51
|
The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr Polym 2020; 250:116942. [DOI: 10.1016/j.carbpol.2020.116942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
|
52
|
Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed Pharmacother 2020; 130:110539. [DOI: 10.1016/j.biopha.2020.110539] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
|
53
|
Lin YL, Shih C, Cheng PY, Chin CL, Liou AT, Lee PY, Chiang BL. A Polysaccharide Purified From Ganoderma lucidum Acts as a Potent Mucosal Adjuvant That Promotes Protective Immunity Against the Lethal Challenge With Enterovirus A71. Front Immunol 2020; 11:561758. [PMID: 33117346 PMCID: PMC7550786 DOI: 10.3389/fimmu.2020.561758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
Enterovirus A71 (EV-A71), the pathogen responsible for the seasonal hand-foot-and-mouth epidemics, can cause significant mortality in infants and young children. The vaccine against EV-A71 could potentially prevent virus-induced neurological complications and mortalities occurring due to the high risk of poliomyelitis-like paralysis and fatal encephalitis. It is known that polysaccharide purified from Ganoderma lucidum (PS-G) can effectively modulate immune function. Here, we used PS-G as an adjuvant with the EV-A71 mucosal vaccine and studied its effects. Our data showed that PS-G-adjuvanted EV-A71 generated significantly better IgA and IgG in the serum, saliva, nasal wash, bronchoalveolar lavage fluid (BALF), and feces. More importantly, these antibodies could neutralize the infectivity of EV-A71 (C2 genotype) and cross-neutralize the B4, B5, and C4 genotypes of EV-A71. In addition, more EV-A71-specific IgA- and IgG- secreting cells were observed with the used of a combination of EV-A71 and PS-G. Furthermore, T-cell proliferative responses and IFN-γ and IL-17 secretions levels were notably increased in splenocytes when the EV-A71 vaccine contained PS-G. We also found that levels of IFN-γ and IL-17 released in Peyer's patch cells were significantly increased in EV-A71, after it was combined with PS-G. We further demonstrated that both CD4+ and CD8+ T cells were able to generate IFN-γ and IL-17 in the spleen. An easy-accessed model of hybrid hSCARB2+/+/stat-1-/- mice was used for EV-A71 infection and pathogenesis. We infected the mouse model with EV-A71, which was premixed with mouse sera immunized with the EV-A71 vaccine with or without PS-G. Indeed, in the EV-A71 + PS-G group, the levels of VP1-specific RNA sequences in the brain, spinal cord, and muscle decreased significantly. Finally, hSCARB2-Tg mice immunized via the intranasal route with the PS-G-adjuvanted EV-A71 vaccine resisted a subsequent lethal oral EV-A71 challenge. Taken together, these results demonstrated that PS-G could potentially be used as an adjuvant for the EV-A71 mucosal vaccine.
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiaho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Li Chin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Ting Liou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yi Lee
- Good Health Food Co., Ltd., Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
54
|
He J, Zhang W, Di T, Meng J, Qi Y, Li G, Zhang Y, Su H, Yan W. Water extract of sporoderm-broken spores of Ganoderma lucidum enhanced pd-l1 antibody efficiency through downregulation and relieved complications of pd-l1 monoclonal antibody. Biomed Pharmacother 2020; 131:110541. [PMID: 33152901 DOI: 10.1016/j.biopha.2020.110541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Osteosarcoma is a malignant musculoskeletal tumor with early metastasis and a poor prognosis, especially in adolescents. Ganoderma lucidum (Leyss. Ex Fr.) Karst (G. lucidum), a traditional East Asian medicine, has been reported to play a critical role in antitumor and immunomodulatory activity. The aim of this study was to investigate the effects and molecular mechanisms of water extract of sporoderm-broken spores of G. lucidum (BSGWE) on osteosarcoma PD-L1 (programmed cell death-ligand 1) transcriptional regulation, efficacy enhancement, and side effect remission. METHODS The antitumor effects on cell proliferation of BSGWE in osteosarcoma cells were detected by apoptosis flow cytometry, and the migration ability of HOS and K7M2 cells were evaluated by cell scratch assay. Potential signaling regulation of PD-L1 was detected by western blotting. To confirm the signaling pathway of BSGWE-related PD-L1 downregulation, a pho-STAT3 turnover experiment was carried out. Colivelin was administered as a pho-STAT3 activator to rescue the BSGWE-induced PD-L1 inhibition. To further study in vivo signaling, in a Balb/c osteosarcoma allograft