51
|
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, Chen J. Dendritic Cells: Versatile Players in Renal Transplantation. Front Immunol 2021; 12:654540. [PMID: 34093544 PMCID: PMC8170486 DOI: 10.3389/fimmu.2021.654540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenxi Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ao Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingwei Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
52
|
Choong WK, Sung TY. Somatic mutation subtypes of lung adenocarcinoma in East Asian reveal divergent biological characteristics and therapeutic vulnerabilities. iScience 2021; 24:102522. [PMID: 34142036 PMCID: PMC8188494 DOI: 10.1016/j.isci.2021.102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) patients in East Asia predominantly harbor oncogenic EGFR mutations. However, there remains a limited understanding of the biological characteristics and therapeutic vulnerabilities of the concurrent mutations of EGFR and other genes in LUAD. Here, we performed comprehensive bioinformatics analyses on 88 treatment-naïve East Asian LUAD patients. Based on somatic mutation clustering, we identified three somatic mutation subtypes: EGFR + TP53 co-mutation, EGFR mutation, and multiple-gene mutation. A proteogenomic analysis among subtypes revealed varying degrees of dysregulation in cell-cycle-related and immune-related processes. An immune-characteristic analysis revealed higher PDL1 protein expression in the EGFR + TP53 co-mutation subtype than in the EGFR mutation subtype, which may affect the therapeutic efficacy of anti-PD-L1 therapy. Moreover, integrating known and potential therapeutic target analysis reveals therapeutic vulnerabilities of specific subtypes and nominates candidate biomarkers for therapeutic intervention. This study provides new biological insight and therapeutic opportunities with respect to EGFR-mutant LUAD subtypes. Comprehensive clustering analysis reveals three somatic mutation subtypes Prognosis of EGFRmut/TP53mut subtype is worse than EGFRmut subtype EGFRmut/TP53mut subtype shows IFN signaling and antigen processing pathway signatures Proteome analysis identifies druggable proteins and candidates for drug repositioning
Collapse
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
53
|
Farrukh H, El-Sayes N, Mossman K. Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cells. Int J Mol Sci 2021; 22:ijms22094893. [PMID: 34063096 PMCID: PMC8124996 DOI: 10.3390/ijms22094893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Programmed cell death protein 1 (PD-1), a receptor on T cells, and its ligand, PD-L1, have been a topic of much interest in cancer research. Both tumour and virus-infected cells can upregulate PD-L1 to suppress cytotoxic T-cell killing. Research on the PD-1/PD-L1 axis has led to the development of anti-PD-1/PD-L1 immune checkpoint blockades (ICBs) as promising cancer therapies. Although effective in some cancer patients, for many, this form of treatment is ineffective due to a lack of immunogenicity in the tumour microenvironment (TME). Despite the development of therapies targeting the PD-1/PD-L1 axis, the mechanisms and pathways through which these proteins are regulated are not completely understood. In this review, we discuss the latest research on molecules of inflammation and innate immunity that regulate PD-L1 expression, how its expression is regulated during viral infection, and how it is modulated by different cancer therapies. We also highlight existing research on the development of different combination therapies with anti-PD-1/PD-L1 antibodies. This information can be used to develop better cancer immunotherapies that take into consideration the pathways involved in the PD-1/PD-L1 axis, so these molecules do not reduce their efficacy, which is currently seen with some cancer therapies. This review will also assist in understanding how the TME changes during treatment, which will provide further rationale for combination therapies.
Collapse
Affiliation(s)
- Hadia Farrukh
- School of Interdisciplinary Science, Faculty of Science, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Karen Mossman
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
54
|
Martikainen M, Ramachandran M, Lugano R, Ma J, Martikainen MM, Dimberg A, Yu D, Merits A, Essand M. IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:37-46. [PMID: 33869741 PMCID: PMC8042242 DOI: 10.1016/j.omto.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 03/14/2021] [Indexed: 12/25/2022]
Abstract
Oncolytic virotherapy holds promise of effective immunotherapy against otherwise nonresponsive cancers such as glioblastoma. Our previous findings have shown that although oncolytic Semliki Forest virus (SFV) is effective against various mouse glioblastoma models, its therapeutic potency is hampered by type I interferon (IFN-I)-mediated antiviral signaling. In this study, we constructed a novel IFN-I-resistant SFV construct, SFV-AM6, and evaluated its therapeutic potency in vitro, ex vivo, and in vivo in the IFN-I competent mouse GL261 glioma model. In vitro analysis shows that SFV-AM6 causes immunogenic apoptosis in GL261 cells despite high IFN-I signaling. MicroRNA-124 de-targeted SFV-AM6-124T selectively replicates in glioma cells, and it can infect orthotopic GL261 gliomas when administered intraperitoneally. The combination of SFV-AM6-124T and anti-programmed death 1 (PD1) immunotherapy resulted in increased immune cell infiltration in GL261 gliomas, including an increased tumor-reactive CD8+ fraction. Our results show that SFV-AM6-124T can overcome hurdles of innate anti-viral signaling. Combination therapy with SFV-AM6-124T and anti-PD1 promotes the inflammatory response and improves the immune microenvironment in the GL261 glioma model.
