51
|
MHC class I loss in endometrial carcinoma: a potential resistance mechanism to immune checkpoint inhibition. Mod Pathol 2021; 34:627-636. [PMID: 33011747 DOI: 10.1038/s41379-020-00682-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Major histocompatibility complex (MHC) class I is a membrane-bound protein complex expressed on nucleated human cells. MHC class I presents intracellular protein fragments to cytotoxic T cells and triggers an activation cascade upon neoantigen detection by these cells. MHC class I loss by tumor cells decreases tumor neoantigen presentation to the immune system and therefore represents a possible mechanism of immunotherapeutic resistance even among cancers that otherwise appear to be good candidates for checkpoint inhibition, such as mismatch repair (MMR)-deficient and PD-L1-positive malignancies. We herein assess MHC class I expression in a range of endometrial carcinomas, including MMR-deficient and PD-L1-positive cancers. Immunohistochemical staining for combined MHC class I A-, B-, and C-heavy chains was performed on 76 cases of endometrial carcinoma and was classified as present, subclonally lost, or diffusely lost. Tumoral PD-L1 expression, PD-L1 combined positive score, and CD3-positive T lymphocytes were also quantified. Forty-two percent of tumors showed loss of MHC class I expression, either in a subclonal (26%) or diffuse (16%) pattern. This included 46% of MMR-deficient and 25% of PD-L1-positive cancers. These findings suggest that tumoral MHC class I status may be an important factor to consider when selecting endometrial cancer patients for checkpoint inhibition.
Collapse
|
52
|
Abstract
Natural killer cells are powerful effectors of innate immunity that constitute a first line of defense against cancer. NK cells express an array of germline-encoded receptors which allow them to eliminate transformed cells and spare normal, healthy cells. Owing to their ability to kill circulating tumor cells, NK cells play a major role in the protection against cancer metastases. There is also convincing evidence that NK cells protect against some hematological cancers such as acute myeloid leukemia. However, the importance of NK cells for the control of established solid tumors is rather uncertain. Several mechanisms impede NK cell-mediated elimination of solid tumors, starting with the incapacity of NK cells to infiltrate the core of the tumor. In addition, immune escape mechanisms are at play in both solid and hematological cancers. These include the immunoediting of tumor cells and aberrant chronic inflammation that renders NK cells ineffective. In this chapter, I review the phenotypic characteristics of NK cells within the tumor microenvironment. Furthermore, I describe the mechanisms by which NK cells contribute to antitumor immunity. Finally, I review the different immune-evasion factors that impair NK cell activity against cancer.
Collapse
|
53
|
Alldredge J, Randall L, De Robles G, Agrawal A, Mercola D, Liu M, Randhawa P, Edwards R, McClelland M, Rahmatpanah F. Transcriptome Analysis of Ovarian and Uterine Clear Cell Malignancies. Front Oncol 2020; 10:598579. [PMID: 33415077 PMCID: PMC7784081 DOI: 10.3389/fonc.2020.598579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Ovarian and uterine clear cell carcinomas (CCCs) are rare but associated with poor prognosis. This study explored RNA transcription patterns characteristic of these tumors. EXPERIMENTAL DESIGN RNA sequencing (RNA-seq) of 11 ovarian CCCs and five uterine CCCs was performed and compared to publicly available data from high grade serous ovarian cancers (HGSOCs). Ingenuity Pathway Analyses were performed. CIBERSORT analyses estimated relative fractions of 22 immune cell types in each RNA-seq sample. Sequencing data was correlated with PD-L1 immunohistochemical expression. RESULTS RNA-seq revealed 1,613 downregulated and 1,212 upregulated genes (corrected p < 0.05, |FC |≥10) in ovarian CCC versus HGSOC. Two subgroups were identified in the ovarian CCC, characterized by ethnicity and expression differences in ARID1A. There were 3,252 differentially expressed genes between PD-L1+/- ovarian CCCs, revealing immune response, cell death, and DNA repair networks, negatively correlated with PD-L1 expression, whereas cellular proliferation networks positively correlated with expression. In clear cell ovarian versus clear cell uterine cancer, 1,607 genes were significantly upregulated, and 109 genes were significantly downregulated (corrected p < 0.05, |FC|≥10). Comparative pathway analysis of late and early stage ovarian CCCs revealed unique metabolic and PTEN pathways, whereas uterine CCCs had unique Wnt/Ca+, estrogen receptor, and CCR5 signaling. CIBERSORT analysis revealed that activated mast cells and regulatory T cell populations were relatively enriched in uterine CCCs. The PD-L1+ ovarian CCCs had enriched resting NK cells and memory B cell populations, while PD-L1- had enriched CD8 T-cells, monocytes, eosinophils, and activated dendritic cells. CONCLUSIONS Unique transcriptional expression profiles distinguish clear cell uterine and ovarian cancers from each other and from other more common histologic subtypes. These insights may aid in devising novel therapeutics.