model, tumor volume was measured using an in vivo bioluminescence imaging system. The body weight curve and tumor volume curve were analyzed to reveal the remission effects of BSGWE on PD-L1 antibody-related body weight loss and its immunomodulatory effects on the osteosarcoma and spleen. The PD-L1 expression level and expression of related transcription-factor pho-STAT3 in tumor cells and spleens were assessed by IHC analysis. RESULTS BSGWE suppressed the proliferation and migration of osteosarcoma cells in vitro via induction of apoptosis. In addition, BSGWE downregulated PD-L1 expression and related STAT3 (signal transducers and activators of transcription) phosphorylation levels in a dose-dependent manner. Western blotting and qRT-PCR assay revealed that BSGWE downregulated PD-L1 expression by inhibiting STAT3 phosphorylation. A turnover experiment showed that colivelin administration could rescue PD-L1 inhibition via pho-STAT3 activation. BSGWE not only downregulated PD-L1 expression via the STAT3 pathway in an allograft Balb/c mouse model, but also relieved complications including weight loss and spleen atrophy in a mouse monoclonal antibody therapy model on the basis of its traditional advantages in immune enhancement. CONCLUSION BSGWE downregulated PD-L1 expression via pho-STAT3 inhibition of protein and RNA levels. BSGWE enhanced PD-L1 antibody efficacy via phosphorylated STAT3 downregulation in vitro and in vivo. BSGWE also relieved complications of weight loss and spleen atrophy in a murine allograft osteosarcoma immune checkpoint blockade therapy model.
Collapse
Affiliation(s)
- Jiaming He
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Wenkan Zhang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Tuoyu Di
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Jiahong Meng
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Yiying Qi
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Guoqi Li
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Yuxiang Zhang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Hang Su
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| | - Weiqi Yan
- The Second Affiliated Hospital Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China; Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| |
Collapse
|
55
|
Su H, Liu J, Wu G, Long Z, Fan J, Xu Z, Liu J, Yu Z, Cao M, Liao N, Peng J, Yu W, Li W, Wu H, Wang X. Homeostasis of gut microbiota protects against polychlorinated biphenyl 126-induced metabolic dysfunction in liver of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137597. [PMID: 32143051 DOI: 10.1016/j.scitotenv.2020.137597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure is closely associated with the prevalence of metabolic diseases, including fatty liver and dyslipidemia. Emerging literature suggests that disturbance of gut microbiota is related to PCB126-induced metabolic disorders. However, the causal role of dysbiosis in PCB126-induced fatty liver is still unknown. To clarify the role of the gut microbiome in the detoxification of PCB126 in intestine or PCB126-induced toxicity in liver, mice were administrated with drinking water containing antibiotics (ampicillin, vancomycin, neomycin, and metronidazole) or Inulin. We showed that PCB126 resulted in significant hepatic lipid accumulation, inflammation, and fibrosis. PCB126, Antibiotics, and Inulin significantly affected the structure and shifted community membership of gut microbiome. 7 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways at level 2 and 39 KEGG pathways at level 3 were significantly affected. Antibiotics alleviated PCB126-induced fibrosis in the liver but increased inflammation. Inulin treatment ameliorated both inflammation and fibrosis in the liver of PCB126-treated mice. Neither Antibiotics nor Inulin had significant effect on PCB126-induced hepatic steatosis. The more specific intervention of gut microbiota is needed to alleviate PCB126-induced fatty liver. These data demonstrate that homeostasis of gut microbiota is critical for the defense against PCB126 toxicity and dysbiosis plays a fundamental role in the development of inflammation and fibrosis in liver of PCB126-treated mice.
Collapse
Affiliation(s)
- Hongfei Su
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Guangyuan Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Junshu Fan
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zhongrui Xu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jiawei Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zhongtian Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Nai Liao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China.