Collapse
Affiliation(s)
- Miika Martikainen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Corresponding author: Miika Martikainen, Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden.
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jing Ma
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
55
|
Liang Y, Hannan R, Fu YX. Type I IFN Activating Type I Dendritic Cells for Antitumor Immunity. Clin Cancer Res 2021; 27:3818-3824. [PMID: 33692027 DOI: 10.1158/1078-0432.ccr-20-2564] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors are successful immunotherapy modalities that enhance CD8+ T-cell responses. Although T cells are initially primed in draining lymph nodes, the mechanisms that underlie their reactivation inside the tumor microenvironment are less clear. Recent studies have found that not only is the cross-priming of conventional type 1 dendritic cells (cDC1) required to initiate CD8+ T-cell responses during tumor progression, but it also plays a central role in immunotherapy-mediated reactivation of tumor-specific CD8+ T cells for tumor regression. Moreover, many cancer treatment modalities trigger type I IFN responses, which play critical roles in boosting cDC1 cross-priming and CD8+ T-cell reactivation. Inducing type I IFNs within tumors can overcome innate immune resistance and activate antitumor adaptive immunity. Here, we review recent studies on how type I IFN-cDC1 cross-priming reactivates CD8+ T cells and contributes to tumor control by cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Liang
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Raquibul Hannan
- The Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang-Xin Fu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
56
|
Curran CS, Kopp JB. PD-1 immunobiology in glomerulonephritis and renal cell carcinoma. BMC Nephrol 2021; 22:80. [PMID: 33676416 PMCID: PMC7936245 DOI: 10.1186/s12882-021-02257-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Programmed cell death protein (PD)-1 receptors and ligands on immune cells and kidney parenchymal cells help maintain immunological homeostasis in the kidney. Dysregulated PD-1:PD-L1 binding interactions occur during the pathogenesis of glomerulopathies and renal cell carcinoma (RCC). The regulation of these molecules in the kidney is important to PD-1/PD-L1 immunotherapies that treat RCC and may induce glomerulopathies as an adverse event. METHODS The expression and function of PD-1 molecules on immune and kidney parenchymal cells were reviewed in the healthy kidney, PD-1 immunotherapy-induced nephrotoxicity, glomerulopathies and RCC. RESULTS PD-1 and/or its ligands are expressed on kidney macrophages, dendritic cells, lymphocytes, and renal proximal tubule epithelial cells. Vitamin D3, glutathione and AMP-activated protein kinase (AMPK) regulate hypoxic cell signals involved in the expression and function of PD-1 molecules. These pathways are altered in kidney disease and are linked to the production of vascular endothelial growth factor, erythropoietin, adiponectin, interleukin (IL)-18, IL-23, and chemokines that bind CXCR3, CXCR4, and/or CXCR7. These factors are differentially produced in glomerulonephritis and RCC and may be important biomarkers in patients that receive PD-1 therapies and/or develop glomerulonephritis as an adverse event CONCLUSION: By comparing the functions of the PD-1 axis in glomerulopathies and RCC, we identified similar chemokines involved in the recruitment of immune cells and distinct mediators in T cell differentiation. The expression and function of PD-1 and PD-1 ligands in diseased tissue and particularly on double-negative T cells and parenchymal kidney cells needs continued exploration. The possible regulation of the PD-1 axis by vitamin D3, glutathione and/or AMPK cell signals may be important to kidney disease and the PD-1 immunotherapeutic response.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, NIH, BG 10 RM 2C135, 10 Center Drive, Bethesda, MD, 20814, USA.