Collapse
Affiliation(s)
- Jill Alldredge
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO, United States
| | - Leslie Randall
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gabriela De Robles
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States
| | - Anshu Agrawal
- Department of Immunology, University of California, Irvine, CA, United States
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States
| | - Marisa Liu
- Department of Obstetrics and Gynecology, University of California, Irvine, CA, United States
| | - Pavneet Randhawa
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, United States
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States
| |
Collapse
|
54
|
Cheng Y, Zhang X, Wang Z, Wang J. Reconstruction of Immune Microenvironment and Signaling Pathways in Endometrioid Endometrial Adenocarcinoma During Formation of Lymphovascular Space Involvement and Lymph Node Metastasis. Front Oncol 2020; 10:595082. [PMID: 33363026 PMCID: PMC7756104 DOI: 10.3389/fonc.2020.595082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background The amplification or mutation of oncogenes and escape from immune surveillance systems promote tumor metastasis. However, subtle changes in the immune microenvironment and signaling pathways are poorly understood during the formation of lymphovascular space involvement (LVSI) and lymph node (LN) metastasis of endometrioid endometrial adenocarcinoma (EEA). Patients and methods We detected tumor immunology-related signaling pathways and immunocyte subtypes according to the mRNA levels of 750 oncogenes and genes relating to the tumor microenvironment and immune response using the Nanostring PanCancer IO 360 Panel in 24 paraffin-embedded tissues of EEAs and benign gynecological diseases. Internal reference genes were used for data normalization. Results Angiogenesis and immune cell adhesion signaling pathways were activated during LVSI formation of EEA progression. However, during the development of LVSI to LN metastasis, immune system signaling pathways were significantly inhibited, including antigen presentation, cytotoxicity, lymphoid compartment, interferon signaling, and costimulatory signaling pathways. Immune-related genes (CD69, HLA-DOA, ATF3, GBP1, AP2, DTX3L, EGR1, GBP4, TAP1, EIF2AK2, MX1, ISG15, STAT1, and HLA-DRA) were significantly downregulated in EEA with LN metastasis compared to those in EEA with LVSI. Instead, hypoxia, metabolic stress, epigenetic regulation, matrix remodeling, and metastasis signaling pathways were continuously activated in LN metastasis. We also found that neutrophils, macrophages, and mast cells might be involved in LVSI formation and LN metastasis in EEA. Conclusions EEA with metastatic LNs showed significant immunosuppressive effects. Some oncogenes, matrix remodeling- and hypoxia-related genes, and neutrophil signatures showed higher expression, suggesting their potential as therapeutic targets and offering new immunotherapy strategies in EEA during LN metastasis.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiaobo Zhang
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
55
|
Cheng H, Zong L, Kong Y, Gu Y, Yang J, Xiang Y. Emerging Targets of Immunotherapy in Gynecologic Cancer. Onco Targets Ther 2020; 13:11869-11882. [PMID: 33239889 PMCID: PMC7681579 DOI: 10.2147/ott.s282530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Although programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) have been successfully applied in the treatment of tumors, their efficiency is still not high enough. New immune targets need to be identified in order to seek alternative treatment strategies for patients with refractory tumors. Immune targets can be divided into stimulating and inhibiting molecules according to their function after receptor-ligand binding. We herein present a compendious summary of emerging immune targets in gynecologic tumors. These targets included coinhibitory molecules, such as T cell immunoglobulin-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte activation gene-3 (LAG-3), V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA), and B7-H3 and B7-H4, and co-stimulatory molecules, such as CD27, OX40, 4-1BB, CD40, glucocorticoid-induced tumor necrosis factor receptor (GITR) and inducible co-stimulator (ICOS). In this review, the characteristics and preclinical/clinical progress of gynecological malignancies are briefly discussed. However, the potential mechanisms and interactions of immune targets need to be elucidated in further studies.