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China.
| |
Collapse
|
56
|
Cheung MK, Yue GGL, Chiu PWY, Lau CBS. A Review of the Effects of Natural Compounds, Medicinal Plants, and Mushrooms on the Gut Microbiota in Colitis and Cancer. Front Pharmacol 2020; 11:744. [PMID: 32499711 PMCID: PMC7243258 DOI: 10.3389/fphar.2020.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
The human gastrointestinal tract harbors a diverse array of microorganisms that play fundamental roles in health and disease. Imbalance in the gut microbiota, namely dysbiosis, can lead to various diseases, including cancer and gastrointestinal tract disorders. Approaches to improve gut dysbiosis, such as dietary intervention, intake of probiotics, and fecal microbiota transplantation are emerging strategies to treat these diseases. Various medicinal botanicals have reported anti-cancer and/or anti-inflammatory properties. Preclinical studies have illustrated that some of these natural products are also capable to modulate the gut microbiota, suggesting their use as possible alternative approach to improve gut dysbiosis and thereby assist diseases treatment. In this review article, we have summarized the current knowledge on the effects of natural compounds, medicinal plants, and mushrooms on the gut microbiota in various cancers and colitis in preclinical animal models. Challenges towards the clinical use of these medicinal botanicals as modulators of the gut microbiota in cancer and colitis treatment are also discussed.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Philip Wai Yan Chiu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
57
|
Shen SF, Zhu LF, Wu Z, Wang G, Ahmad Z, Chang MW. Extraction of triterpenoid compounds from Ganoderma Lucidum spore powder through a dual-mode sonication process. Drug Dev Ind Pharm 2020; 46:963-974. [PMID: 32363953 DOI: 10.1080/03639045.2020.1764022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Development of drug products from natural sources enable advantageous treatment and therapy options. Bioactive compounds in Ganoderma lucidum spore powder (GLSP) are known for vast antibacterial, antioxidant and anti-cancer properties. Herein, we studied the use of dual-probe ultrasound to extract triterpenoids from GLSP and further investigated the bioactivity of resulting products. FTIR results confirm the presence of key peaks although dual-probe ultrasound varied extraction efficacy. Response surface methodology (RSM) was used to optimize extraction conditions (55:28 for solvent to solid ratio, 10.38 s of ultrasound time and 94% v/v of ethanol concentration). HPLC-Q-TOF-MS confirmed the presence of nine different compounds and in vitro tests confirm good biocompatibility. Extracts are shown to inhibit DPPH radicals, reaching a maximum (61.09 ± 1.38%) at triterpenoid concentrations of 600 µg/mL. Dual-mode assisted extraction provides an enhanced approach for active embedded fiber production on a scale favorable to industry when using optimized process parameters. Furthermore, triterpenoid extracts show antibacterial properties on Staphylococcus aureus and Escherichia coli with potential in antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Shuang-Fei Shen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, PR China
| | - Li-Fang Zhu
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, PR China
| | - Zijing Wu
- Tianhe Agricultural Group, Longquan City, Zhejiang, PR China
| | - Guangkun Wang
- Tianhe Agricultural Group, Longquan City, Zhejiang, PR China
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, UK
| |
Collapse
|
58
|
Chen J, Mao Y, Xing C, Hu R, Xu Z, Cao H, Luo J. Traditional Chinese Medicine Prescriptions Decrease Diarrhea Rate by Relieving Colonic Inflammation and Ameliorating Caecum Microbiota in Piglets. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3647525. [PMID: 32351595 PMCID: PMC7178461 DOI: 10.1155/2020/3647525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 11/23/2022]
Abstract
Diarrhea is a leading cause of death in piglets. XiaoJianZhong (XJZ) and Jingsananli-sepsis (JSS) were two traditional Chinese medicine (TCM) prescriptions to prevent and treat intestinal diseases, including diarrhea and inflammatory disease. Here, we investigated the effects of XJZ and JSS on diarrhea rate, growth performance, colonic inflammation, and caecum microbiota in piglets. A total of 18 piglets were selected and randomly divided into three groups. Control group was supplied with basal diets, while TCM1 and TCM2 groups were, respectively, supplied with XJZ and JSS in basal diets. Decreased diarrhea rate, colonic or caecal pH, and elevated apparent nutrient digestibility were observed in both TCM groups. Meanwhile, both prescriptions alleviated colonic inflammation by decreasing mRNA expression of proinflammatory cytokines and suppressing the TLR4/MyD88/NF-κB signaling pathway. Additionally, TCM1 and TCM2 prescriptions ameliorated caecum microbiota composition and increased the abundance of beneficial bacteria, together with regulations on several genes that are responsible for signaling pathways involved in cancers and metabolic diseases. Importantly, both TCM1 and TCM2 significantly promoted the average daily gain (ADG) and reduced the feed : gain (F : G) ratio. In conclusion, both TCM prescriptions effectively decreased diarrhea rate and increased growth performance by elevating apparent nutrient digestibility and gut health, via relieving colonic inflammation and ameliorating gut microbiota composition of piglets.