| | | |
Collapse
|
57
|
Erkhem-Ochir B, Tatsuishi W, Yokobori T, Ohno T, Hatori K, Handa T, Oyama T, Shirabe K, Saeki H, Abe T. Inflammatory and immune checkpoint markers are associated with the severity of aortic stenosis. JTCVS OPEN 2021; 5:1-12. [PMID: 36003161 PMCID: PMC9390628 DOI: 10.1016/j.xjon.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Objective Aortic stenosis (AS) is a disease characterized by narrowing of the aortic valve (AV) orifice. In relation to this disease, the purpose of this study was to elucidate the relationships among factors such as expression of programmed cell death-1 ligand (PD-L1, which is the ligand of PD-1 protein; together, they play a central role in the inhibition of T lymphocyte function), clinicopathologic characteristics, infiltrating immune cells, and disease severity. Methods We performed immunohistochemical analysis on the surgically-resected AVs of 53 patients with AS. We used the resultant data to identify relationships among PD-L1 expression, disease severity, and the infiltration of immune cells including cluster of differentiation (CD8)-positive T lymphocytes, cluster of differentiation 163 (CD163)-positive macrophages, and forkhead box protein 3 (FOXP3)-positive regulatory T lymphocytes (Tregs). Results PD-L1 expression in resected AVs was significantly associated with being nonsmoker, valve calcification, and the infiltration of CD8-positive T cells and CD163-positive macrophages. Disease severity and valve calcification were significantly associated with low infiltration of FOXP3-positive Tregs and high infiltration of CD8-positive T cells and CD163-positive macrophages. Moreover, calcified AVs with high PD-L1 expression showed active inflammation without FOXP3-positive Tregs but with high levels of CD8-positive T lymphocytes and CD163-positive macrophages. Conclusions Immune cell infiltration in the AVs and expression of the immune checkpoint protein PD-L1 were associated with the calcification of AS and disease severity.
Collapse
Affiliation(s)
- Bilguun Erkhem-Ochir
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Wataru Tatsuishi
- Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
- Address for reprints: Takehiko Yokobori, MD, PhD, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi 371-8511, Japan.
| | - Tsukasa Ohno
- Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi, Gunma, Japan
| | - Kyohei Hatori
- Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi, Gunma, Japan
| | - Tadashi Handa
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
- Department of Social Welfare, Gunma University of Health and Welfare, Maebashi, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Tomonobu Abe
- Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
58
|
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with poor prognosis. More than 80% of patients are diagnosed at an advanced stage, and most patients with HCC also have liver cirrhosis that complicates cancer management. No targeted treatment options currently exist outside genomics-based clinical trials. Multiple tyrosine kinase inhibitors (mTKIs) such as sorafenib, lenvatinib, cabozantinib, and regorafenib have been used to treat advanced hepatocellular carcinoma (aHCC). Immune checkpoint inhibitors including nivolumab and pembrolizumab have shown survival benefit. More recently, atezolizumab in combination with bevacizumab resulted in improved overall survival and progression-free survival, compared with sorafenib in patients with aHCC in the first-line setting. The combination of nivolumab with ipilimumab as an alternative in the treatment of patients treated with sorafenib has inspired various combination studies of immune checkpoint inhibitors. Currently, ongoing studies of systemic therapy consist of various immune-based combination therapies. Finally, there is no established adjuvant and neoadjuvant therapy although a few early phase studies show promising results. In this chapter, we summarize current approaches of systemic treatment in patients with liver cancer.
Collapse
Affiliation(s)
- Tarik Demir
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
59
|
Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nat Commun 2021; 12:464. [PMID: 33469015 PMCID: PMC7815729 DOI: 10.1038/s41467-020-20659-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.
Collapse
|
60
|
PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. J Control Release 2021; 331:164-175. [PMID: 33450320 DOI: 10.1016/j.jconrel.2021.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomaterials to induce antigen-specific immune tolerance has shown promise for treating autoimmune diseases. While PEGylation has been widely used to reduce host immune responses to nanomaterials, its tolerogenic potential has not been reported. Here, we report for the first time that a subcutaneous injection of PEGylated poly(lactide-co-glycolide) (PLGA) nanoparticles containing auto-antigen peptide MOG35-55 without any tolerogenic drugs is sufficient to dramatically ameliorate symptoms after disease onset in an antigen-specific manner in a mouse model of multiple sclerosis. Neither free MOG35-55 nor particles without PEG exhibit this efficacy. Interestingly, mechanistic studies indicate that PEGylation of nanoparticles does not reduce dendritic cell activation through direct nanoparticle-cell interactions. Instead, PEGylated nanoparticles induce lower complement activation, neutrophil recruitment, and co-stimulatory molecule expression on dendritic cells around the injection sitecompared to non-PEGylated PLGA nanoparticles, creating a more tolerogenic microenvironment in vivo. We further demonstrate that the locally recruited dendritic cells traffic to lymphoid organs to induce T cell tolerance. These results highlight the critical role of surface properties of nanomaterials in inducing immune tolerance via subcutaneous administration.