Collapse
Affiliation(s)
- Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liju Zong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yujia Kong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Junjun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
56
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
57
|
Zhu JH, Yan QL, Wang JW, Chen Y, Ye QH, Wang ZJ, Huang T. The Key Genes for Perineural Invasion in Pancreatic Ductal Adenocarcinoma Identified With Monte-Carlo Feature Selection Method. Front Genet 2020; 11:554502. [PMID: 33193628 PMCID: PMC7593847 DOI: 10.3389/fgene.2020.554502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive form of pancreatic cancer. Its 5-year survival rate is only 3–5%. Perineural invasion (PNI) is a process of cancer cells invading the surrounding nerves and perineural spaces. It is considered to be associated with the poor prognosis of PDAC. About 90% of pancreatic cancer patients have PNI. The high incidence of PNI in pancreatic cancer limits radical resection and promotes local recurrence, which negatively affects life quality and survival time of the patients with pancreatic cancer. Objectives To investigate the mechanism of PNI in pancreatic cancer, we analyzed the gene expression profiles of tumors and adjacent tissues from 50 PDAC patients which included 28 patients with perineural invasion and 22 patients without perineural invasion. Method Using Monte-Carlo feature selection and Incremental Feature Selection (IFS) method, we identified 26 key features within which 15 features were from tumor tissues and 11 features were from adjacent tissues. Results Our results suggested that not only the tumor tissue, but also the adjacent tissue, was informative for perineural invasion prediction. The SVM classifier based on these 26 key features can predict perineural invasion accurately, with a high accuracy of 0.94 evaluated with leave-one-out cross validation (LOOCV). Conclusion The in-depth biological analysis of key feature genes, such as TNFRSF14, XPO1, and ATF3, shed light on the understanding of perineural invasion in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jin-Hui Zhu
- Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiu-Liang Yan
- Department of General Surgery, Jinhua People's Hospital, Jinhua, China
| | - Jian-Wei Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Chen
- Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Huang Ye
- Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Jiang Wang
- Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
58
|
Dao TN, Utturkar S, Atallah Lanman N, Matosevic S. TIM-3 Expression Is Downregulated on Human NK Cells in Response to Cancer Targets in Synergy with Activation. Cancers (Basel) 2020; 12:cancers12092417. [PMID: 32858904 PMCID: PMC7565804 DOI: 10.3390/cancers12092417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.
Collapse
Affiliation(s)
- Tram N. Dao
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Sagar Utturkar
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (S.U.); (N.A.L.)
| | - Nadia Atallah Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (S.U.); (N.A.L.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (S.U.); (N.A.L.)
- Correspondence:
| |
Collapse
|
59
|
Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Hypoxia Alters the Expression of CC Chemokines and CC Chemokine Receptors in a Tumor-A Literature Review. Int J Mol Sci 2020; 21:ijms21165647. [PMID: 32781743 PMCID: PMC7460668 DOI: 10.3390/ijms21165647] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on β chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
- Correspondence: ; Tel.: +48-914661515; Fax: +48-914661516
| |
Collapse
|
60
|
Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol 2020; 21:835-847. [PMID: 32690952 DOI: 10.1038/s41590-020-0728-z] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system and contribute to protecting the host through killing of infected, foreign, stressed or transformed cells. Additionally, via cellular cross-talk, NK cells orchestrate antitumor immune responses. Hence, significant efforts have been undertaken to exploit the therapeutic properties of NK cells in cancer. Current strategies in preclinical and clinical development include adoptive transfer therapies, direct stimulation, recruitment of NK cells into the tumor microenvironment (TME), blockade of inhibitory receptors that limit NK cell functions, and therapeutic modulation of the TME to enhance antitumor NK cell function. In this Review, we introduce the NK cell-cancer cycle to highlight recent advances in NK cell biology and to discuss the progress and problems of NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew F Krummel
- Department of Pathology, ImmunoX Initiative, and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Kevin C Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
61
|