Collapse
Affiliation(s)
- Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yaqing Mao
- China Institute of Veterinary Drug Control (MOA Center for Veterinary Drug Evaluation), Beijing, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University Dayton, Dayton, OH 45435, USA
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
59
|
Gan Y, Ai G, Wu J, Luo H, Chen L, Huang Q, Wu X, Xu N, Li M, Su Z, Liu Y, Huang X. Patchouli oil ameliorates 5-fluorouracil-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112519. [PMID: 31883475 DOI: 10.1016/j.jep.2019.112519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/26/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pogostemon cablin, commonly named "Guang-Huo-Xiang" in China, has long been renowned for its ability to dispel dampness and regulate gastrointestinal functions. Patchouli oil (P.oil), the major active fraction of Pogostemon cablin, has been traditionally used as the principal component of Chinese medicinal formulae to treat exterior syndrome and diarrhea. However, the effects of P.oil in treating 5-fluorouracil (5-FU)-induced intestinal mucositis have not yet been reported. AIM OF THE STUDY To investigate the protective effects of P.oil against 5-FU-induced intestinal mucositis and the mechanisms underlying these effects. MATERIALS AND METHODS Sprague-Dawley rats were intraperitoneally injected with 5-FU (30 mg/kg) to establish an intestinal mucositis model. Meanwhile, rats with intestinal mucositis were orally administered with P.oil (25, 50, and 100 mg/kg). Histological analysis, ELISA (for detecting inflammatory cytokines and aquaporins), immunohistochemistry analysis (for examining caspases), qRT-PCR analysis (for assessment tight junctions), and western blotting analysis (for the assessment of TLR2/TLR4-MyD88 and VIP-cAMP-PKA signaling pathway-related proteins) were performed to estimate the protective effects of P.oil against intestinal mucositis and the mechanisms underlying these effects. RESULTS The histopathological assessment preliminarily exhibited that P.oil alleviated the 5-FU-induced damage to the intestinal structure. After P.oil administration, the elevation of the expression of cytokines (TNF-α, IFN-γ, and IL-13) decreased markedly and the activation of NF-κB and MAPK signaling was significantly inhibited. P.oil also increased the mRNA expression of ZO-1 and Occludin, thereby stabilizing intestinal barrier. In addition, P.oil decreased the expressions of caspase-8, caspase-3, and Bax, and increased the expression of Bcl-2, thereby reducing the apoptosis of the intestinal mucosa. These results were closely related to the regulation of the TLR2/TLR4-MyD88 signaling pathway. It has been indicated that P.oil possibly protected the intestinal barrier by reducing inflammation and apoptosis. Furthermore, this study showed that P.oil inhibited the abnormal expression of AQP3, AQP7, and AQP11 by regulating the VIP-cAMP-PKA signaling pathway. Furthermore, it restored the intestinal water absorption, thereby alleviating diarrhea. CONCLUSIONS P.oil ameliorated 5-FU-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport.
Collapse
Affiliation(s)
- Yuxuan Gan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Gaoxiang Ai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiazhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Qionghui Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Minyao Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiaoqi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
60
|
Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym 2020; 235:115957. [PMID: 32122493 DOI: 10.1016/j.carbpol.2020.115957] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
The present study aimed to investigate the protective effect of cultured Cordyceps sinensis polysaccharides (CSP) on cyclophosphamide (Cy)-induced intestinal mucosal immunosuppression and microbial dysbiosis in mice. Results showed that CSP stimulated cytokines secretion (IL-12, IFN-γ, IL-4, IL-13, IL-6, IL-17, IL-10, TGF-β3, TNF-α, IL-2, IL-21) and transcription factors production (T-bet, GATA-3, RORγt, Foxp3). TLRs (TLR-2, TLR-4, TLR-6) and NF-κB pathway key proteins (p-IκB-α, NF-κB p65) were also upregulated after CSP administration. Moreover, CSP recovered SCFAs levels which decreased by Cy treatment. Furthermore, 16S rRNA sequencing of fecal samples was performed. α-diversity and β-diversity analysis revealed CSP improved microbial community diversity and modulated the overall structure of gut microbiota. Taxonomic composition analysis found that CSP increased the abundance of probiotics (Lactobacillus, Bifidobacterium, Bacteroides) and decreased pathogenic bacteria (Clostridium, Flexispira). These findings suggested the potential of CSP as a prebiotics to reduce side effects of Cy on intestinal mucosal immunity and gut microbiota.
