoantibody response in lupus.
Collapse
Affiliation(s)
- Tonika Lam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Dennis V Kulp
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Rui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Zheng Lou
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Julia Taylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Carlos E Rivera
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Hui Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Qi Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Zhonghua Wang
- Department of Biochemistry, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Dmitri N Ivanov
- Department of Biochemistry, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Paolo Casali
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| |
Collapse
|
64
|
Carson WF, Kunkel SL. Regulation of Cellular Immune Responses in Sepsis by Histone Modifications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 106:191-225. [PMID: 28057212 DOI: 10.1016/bs.apcsb.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe sepsis, septic shock, and related inflammatory syndromes are driven by the aberrant expression of proinflammatory mediators by immune cells. During the acute phase of sepsis, overexpression of chemokines and cytokines drives physiological stress leading to organ failure and mortality. Following recovery from sepsis, the immune system exhibits profound immunosuppression, evidenced by an inability to produce the same proinflammatory mediators that are required for normal responses to infectious microorganisms. Gene expression in inflammatory responses is influenced by the transcriptional accessibility of the chromatin, with histone posttranslational modifications determining whether inflammatory gene loci are set to transcriptionally active, repressed, or poised states. Experimental evidence indicates that histone modifications play a central role in governing the cytokine storm of severe sepsis, and that aberrant chromatin modifications induced during the acute phase of sepsis may mediate chronic immunosuppression in sepsis survivors. This review will focus on the role of histone modifications in governing immune responses in severe sepsis, with an emphasis on specific leukocyte subsets and the histone modifications observed in these cells during chronic stages of sepsis. Additionally, the expression and function of chromatin-modifying enzymes (CMEs) will be discussed in the context of severe sepsis, as potential mediators of epigenetic regulation of gene expression in sepsis responses. In summary, this review will argue for the use of chromatin modifications and CME expression in leukocytes as potential biomarkers of immunosuppression in patients with severe sepsis.
Collapse
Affiliation(s)
- W F Carson
- University of Michigan Medical School, Ann Arbor, MI, United States.
| | - S L Kunkel
- University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
65
|
Shen T, Sanchez HN, Zan H, Casali P. Genome-Wide Analysis Reveals Selective Modulation of microRNAs and mRNAs by Histone Deacetylase Inhibitor in B Cells Induced to Undergo Class-Switch DNA Recombination and Plasma Cell Differentiation. Front Immunol 2015; 6:627. [PMID: 26697020 PMCID: PMC4677488 DOI: 10.3389/fimmu.2015.00627] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
As we have suggested, epigenetic factors, such as microRNAs (miRNAs), can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase (HDAC) inhibitors (HDI) inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR), somatic hypermutation (SHM), and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J Immunol 193:5933-5950, 2014). To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b, and miR-361, which target Aicda, and miR-23b, miR-30a, and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell). Only 18 (0.36%) of these highly expressed mRNAs, including Aicda, Prdm1, and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30%) of the highly expressed mRNAs were upregulated (more than twofold) by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting, or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or apoptosis. Our findings indicate that, in B cells induced to undergo CSR and plasma cell differentiation, HDI modulate selected miRNAs and mRNAs, possibly as a result of HDACs existing in unique contexts of HDAC/cofactor complexes, as occurring in B lymphocytes, particularly when in an activated state.
Collapse
Affiliation(s)
- Tian Shen
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Helia N Sanchez
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| |
Collapse
|