Zhang C, Liu Y. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Front Immunol 2020; 11:1295. [PMID: 32714324 PMCID: PMC7344328 DOI: 10.3389/fimmu.2020.01295] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Checkpoint blockade therapy, for example using antibodies against CTLA-4 and PD-1/PD-L1, relieves T cells from the suppression by inhibitory checkpoints in the tumor microenvironment; thereby achieving good outcomes in the treatment of different cancer types. Like T cells, natural killer (NK) cell inhibitory receptors function as checkpoints for NK cell activation. Upon interaction with their cognate ligands on infected cells, tumor cells, dendritic cells and regulatory T cells, signals from these receptors severely affect NK cells' activation and effector functions, resulting in NK cell exhaustion. Checkpoint inhibition with antagonistic antibodies (Abs) can rescue NK cell exhaustion and arouse their robust anti-tumor capacity. Most notably, the response to anti-PD-1 therapy can be enhanced by the increased frequency and activation of NK cells, thereby increasing the overall survival of patients with multiple types of cancer. In addition, rescue of NK cell activity could enhance adaptive T cells' anti-tumor activity. Some antagonistic Abs (e.g., anti-TIGIT and anti-NKG2A monoclonal Abs) have extraordinary potential in cancer therapy, as evidenced by their induction of potent anti-tumor immunity through recovering both NK and T cell function. In this review, we summarize the dysfunction of NK cells in the tumor microenvironment and the key NK cell checkpoint receptors or molecules that control NK cell function. We particularly focus on recent advances in the most promising strategies through blockade of NK cell checkpoints or their combination with other approaches to more effectively reject tumors.
Collapse
Affiliation(s)
- Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
62
|
Li BL, Wan XP. Prognostic significance of immune landscape in tumour microenvironment of endometrial cancer. J Cell Mol Med 2020; 24:7767-7777. [PMID: 32424934 PMCID: PMC7348174 DOI: 10.1111/jcmm.15408] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tumour microenvironment (TME) is crucial to tumorigenesis. This study aimed to uncover the differences in immune phenotypes of TME in endometrial cancer (EC) using Uterine Corpus Endometrial Carcinoma (UCEC) cohort and explore the prognostic significance. We employed GVSA enrichment analysis to cluster The Cancer Genome Atlas (TCGA) EC samples into immune signature cluster modelling, evaluated immune cell profiling in UCEC cohort (n = 538) and defined four immune subtypes of EC. Next, we analysed the correlation between immune subtypes and clinical data including patient prognosis. Furthermore, we analysed the expression of immunomodulators and DNA methylation modification. The profiles of immune infiltration in TCGA UCEC cohort showed significant difference among four immune subtypes of EC. Among each immune subtype, natural killer T cells (NKT), dendritic cells (DCs) and CD8+T cells were significantly associated with EC patients survival. Each immune subtype exhibited specific molecular classification, immune cell characterization and immunomodulators expression. Moreover, the expression immunomodulators were significantly related to DNA methylation level. In conclusion, the identification of immune subtypes in EC tissues could reveal unique immune microenvironments in EC and predict the prognosis of EC patients.
Collapse
Affiliation(s)
- Bi-Lan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
63
|
Bruno V, Corrado G, Baci D, Chiofalo B, Carosi MA, Ronchetti L, Piccione E, Albini A, Noonan DM, Piaggio G, Vizza E. Endometrial Cancer Immune Escape Mechanisms: Let Us Learn From the Fetal-Maternal Interface. Front Oncol 2020; 10:156. [PMID: 32226771 PMCID: PMC7080858 DOI: 10.3389/fonc.2020.00156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
The immune escape mechanisms at the base of tumor progression in endometrial cancer mimic immune tolerance mechanisms occurring at the maternal-fetal interface. The biological and immunological processes behind the maternal-fetal interface are finely tuned in time and space during embryo implantation and subsequent pregnancy stages; conversely, those behind cancer progression are often aberrant. The environment composition at the maternal-fetal interface parallels the pro-tumor microenvironment identified in many cancers, pointing to the possibility for the use of the maternal-fetal interface as a model to depict immune therapeutic targets in cancer. The framework of cancer environment signatures involved in immune adaptations, precisely timed in cancer progression, could reveal a specific "immune clock" in endometrial cancer, which might guide clinicians in patient risk class assessment, diagnostic workup, management, surgical and therapeutic approach, and surveillance strategies. Here, we review studies approaching this hypothesis, focusing on what is known so far about oncofetal similarities in immunity with the idea to individualize personalized immunotherapy targets, through the downregulation of the immune escape stage or the reactivation of the pro-inflammatory processes suppressed by the tumor.
