51
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
52
|
Diwanji R, O'Brien NA, Choi JE, Nguyen B, Laszewski T, Grauel AL, Yan Z, Xu X, Wu J, Ruddy DA, Piquet M, Pelletier MR, Savchenko A, Charette L, Rodrik-Outmezguine V, Baum J, Millholland JM, Wong CC, Martin AM, Dranoff G, Pruteanu-Malinici I, Cremasco V, Sabatos-Peyton C, Jayaraman P. Targeting the IL1β Pathway for Cancer Immunotherapy Remodels the Tumor Microenvironment and Enhances Antitumor Immune Responses. Cancer Immunol Res 2023; 11:777-791. [PMID: 37040466 DOI: 10.1158/2326-6066.cir-22-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/14/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
High levels of IL1β can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1β could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1β blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFβ treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1β blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1β alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1β inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1β blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1β inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.
Collapse
Affiliation(s)
- Rohan Diwanji
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Neil A O'Brien
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California
| | - Jiyoung E Choi
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Beverly Nguyen
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Angelo L Grauel
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Zheng Yan
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Xin Xu
- Oncology Data Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jincheng Wu
- Oncology Data Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Marc R Pelletier
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | | | | | - Jason Baum
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | | | - Connie C Wong
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | - Anne-Marie Martin
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | - Glenn Dranoff
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Viviana Cremasco
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Pushpa Jayaraman
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
53
|
Li W, Zhao X, Zhang R, Xie J, Zhang G. Silencing of NLRP3 Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Mediators Inflamm 2023; 2023:7700673. [PMID: 37304662 PMCID: PMC10256449 DOI: 10.1155/2023/7700673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer. Methods Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer. The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3 level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding protein expression was measured by western blot. Results NLRP3 was overexpressed in ovarian cancer, correlated with poor survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative, antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering vimentin, N-cadherin, and fibronectin. Conclusion NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3 knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Weijia Li
- Department of Gynecology, Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Rujian Zhang
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Jiabin Xie
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
54
|
Buttigieg MM, Rauh MJ. Clonal Hematopoiesis: Updates and Implications at the Solid Tumor-Immune Interface. JCO Precis Oncol 2023; 7:e2300132. [PMID: 37343201 PMCID: PMC10309572 DOI: 10.1200/po.23.00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Recent larger-scale studies of patients with cancer and longitudinal population cohorts have revealed how age-related expansions of mutant hematopoietic cells (clonal hematopoiesis [CH]) have differential associations with incident and prevalent cancers and their outcomes. Increasing recognition and deeper understanding of genetic subtypes of CH are yielding insights into the tumor-immune interface that may help to explain the heterogeneous impact of CH on tumorigenesis and treatment. Herein, we update the expanding influence of CH in precision oncology and propose important research and clinical questions to address to effectively manage and harness CH in oncology patients.
Collapse
Affiliation(s)
- Marco M Buttigieg
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
55
|
Liu L, Liu B. Inflammatory microenvironment and immunotherapy in hepatocellular carcinoma. EUR J INFLAMM 2023; 21. [DOI: 10.1177/1721727x231172025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is considered a classic inflammation-associated tumor that usually originates from chronic hepatitis, where an intense and chronic inflammatory response leads to the accumulation of mutations and eventually carcinogenesis under conditions of persistent liver injury. In recent years, immunotherapy for HCC has continued to evolve, as the liver is naturally filled with a large variety of immune cells, making hepatocellular carcinoma a more complex inflammatory microenvironment unlike other tumors. With a better understanding of the specific inflammatory microenvironment of HCC, there is an opportunity to try new therapeutic strategies for HCC immunotherapy. In this paper, we review the immunotherapy of primary liver cancer in terms of the correlation between ICI drugs, ACT therapy and the inflammatory microenvironment of HCC, summarize and discuss the progress and difficulties of immunotherapy of liver cancer, and provide more scientific guidance for immunotherapy of primary liver cancer.