Collapse
|
61
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
62
|
Storozynsky Q, Hitt MM. The Impact of Radiation-Induced DNA Damage on cGAS-STING-Mediated Immune Responses to Cancer. Int J Mol Sci 2020; 21:E8877. [PMID: 33238631 PMCID: PMC7700321 DOI: 10.3390/ijms21228877] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is a major modality used to combat a wide range of cancers. Classical radiobiology principles categorize ionizing radiation (IR) as a direct cytocidal therapeutic agent against cancer; however, there is an emerging appreciation for additional antitumor immune responses generated by this modality. A more nuanced understanding of the immunological pathways induced by radiation could inform optimal therapeutic combinations to harness radiation-induced antitumor immunity and improve treatment outcomes of cancers refractory to current radiotherapy regimens. Here, we summarize how radiation-induced DNA damage leads to the activation of a cytosolic DNA sensing pathway mediated by cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING). The activation of cGAS-STING initiates innate immune signaling that facilitates adaptive immune responses to destroy cancer. In this way, cGAS-STING signaling bridges the DNA damaging capacity of IR with the activation of CD8+ cytotoxic T cell-mediated destruction of cancer-highlighting a molecular pathway radiotherapy can exploit to induce antitumor immune responses. In the context of radiotherapy, we further report on factors that enhance or inhibit cGAS-STING signaling, deleterious effects associated with cGAS-STING activation, and promising therapeutic candidates being investigated in combination with IR to bolster immune activation through engaging STING-signaling. A clearer understanding of how IR activates cGAS-STING signaling will inform immune-based treatment strategies to maximize the antitumor efficacy of radiotherapy, improving therapeutic outcomes.
Collapse
Affiliation(s)
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| |
Collapse
|
63
|
Wang Y, Petrikova E, Gross W, Sticht C, Gretz N, Herr I, Karakhanova S. Sulforaphane Promotes Dendritic Cell Stimulatory Capacity Through Modulation of Regulatory Molecules, JAK/STAT3- and MicroRNA-Signaling. Front Immunol 2020; 11:589818. [PMID: 33193420 PMCID: PMC7661638 DOI: 10.3389/fimmu.2020.589818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction The broccoli isothiocyanate sulforaphane was shown to inhibit inflammation and tumor progression, also in pancreatic cancer, while its effect on tumor immunity is poorly understood. We investigated the immunoregulatory effect of sulforaphane on human dendritic cells alone and in presence of pancreatic tumor antigens, as well as underlying molecular mechanisms. Methods Sulforaphane-treated human dendritic cells were matured in vitro with a cytokine cocktail, and the expression of regulatory molecules was examined by flow cytometry. The subsequent T-cell response was analyzed by T-cell proliferation assay and CD25 expression. To confirm the findings, dendritic cells pulsed with pancreatic cancer-derived tumor antigens were used. To identify the involved pathway- and microRNA-signaling in sulforaphane-treated dendritic cells, inhibitors of various signaling pathways, western blot analysis, microRNA array, and bioinformatic analysis were applied. Results Sulforaphane modulated the expression of the costimulatory CD80, CD83 and the suppressive B7-H1 molecules on dendritic cells and thereby promoted activation of T cells. The effect was verified in presence of pancreatic tumor antigens. Phosphorylation of STAT3 in dendritic cells was diminished by sulforaphane, and the inhibition of JAK/STAT3 led to downregulation of B7-H1 expression. Among the identified top 100 significant microRNA candidates, the inhibition of miR-155-5p, important for the expression of costimulatory molecules, and the induction of miR-194-5p, targeting the B7-H1 gene, were induced by sulforaphane. Conclusion Our findings demonstrate that sulforaphane promotes T-cell activation by dendritic cells through the modulation of regulatory molecules, JAK/STAT3- and microRNA-signaling in healthy conditions and in context of pancreatic cancer-derived antigens. They explore the immunoregulatory properties of sulforaphane and justify further research on nutritional strategies in the co-treatment of cancer.
Collapse
Affiliation(s)
- Yangyi Wang
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Emilia Petrikova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
64
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
65
|
Robichon K, Maiwald T, Schilling M, Schneider A, Willemsen J, Salopiata F, Teusel M, Kreutz C, Ehlting C, Huang J, Chakraborty S, Huang X, Damm G, Seehofer D, Lang PA, Bode JG, Binder M, Bartenschlager R, Timmer J, Klingmüller U. Identification of Interleukin1β as an Amplifier of Interferon alpha-induced Antiviral Responses. PLoS Pathog 2020; 16:e1008461. [PMID: 33002089 PMCID: PMC7553310 DOI: 10.1371/journal.ppat.1008461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/13/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1β). Consistently, we found that IL1β enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1β receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1β is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies. Innate immune responses contribute to the control of viral infections and the induction of interferon alpha (IFNα)-mediated antiviral responses is an important component. However, IFNα induces a multitude of antiviral response genes and the expression dynamics of these genes can be classified as early, intermediate and late. Here we show, based on a mathematical modeling approach, that mRNA stability as well as the negative regulator IRF2 control the expression dynamics of IFNα-induced antiviral genes. Knock-down of IRF2 resulted in the amplified IFNα-mediated induction of the antiviral genes and this amplified expression of antiviral genes could be functionally mimicked by co-stimulation with IFNα and IL1β. We observed that co-stimulation with IFNα and IL1β enhanced the repression of virus replication and that knock-out of the IL1 receptor in mice resulted in increased replication of a virus sensitive to IFNα. In sum, our studies identified IL1β as an important amplifier of IFNα-induced antiviral responses.