Collapse
Affiliation(s)
- Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corrado
- Gynecologic Oncology Unit, Department of Women and Children Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Antonia Carosi
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Livia Ronchetti
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Piccione
- Section of Gynecology, Academic Department of Surgical Sciences, Tor Vergata University Hospital, University of Rome "Tor Vergata", Rome, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
64
|
Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020; 11:275. [PMID: 32153582 PMCID: PMC7046808 DOI: 10.3389/fimmu.2020.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of immunotherapy for cancer treatment bears considerable clinical promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune system, and the tumor microenvironment (TME) induces immune suppression through multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK) cells are a heterogeneous subset of immune cells, which express a diverse array of activating and inhibitory germline-encoded receptors, and are thus capable of directly targeting and killing cancer cells without the need for MHC specificity. Furthermore, they play a critical role in triggering the adaptive immune response. Enhancing the function of NK cells in the context of cancer is therefore a promising avenue for immunotherapy. Different NK-based therapies have been evaluated in clinical trials, and some have demonstrated clinical benefits, especially in the context of hematological malignancies. Solid tumors remain much more difficult to treat, and the time point and means of intervention of current NK-based treatments still require optimization to achieve long term effects. Here, we review recently described mechanisms of cancer evasion from NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK function. Specific focus is placed on the use of specialized monoclonal antibodies against moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight newly identified mechanisms that inhibit NK cell activity in the TME, and describe how biochemical modifications of the TME can synergize with current treatments and increase susceptibility to NK cell activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
65
|
CD155: A Multi-Functional Molecule in Tumor Progression. Int J Mol Sci 2020; 21:ijms21030922. [PMID: 32019260 PMCID: PMC7037299 DOI: 10.3390/ijms21030922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often overexpressed on tumor cells and involved in many different processes such as cell adhesion, migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK) cells and involved in anti-tumor immune response. However, during tumor progression inhibitory receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of the multiple roles played by CD155 in cancer development contributes to improving anti-tumor strategies aimed to potentiate immune response against cancer.
Collapse
|
66
|
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol 2020; 10:3038. [PMID: 32038612 PMCID: PMC6985149 DOI: 10.3389/fimmu.2019.03038] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are a population of innate lymphoid cells playing a pivotal role in host immune responses against infection and tumor growth. These cells have a powerful cytotoxic activity orchestrated by an intricate network of inhibitory and activating signals. The importance of NK cells in controlling tumor growth and in mediating a robust anti-metastatic effect has been demonstrated in different experimental mouse cancer models. Consistently, high density of tumor-infiltrating NK cells has been linked with a good prognosis in multiple human solid tumors. However, there are also tumors that appear to be refractory to NK cell-mediated killing for the presence of an immunosuppressive microenvironment affecting NK cell function. Immunotherapeutic strategies aimed at restoring and increasing the cytotoxic activity of NK cells in solid tumors, including the adoptive transfer of NK and CAR-NK cells, are currently employed in preclinical and clinical studies. In this review, we outline recent advances supporting the direct role of NK cells in controlling expansion of solid tumors and their prognostic value in human cancers. We summarize the mechanisms adopted by cancer cells and the tumor microenvironment to affect NK cell function, and finally we evaluate current strategies to augment the antitumor function of NK cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ombretta Melaiu
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Valeria Lucarini
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
67
|
Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol 2019; 200:108-119. [PMID: 31828774 DOI: 10.1111/cei.13407] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
T cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on lymphocytes that was recently propelled under the spotlight as a major emerging target in cancer immunotherapy. TIGIT interacts with CD155 expressed on antigen-presenting cells or tumour cells to down-regulate T cell and natural killer (NK) cell functions. TIGIT has emerged as a key inhibitor of anti-tumour responses that can hinder multiple steps of the cancer immunity cycle. Pre-clinical studies indicated that TIGIT blockade may protect against various solid and haematological cancers. Several monoclonal antibodies (mAbs) that block the inhibitory activity of human TIGIT have been developed. Clinical trials are ongoing, investigating TIGIT blockade as a monotherapy or in combination with anti-PD1/PD-L1 mAbs for the treatment of patients with advanced solid malignancies. In this review, we cover our current knowledge on TIGIT, from its discovery in 2009 to its current status as a clinical target.