Collapse
|
61
|
Zhang Y, Lan M, Lü JP, Li JF, Zhang KY, Zhi H, Zhang H, Sun JM. Antioxidant, Anti-inflammatory and Cytotoxic Activities of Polyphenols Extracted from Chroogomphus rutilus. Chem Biodivers 2019; 17:e1900479. [PMID: 31667925 DOI: 10.1002/cbdv.201900479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Chroogomphus rutilus is a rare fungal species that grows under pine trees and is now widely used as a functional food and pharmaceutical product. However, the chemical constituents and biological activities of Chroogomphus rutilus have been relatively limited. The present study aimed at determining the total polyphenols and flavonoids contents, biological activities and main phenolic compounds of Chroogomphus rutilus from different geographical origins at the stipe and pileus. The results suggested that Chroogomphus rutilus polyphenol extracts revealed a higher antioxidant, anti-inflammatory, and cytotoxic activities, and there were significant differences between samples from different locations and regions. Correlation analysis showed that the contents of total polyphenols and flavonoids were significantly correlated with antioxidant and anti-inflammatory activities. However, only the content of total flavonoids was significantly correlated with cytotoxicity, which means that the cytotoxicity of Chroogomphus rutilus polyphenol extracts may be regulated by flavonoids or other compounds. HPLC-DAD analysis revealed that the main phenolic compound was protocatechuic acid, followed by baicalin, p-hydroxyphenylacetic acid and p-hydroxybenzoic acid, but comparing with the pileus extracts, the stipe extracts can be considered as a higher concentration of phenolic compounds. Therefore, antioxidant, anti-inflammatory and cytotoxic activities of Chroogomphus rutilus polyphenol extracts could be due to the identified compounds. This study investigated a deep knowledge about the constituents and activities of Chroogomphus rutilus and provided the reference for its application in food and pharmaceutical.
Collapse
Affiliation(s)
- Ye Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Meng Lan
- Jilin Xin Shui Science and Technology Development Co., Ltd., Changchun, 130117, P. R. China
| | - Jin-Peng Lü
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jing-Feng Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Kai-Yue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Hui Zhi
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| |
Collapse
|
62
|
Geng X, Zhong D, Su L, Lin Z, Yang B. Preventive and therapeutic effect of Ganoderma lucidum on kidney injuries and diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:257-276. [PMID: 32089235 DOI: 10.1016/bs.apha.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ganoderma lucidum (G. lucidum, Lingzhi) is a well-known Chinese traditional medicine to improve health and to treat numerous diseases for over 2000 years in Asian countries. G. lucidum has the abundant chemical components such as triterpenes and polysaccharides, which have various biological activities including anti-oxidation, anti-inflammation, anti-liver disorders, anti-tumor growth and metastasis, etc. Recently, many lines of studies have elucidated the therapeutic effects of G. lucidum and its extractions on various acute kidney injury (AKI) and chronic kidney disease (CKD) pathogenesis, including autosomal dominant polycystic kidney disease, diabetic nephropathy, renal proximal tubular cell oxidative damage and fibrotic process, renal ischemia reperfusion injury, cisplatin-induced renal injury, adriamycin-induced nephropathy, chronic proteinuric renal diseases, etc. Clinical researches also showed potent anti-renal disease bioactivities of G. lucidum. In this chapter, we review experimental and clinical researches and provide comprehensive insights into the renoprotective effects of G. lucidum. In recent years, renal diseases have gradually aroused attention on account of their booming prevalence worldwide and lack of effective therapies. Although the complicated pathogenesis of kidney diseases, such as acute kidney injury (AKI) and chronic kidney diseases (CKD) have been intensively studied. The morbidity and mortality of AKI and CKD still rise continuously. Thanks to the conventional experience and the multi-target characteristics, natural products have been increasingly recognized as an alternative source for treating renal diseases.