Collapse
Affiliation(s)
- Katharina Robichon
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Maiwald
- Institute for Physics, University of Freiburg, Germany.,FDM-Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annette Schneider
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Salopiata
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melissa Teusel
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Kreutz
- Institute for Physics, University of Freiburg, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Jun Huang
- Department of Molecular Medicine II, University Hospital, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Sajib Chakraborty
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Xiaoyun Huang
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany and Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, Berlin, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany and Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, Berlin, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, University Hospital, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Jens Timmer
- Institute for Physics, University of Freiburg, Germany.,FDM-Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
66
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
67
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
68
|
Beauford SS, Kumari A, Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol 2020; 21:18. [PMID: 32299365 PMCID: PMC7164225 DOI: 10.1186/s12865-020-00349-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The use of immunotherapy strategies for the treatment of advanced cancer is rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing escape from immune attack. The use of ionizing radiation as a treatment for cancer has been shown to enhance anti-tumor immunity by several mechanisms including immunogenic tumor cell death and phenotypic modulation of tumor cells. Less is known about the impact of radiation directly on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on human TREG viability, phenotype, and suppressive activity. RESULTS Both natural and TGF-β1-induced CD4+ TREG cells exhibited increased resistance to radiation (10 Gy) as compared to CD4+ conventional T cells. Treatment, however, decreased Foxp3 expression in natural and induced TREG cells and the reduction was more robust in induced TREGS. Radiation also modulated the expression of signature iTREG molecules, inducing increased expression of LAG-3 and decreased expression of CD25 and CTLA-4. Despite the disconcordant modulation of suppressive molecules, irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells. CONCLUSIONS Our findings demonstrate that while human TREG cells are more resistant to radiation-induced death, treatment causes downregulation of Foxp3 expression, as well as modulation in the expression of TREG signature molecules associated with suppressive activity. Functionally, irradiated TGF-β1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data suggest that doses of radiotherapy in the hypofractionated range could be utilized to effectively target and reduce TREG activity, particularly when used in combination with cancer immunotherapies.
Collapse
Affiliation(s)
- Samantha S Beauford
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
69
|
Liu Y, Ma J, Yang Y, Liu L, Zhu G, Wang X, Wang S, Guo W, Yue Q, Zhao T, Li C, Gao T, Shi Q. Impact of Interferon-alpha1b (IFN-α1b) on Antitumor Immune Response: An Interpretation of the Promising Therapeutic Effect of IFN-alpha1b on Melanoma. Med Sci Monit 2020; 26:e922790. [PMID: 32210221 PMCID: PMC7092668 DOI: 10.12659/msm.922790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
<strong>BACKGROUND</strong> Melanoma is among the most aggressive forms of cancer. Our latest retrospective analysis showed that recombinant human interferon-alpha1b (IFN-alpha1b) led to significantly prolonged survival with mild toxicity in patients with stage IV melanoma. Based on this clinical finding, the current study sought to investigate the influence of IFN-alpha1b on the antitumor immunity of melanoma, with interferon-alpha2b (IFN-alpha2b) used as a control. <strong>MATERIAL AND METHODS</strong> Peripheral blood mononuclear cells were stimulated with culture medium alone, or medium supplemented with IFN-alpha1b or IFN-alpha2b. Flow cytometry and lactate dehydrogenase release assays were used to evaluate cytotoxic effects. Flow cytometry and enzyme-linked immunospot assays were used to analyze immunoregulatory effects on natural killer (NK) cells, natural killer T (NKT) cells, CD3⁺CD8⁺ T cells, and melanoma cells. Cell Counting Kit-8 assay was performed to measure the effect on proliferation of melanoma cells <i>in vitro</i>. <strong>RESULTS</strong> IFN-alpha1b enhanced the activity of NK cells, NKT cells, and CD3⁺CD8⁺ T cells from melanoma patients. Compared with IFN-alpha2b, IFN-alpha1b induced a relatively lower level of programmed cell death-ligand 1 (PD-L1) in melanoma cells without affecting the expression of PD-L1 in CD3⁺CD8⁺ T cells. Additionally, IFN-alpha1b showed a much stronger inhibition of the proliferation of melanoma cells than IFN-alpha2b. <strong>CONCLUSIONS</strong> IFN-alpha1b has an immunostimulatory activity similar to IFN-alpha2b and possesses milder adverse effects on immune checkpoints and stronger inhibitory effects on melanoma cell growth than IFN-alpha2b. Therefore, IFN-alpha1b is a promising drug for the treatment of melanoma.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Xiaoxia Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Shiyu Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Qiao Yue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