Collapse
Affiliation(s)
- H Harjunpää
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, The University of Helsinki, Helsinki, Finland
| | - C Guillerey
- Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
68
|
Sun H, Sun C. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Front Immunol 2019; 10:2354. [PMID: 31681269 PMCID: PMC6812684 DOI: 10.3389/fimmu.2019.02354] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haoyu Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Haoyu Sun
| | - Cheng Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Cheng Sun
| |
Collapse
|
69
|
Liu S, Dhar P, Wu JD. NK Cell Plasticity in Cancer. J Clin Med 2019; 8:jcm8091492. [PMID: 31546818 PMCID: PMC6780970 DOI: 10.3390/jcm8091492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are critical immune components in controlling tumor growth and dissemination. Given their innate capacity to eliminate tumor cells without prior sensitization, NK-based therapies for cancer are actively pursued pre-clinically and clinically. However, recent data suggest that tumors could induce functional alterations in NK cells, polarizing them to tumor-promoting phenotypes. The potential functional plasticity of NK cells in the context of tumors could lead to undesirable outcomes of NK-cell based therapies. In this review, we will summarize to-date evidence of tumor-associated NK cell plasticity and provide our insights for future investigations and therapy development.
Collapse
Affiliation(s)
- Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Robert Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| |
Collapse
|
70
|
Merle M, Fischbacher D, Liepert A, Grabrucker C, Kroell T, Kremser A, Dreyssig J, Freudenreich M, Schuster F, Borkhardt A, Kraemer D, Koehne CH, Kolb HJ, Schmid C, Schmetzer HM. Serum Chemokine-release Profiles in AML-patients Might Contribute to Predict the Clinical Course of the Disease. Immunol Invest 2019; 49:365-385. [PMID: 31535582 DOI: 10.1080/08820139.2019.1661429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In cancer or hematologic disorders, chemokines act as growth- or survival factors, regulating hematopoiesis and angiogenesis, determining metastatic spread and controlling leukocyte infiltration into tumors to inhibit antitumor immune responses. The aim was to quantify the release of CXCL8, -9, -10, CCL2, -5, and IL-12 in AML/MDS-pts' serum by cytometric bead array and to correlate data with clinical subtypes and courses. Minimal differences in serum-levels subdivided into various groups (e.g. age groups, FAB-types, blast-proportions, cytogenetic-risk-groups) were seen, but higher release of CXCL8, -9, -10 and lower release of CCL2 and -5 tendentially correlated with more favorable subtypes (<50 years of age, <80% blasts in PB). Comparing different stages of the disease higher CCL5-release in persisting disease and a significantly higher CCL2-release at relapse were found compared to first diagnosis - pointing to a change of 'disease activity' on a chemokine level. Correlations with later on achieved response to immunotherapy and occurrence of GVHD were seen: Higher values of CXCL8, -9, -10 and CCL2 and lower CCL5-values correlated with achieved response to immunotherapy. Predictive cut-off-values were evaluated separating the groups in 'responders' and 'non-responders'. Higher levels of CCL2 and -5 but lower levels of CXCL8, -9, -10 correlated with occurrence of GVHD. We conclude, that in AML-pts' serum higher values of CXCL8, -9, -10 and lower values of CCL5 and in part of CCL2 correlate with more favorable subtypes and improved antitumor'-reactive function. This knowledge can contribute to develop immune-modifying strategies that promote antileukemic adaptive immune responses.
Collapse
Affiliation(s)
- M Merle
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - D Fischbacher
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - A Liepert
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - C Grabrucker
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - T Kroell
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - A Kremser
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - J Dreyssig
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - M Freudenreich
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - F Schuster
- Department for Pediatric Hematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - A Borkhardt
- Department for Pediatric Hematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - D Kraemer
- Department for Hematology, Municipal Hospital Oldenburg, Oldenburg, Germany
| | - C-H Koehne
- Department for Hematology, Municipal Hospital Oldenburg, Oldenburg, Germany
| | - H J Kolb
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany.,Helmholtz Center, Clinical Cooperative Group Human Cell Transplantation (CCG-HCT), Munich, Germany
| | - C Schmid
- Department for Hematology, University Hospital Augsburg, Augsburg, Germany
| | - H M Schmetzer
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany.,Helmholtz Center, Clinical Cooperative Group Human Cell Transplantation (CCG-HCT), Munich, Germany
| |
Collapse
|