Collapse
Affiliation(s)
- Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Dandan Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Limin Su
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zhibin Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|
63
|
Yue SJ, Wang WX, Yu JG, Chen YY, Shi XQ, Yan D, Zhou GS, Zhang L, Wang CY, Duan JA, Tang YP. Gut microbiota modulation with traditional Chinese medicine: A system biology-driven approach. Pharmacol Res 2019; 148:104453. [PMID: 31541688 DOI: 10.1016/j.phrs.2019.104453] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023]
Abstract
With the development of system biology, traditional Chinese medicine (TCM) is drawing more and more attention nowadays. However, there are still many enigmas behind this ancient medical system because of the arcane theory and complex mechanism of actions. In recent decades, advancements in genome sequencing technologies, bioinformatics and culturomics have led to the groundbreaking characterization of the gut microbiota, a 'forgotten organ', and its role in host health and disease. Notably, gut microbiota has been emerging as a new avenue to understanding TCM. In this review, we will focus on the structure, composition, functionality and metabolites of gut microbiota affected by TCM so as to conversely understand its theory and mechanisms. We will also discuss the potential areas of gut microbiota for exploring Chinese material medica waste, Chinese marine material medica, add-on therapy and personalized precise medication of TCM. The review will conclude with future perspectives and challenges of gut microbiota in TCM intervention.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266000, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jin-Gao Yu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Yan
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266000, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
64
|
Researches and Application of Ganoderma Spores Powder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:157-186. [PMID: 31677143 DOI: 10.1007/978-981-13-9867-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ganoderma lucidum spores (GLS) are the mature germ cells of Ganoderma lucidum. They have all the genetic substances and similar active components of Ganoderma lucidum. Similar to the fruiting body of Ganoderma lucidum, ganoderma spores powder has the effect of regulating immunity, antitumor, antioxidation, and protecting cells and so on. In recent decades, with the development of the technology of breaking the wall of Ganoderma lucidum spores and the technology of extracting and preparing, the researches and application of Ganoderma lucidum spores powder have made great progress.
Collapse
|
65
|
Antitumor Effect of Ganoderma (Lingzhi) Mediated by Immunological Mechanism and Its Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:39-77. [DOI: 10.1007/978-981-32-9421-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Su J, Li D, Chen Q, Li M, Su L, Luo T, Liang D, Lai G, Shuai O, Jiao C, Wu Q, Xie Y, Zhou X. Anti-breast Cancer Enhancement of a Polysaccharide From Spore of Ganoderma lucidum With Paclitaxel: Suppression on Tumor Metabolism With Gut Microbiota Reshaping. Front Microbiol 2018; 9:3099. [PMID: 30619178 PMCID: PMC6304348 DOI: 10.3389/fmicb.2018.03099] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence highlights the cardinal role of gut microbiota in tumorigenesis and chemotherapy outcomes. Paclitaxel (PTX), although as a first-line chemotherapy reagent for breast cancer, still requires for improvement on its efficacy and safety due to drug resistance and adverse effects. The present work explored the enhancement of a polysaccharide derived from spore of Ganoderma lucidum (SGP) with PTX in a murine 4T1-breast cancer model. Results showed that the combination of PTX and SGP displayed an improved tumor control, in which mRNA expression of several Warburg effect-related proteins, i.e., glucose transporter 3 (Glut3), lactate dehydrogenase A (Ldha), and pyruvate dehydrogenase kinase (Pdk), and the metabolite profile of tumor was evidently altered. Flowcytometry analysis revealed that the combination treatment recovered the exhausted tumor infiltration lymphocytes (TILs) via inhibiting the expressions of immune checkpoints (PD-1 and Tim-3), while PTX alone evidently increased that of CTLA-4. 16S rRNA sequencing revealed a restoration by the combination treatment on gut microbiota dysbiosis induced by PTX, especially that Bacteroides, Ruminococcus, and other 5 genera were significantly enriched while the cancer-risk genera, Desulfovibrio and Odoribacter, were decreased. Moreover, spearman correlation analysis showed that abundance of Ruminococcus was significantly negative-associated with the amount of frucotose-6-phosphate within the tumor. Collectively, the present study suggests the clinical implication of SGP as an adjuvant candidate for PTX against breast cancer, which possibly relies on the regulation of tumor metabolism and gut microbiota.
Collapse
Affiliation(s)
- Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Qianjun Chen
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Lu Su
- School of Pharmacy and Chemistry, Dali University, Dali, China
| | - Ting Luo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Danling Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Guoxiao Lai
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China.,School of Pharmacy, Guangxi University of Chinese Medicine, Xining, China
| | - Ou Shuai
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Xinxin Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|