70
|
ISG15 pathway knockdown reverses pancreatic cancer cell transformation and decreases murine pancreatic tumor growth via downregulation of PDL-1 expression. Cancer Immunol Immunother 2019; 68:2029-2039. [PMID: 31709456 PMCID: PMC9886270 DOI: 10.1007/s00262-019-02422-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023]
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15 kDa protein induced by type I interferons (IFN-α and IFN-β) and is a member of the ubiquitin-like superfamily of proteins. The ISG15 pathway is highly expressed in various malignancies, including pancreatic ductal adenocarcinoma (PDAC), suggesting a potential role of the ISG15 pathway (free ISG15 and ISG15 conjugates) in pancreatic carcinogenesis. However, very little is known about how the ISG15 pathway may contribute to pancreatic tumorigenesis. In the current study, we demonstrate that ISG15 pathway knockdown reverses the KRAS-associated phenotypes of PDAC cells such as increased proliferation and colony formation. Furthermore, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated ISG15 knockdown decreased tumor programmed death ligand-1 (PDL-1) expression leading to increased number of CD8+ tumor-infiltrating lymphocytes and decreased pancreatic tumor growth. In addition, the syngeneic subcutaneous mouse model revealed that knocking down the ISG15 pathway significantly decreased the rate of tumor incidence and increased the survival rate. Interestingly, the ISG15 knockdown-mediated PDL-1 downregulation in pancreatic tumors increased the efficacy of anti-programmed cell death protein-1 (PD-1) treatment. ISG15 knockdown in combination with anti-PD-1 treatment synergistically increased the number of CD8+ tumor-infiltrating lymphocytes. Additionally, ISG15 knockdown alone significantly decreased the number of tumor-infiltrating regulatory T cells (Tregs) compared to wild type tumors treated with anti-PD-1 antibody. Overall, these findings suggest that strategies to target the ISG15 pathway by itself or in combination with immunotherapy may lead to improved survival for patients diagnosed with PDAC.
Collapse
|
71
|
Metzger P, Kirchleitner SV, Kluge M, Koenig LM, Hörth C, Rambuscheck CA, Böhmer D, Ahlfeld J, Kobold S, Friedel CC, Endres S, Schnurr M, Duewell P. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. J Immunother Cancer 2019; 7:288. [PMID: 31694706 PMCID: PMC6836385 DOI: 10.1186/s40425-019-0778-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background The tumor microenvironment (TME) combines features of regulatory cytokines and immune cell populations to evade the recognition by the immune system. Myeloid-derived suppressor cells (MDSC) comprise populations of immature myeloid cells in tumor-bearing hosts with a highly immunosuppressive capacity. We could previously identify RIG-I-like helicases (RLH) as targets for the immunotherapy of pancreatic cancer inducing immunogenic tumor cell death and type I interferons (IFN) as key mediators linking innate with adaptive immunity. Methods Mice with orthotopically implanted KrasG12D p53fl/R172H Ptf1a-Cre (KPC) pancreatic tumors were treated intravenously with the RLH ligand polyinosinic-polycytidylic acid (poly(I:C)), and the immune cell environment in tumor and spleen was characterized. A comprehensive analysis of the suppressive capacity as well as the whole transcriptomic profile of isolated MDSC subsets was performed. Antigen presentation capability of MDSC from mice with ovalbumin (OVA)-expressing tumors was investigated in T cell proliferation assays. The role of IFN in MDSC function was investigated in Ifnar1−/− mice. Results MDSC were strongly induced in orthotopic KPC-derived pancreatic cancer, and frequencies of MDSC subsets correlated with tumor weight and G-CSF serum levels, whereas other immune cell populations decreased. Administration of the RLH-ligand induced a IFN-driven immune response, with increased activation of T cells and dendritic cells (DC), and a reduced suppressive capacity of both polymorphonuclear (PMN)-MDSC and monocytic (M)-MDSC fractions. Whole transcriptomic analysis confirmed an IFN-driven gene signature of MDSC, a switch from a M2/G2- towards a M1/G1-polarized phenotype, and the induction of genes involved in the antigen presentation machinery. Nevertheless, MDSC failed to present tumor antigen to T cells. Interestingly, we found MDSC with reduced suppressive function in Ifnar1-deficient hosts; however, there was a common flaw in immune cell activation, which was reflected by defective immune cell activation and tumor control. Conclusions We provide evidence that the treatment with immunostimulatory RNA reprograms the TME of pancreatic cancer by reducing the suppressive activity of MDSC, polarizing myeloid cells into a M1-like state and recruiting DC. We postulate that tumor cell-targeting combination strategies may benefit from RLH-based TME remodeling. In addition, we provide novel insights into the dual role of IFN signaling in MDSC’s suppressive function and provide evidence that host-intrinsic IFN signaling may be critical for MDSC to gain suppressive function during tumor development.
Collapse
Affiliation(s)
- Philipp Metzger
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Sabrina V Kirchleitner
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Michael Kluge
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Lars M Koenig
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Christine Hörth
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Carlotta A Rambuscheck
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Daniel Böhmer
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Julia Ahlfeld
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany. .,Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
72
|
Munir S, Lundsager MT, Jørgensen MA, Hansen M, Petersen TH, Bonefeld CM, Friese C, Met Ö, Straten PT, Andersen MH. Inflammation induced PD-L1-specific T cells. Cell Stress 2019; 3:319-327. [PMID: 31656949 PMCID: PMC6789434 DOI: 10.15698/cst2019.10.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PD-L1-specific T cells are a natural part of the T-cell repertoire in humans. Hence, we have previously described spontaneous CD8+ and CD4+ T-cell reactivity against PD-L1 in the peripheral blood of patients with various cancers as well as in healthy donors. It is well described that the expression of the PD-L1 protein is introduced in cells by pro-inflammatory cytokines, e.g. IFN-γ. In the current study, we were able to directly link inflammation with PD-L1-specific T cells by showing that inflammatory mediators such as IFN-γ generate measurable numbers of PD-L1-specific T cells in human PBMCs as well as in in vivo models. These PD-L1-specific T cells can vigorously modulate the cell compartments of the local environment. PD-L1-specific T cells may be important for immune homeostasis by sustaining the ongoing inflammatory response by the suppression of regulatory cell function both directly and indirectly.
Collapse
Affiliation(s)
- Shamaila Munir
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Mia Thorup Lundsager
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Mia Aabroe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Trine Hilkjær Petersen
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menne Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,IO Biotech ApS, DK-2200 Copenhagen, Denmark
| |
Collapse
|
73
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
74
|
Guo J, Xiao Y, Iyer R, Lu X, Lake M, Ladror U, Harlan J, Samanta T, Tomlinson M, Bukofzer G, Donawho C, Shoemaker A, Huang TH. Empowering therapeutic antibodies with IFN-α for cancer immunotherapy. PLoS One 2019; 14:e0219829. [PMID: 31393905 PMCID: PMC6687177 DOI: 10.1371/journal.pone.0219829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Type 1 IFNs stimulate secretion of IP-10 (CXCL10) which is a critical chemokine to recruit effector T cells to the tumor microenvironment and IP-10 knockout mice exhibit a phenotype with compromised effector T cell generation and trafficking. Type 1 IFNs also induce MHC class 1 upregulation on tumor cells which can enhance anti-tumor CD8 T cell effector response in the tumor microenvironment. Although type 1 IFNs show great promise in potentiating anti-tumor immune response, systemic delivery of type 1 IFNs is associated with toxicity thereby limiting clinical application. In this study, we fused tumor targeting antibodies with IFN-α and showed that the fusion proteins can be produced with high yields and purity. IFN fusions selectively induced IP-10 secretion from antigen positive tumor cells, which was critical in recruiting the effector T cells to the tumor microenvironment. Further, we found that treatment with the anti-PDL1-IFN- α fusion at concentrations as low as 1 pM exhibited potent activity in mediating OT1 CD8+ T cell killing against OVA expressing tumor cells, while control IFN fusion did not exhibit any activity at the same concentration. Furthermore, the IFN-α fusion antibody was well tolerated in vivo and demonstrated anti-tumor efficacy in an anti-PD-L1 resistant syngeneic mouse tumor model. One of the potential mechanisms for the enhanced CD8 T cell killing by anti-PD-L1 IFN fusion was up-regulation of MHC class I/tumor antigen complex. Our data supports the hypothesis of targeting type 1 IFN to the tumor microenvironment may enhance effector T cell functions for anti-tumor immune response.
Collapse
Affiliation(s)
- Jun Guo
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
| | - Yu Xiao
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
| | - Ramesh Iyer
- Global Protein Sciences, AbbVie Inc., North Chicago, United States of America
| | - Xin Lu
- Genomics Research Center, AbbVie Inc., North Chicago, United States of America
| | - Marc Lake
- Global Protein Sciences, AbbVie Inc., North Chicago, United States of America
| | - Uri Ladror
- Global Protein Sciences, AbbVie Inc., North Chicago, United States of America
| | - John Harlan
- Global Protein Sciences, AbbVie Inc., North Chicago, United States of America
| | - Tanushree Samanta
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
| | - Medha Tomlinson
- Global Biologics, AbbVie Bioresearch Center, Worcester, United States of America
| | - Gail Bukofzer
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
| | - Cherrie Donawho
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
| | - Alex Shoemaker
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
| | - Tzu-Hsuan Huang
- Oncology Discovery, AbbVie Inc., North Chicago, United States of America
- * E-mail: ,
| |
Collapse
|
75
|
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:217-262. [PMID: 31810554 DOI: 10.1016/bs.ircmb.2019.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) facilitate cancer immunosurveillance, antitumor immunity and antitumor efficacy of conventional cell death-inducing therapies (chemotherapy/radiotherapy) as well as immunotherapy. Moreover, it is clear that dendritic cells (DCs) play a significant role in aiding type I IFN-driven immunity. Owing to these antitumor properties several immunotherapies involving, or inducing, type I IFNs have received considerable clinical attention, e.g., recombinant IFNα2 or agonists targeting pattern recognition receptor (PRR) pathways like Toll-like receptors (TLRs), cGAS-STING or RIG-I/MDA5/MAVS. A series of preclinical and clinical evidence concurs that the success of anticancer therapy hinges on responsiveness of both cancer cells and DCs to type I IFNs. In this article, we discuss this link between type I IFNs and DCs in the context of cancer biology, with particular attention to mechanisms behind type I IFN production, their impact on DC driven anticancer immunity, and the implications of this for cancer immunotherapy, including DC-based vaccines.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
76
|
Saleiro D, Platanias LC. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin Immunol 2019; 43:101299. [PMID: 31771762 PMCID: PMC8177745 DOI: 10.1016/j.smim.2019.101299] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023]
Abstract
The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory effects. These cytokines have been conserved through evolution as important elements of the immune surveillance against cancer. Despite this, defining their precise and specific roles in the generation of antitumor responses remains challenging. Emerging evidence suggests the existence of previously unknown roles for IFNs in the control of the immune response against cancer that may redefine our understanding on how these cytokines function. Beyond the engagement of classical JAK-STAT signaling pathways that promote transcription and expression of gene products, the IFNs engage multiple other signaling cascades to generate products that mediate biological responses and outcomes. There is recent emerging evidence indicating that IFNs control the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well understood "intracellular" immune checkpoints whose targeting may define new approaches for the treatment of malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
77
|
Zhou Z, Lin W, Li X, Huang Y, Ren J, Gao Y, Li J. Aberrant Phenotype and Function of Dendritic Cells in Adult B Lineage Acute Lymphoblastic Leukemia. Immunol Invest 2019; 48:781-793. [PMID: 31062637 DOI: 10.1080/08820139.2019.1610428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) play a major role in regulating immune responses, but the aberrant phenotype and function of defective DCs in adult acute lymphoblastic leukemia (ALL) remain unclear. Here, B lineage ALL (B-ALL) patients were divided into groups according to different standards. By course of disease: newly diagnosed (ND), complete remission (CR), consolidation (CONS). By stratification: high risk (HR), standard risk (SR). By minimal residual disease (MRD): MRD positive(MRD+), MRD negative (MRD-). The proportion of plasmacytoid DC(pDC) and myeloid DC(mDC) were compared within these standards. The costimulatory molecule levels of pDC, mDC in ND and CR were measured and the function of peripheral blood monocyte-derived DC(MoDC)s were examined. We found proportions of pDC and mDC in ND were both lower compared to control group and gradually increased after CR. In HR and MRD+, the proportions were also lower compared to SR and MRD- at CR stage, respectively; but there were no difference between these comparisons when newly diagnosed. In ND, both CD80, CD86 levels in pDC, mDC were higher while the levels in activated MoDCs were lower when compared to control and CR group, respectively. The dextran uptake of MoDCs, T cell proliferation promoting ability, IL-12, BAFF, INF-α levels in supernatant and their mRNA relative expression in activated MoDCs in ND were also lower than those in control and CR group. So, DCs in B-ALL display suppressed status in phenotype and function,which would be gradually restored after effective chemotherapy. pDC and mDC could respond to patient condition, DCs proportion may be useful for monitoring disease progression.
Collapse
Affiliation(s)
- Zhenhai Zhou
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Wanyi Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Xiaoyin Li
- Department of Radiology Intervention, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Yuling Huang
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Jun Ren
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Yixin Gao
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| |
Collapse
|
78
|
Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers (Basel) 2019; 11:cancers11040470. [PMID: 30987228 PMCID: PMC6520684 DOI: 10.3390/cancers11040470] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
The immune response, both innate and adaptive, is a key player in cancer development and progression. Plasmacytoid dendritic cells (pDCs) are a subset of dendritic cells that play one of the central roles in the immune system. They are known mostly as the major IFN type I-producing cells upon stimulation of Toll-like receptors 7 and 9. However, based on current knowledge, the functionality of pDCs is very complex, as they have the ability to affect many other cell types. In the context of the tumor tissue, pDCs were mostly described to show substantial functional defects and therefore contribute to the establishement of immunosuppressive tumor microenvironment. Immunotherapeutic approaches have proven to be one of the most promising treatment strategies in the last decade. In view of this fact, it is crucial to map the complexity of the tumor microenvironment in detail, including less numerous cell types. This review focuses on pDCs in relation to solid tumors. We provide a summary of current data on the role of pDCs in different tumor types and suggest their possible clinical applications.
Collapse
|