Collapse
Affiliation(s)
- Liwei Liu
- College of Medical Technology, Anhui Medical College, Hefei, China
| | - Bo Liu
- Department of Cell Center, 901th Hospital of PLA Joint Logistic Support Force, Hefei, China
| |
Collapse
|
56
|
Hsu SK, Chen YE, Shu ED, Ko CC, Chang WT, Lin IL, Li CY, Gallego RP, Chiu CC. The Pyroptotic and Nonpyroptotic Roles of Gasdermins in Modulating Cancer Progression and Their Perspectives on Cancer Therapeutics. Arch Immunol Ther Exp (Warsz) 2023; 71:14. [PMID: 37258998 DOI: 10.1007/s00005-023-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/02/2023]
Abstract
Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known as DFNA5), and DFNB59 (also known as pejvakin). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-En Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rovelyn P Gallego
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| |
Collapse
|
57
|
Xu HB, Chen XZ, Wang X, Pan J, Yi-Zhuo Z, Zhou CH. Xihuang pill in the treatment of cancer: TCM theories, pharmacological activities, chemical compounds and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2023:116699. [PMID: 37257709 DOI: 10.1016/j.jep.2023.116699] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xihuang pill as a famous traditional Chinese formula has long been used as an adjuvant therapy for cancer. AIM OF THE STUDY This study is aimed at summarizing recent advances in research of Xihuang pill's anti-cancer efficacies from the theoretical basis of traditional Chinese medicine, pharmacological activities, chemical components and its clinical application. MATERIALS AND METHODS The literature information was obtained from several authoritative databases including PubMed, Embase, Cochrane Library, CNKI and Wan Fang before April 30, 2023. We also analyzed the representatively chemical compounds of Xihuang pill in vivo experiments using HPLC-Q/TOF-MS. RESULTS The present study indicated that Xihuang pill, a classic anti-tumor prescription, had efficacies of strengthening body resistance, clearing heat and detoxification, and promoting blood circulation for removing blood stasis. Modern basic researches showed that Xihuang pill played anti-cancer roles through inducing cancer cell apoptosis, inhibiting cell proliferation, migration, invasion and angiogenesis, improving immune function and tumor microenvironment, and regulating related signaling pathways. Its chemical components are primarily consisted of amino acids, terpenoids, fatty acids, fatty acid esters, phenolics, bile acids, bile pigments and volatile oil. Clinically, Xihuang pill, as an adjuvant drug for cancer treatment, was mostly combined with chemotherapy, which could prolong survival, enhance response rate, improve patients' life quality, regulate immune function and alleviate chemotherapy-induced toxicities. CONCLUSIONS This present study suggests that Xihuang pill may be a promising adjuvant therapy for cancer, and proposes the possibility of future research directions for Xihuang pill based on the current research status.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo, China; Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Pan
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Yi-Zhuo
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
58
|
Janho Dit Hreich S, Hofman P, Vouret-Craviari V. The Role of IL-18 in P2RX7-Mediated Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24119235. [PMID: 37298187 DOI: 10.3390/ijms24119235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide despite the variety of treatments that are currently used. This is due to an innate or acquired resistance to therapy that encourages the discovery of novel therapeutic strategies to overcome the resistance. This review will focus on the role of the purinergic receptor P2RX7 in the control of tumor growth, through its ability to modulate antitumor immunity by releasing IL-18. In particular, we describe how the ATP-induced receptor activities (cationic exchange, large pore opening and NLRP3 inflammasome activation) modulate immune cell functions. Furthermore, we recapitulate our current knowledge of the production of IL-18 downstream of P2RX7 activation and how IL-18 controls the fate of tumor growth. Finally, the potential of targeting the P2RX7/IL-18 pathway in combination with classical immunotherapies to fight cancer is discussed.
Collapse
Affiliation(s)
- Serena Janho Dit Hreich
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| | - Paul Hofman
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, 06108 Nice, France
- Hospital-Related Biobank, Pasteur Hospital, 06108 Nice, France
| | - Valérie Vouret-Craviari
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| |
Collapse
|
59
|
Chen CS, Zhang YG, Wang HJ, Fan HN. Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis. World J Gastroenterol 2023; 29:2153-2171. [PMID: 37122606 PMCID: PMC10130966 DOI: 10.3748/wjg.v29.i14.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear.
AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.
METHODS We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1β, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1β, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS).
RESULTS NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1β pathway activation and mitigated hepatocyte damage and inflammation.
CONCLUSION E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1β pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.
Collapse
Affiliation(s)
- Cai-Song Chen
- Research Center for High Altitude Medicine of Qinghai University, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Yao-Gang Zhang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Jiu Wang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| |
Collapse
|
60
|
Reed SC, Croessmann S, Park BH. CHIP Happens: Clonal Hematopoiesis of Indeterminate Potential and Its Relationship to Solid Tumors. Clin Cancer Res 2023; 29:1403-1411. [PMID: 36454121 PMCID: PMC10106364 DOI: 10.1158/1078-0432.ccr-22-2598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the expansion of hematopoietic cells harboring leukemia-associated somatic mutations in otherwise healthy people and occurs in at least 10% of adults over 70. It is well established that people with CHIP have increased rates of hematologic malignancy, increased risk of cardiovascular disease, and worse all-cause mortality compared with those without CHIP. Despite recent advancements in understanding CHIP as it relates to these known outcomes, much remains to be learned about the development and role of CHIP in other disease states. Emerging research has identified high rates of CHIP in patients with solid tumors, driven in part by oncologic therapy, and revealed associations between CHIP and differential outcomes in both solid tumors and other diseases. Recent studies have demonstrated that CHIP can contribute to dysregulated inflammatory signaling in multiple contexts, underscoring the importance of interrogating how CHIP might alter tumor immunology. Here, we review the role of CHIP mutations in clonal expansion of hematopoietic cells, explore the relationship between CHIP and solid tumors, and discuss the potential roles of CHIP in inflammation and solid tumor biology.
Collapse
Affiliation(s)
- Sarah C. Reed
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben Ho Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
61
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng X, Zhou T, Wang Y. NLRP3 inflammasome-induced pyroptosis in digestive system tumors. Front Immunol 2023; 14:1074606. [PMID: 37081882 PMCID: PMC10110858 DOI: 10.3389/fimmu.2023.1074606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Programmed cell death (PCD) refers to cell death in a manner that depends on specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis, autophagy and necrosis (programmed necrosis). Among these mechanisms, pyroptosis is mediated by the gasdermin family and is accompanied by inflammatory and immune responses. When pathogens or other danger signals are detected, cytokine action and inflammasomes (cytoplasmic multiprotein complexes) lead to pyroptosis. The relationship between pyroptosis and cancer is complex and the effect of pyroptosis on cancer varies in different tissue and genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and progression; on the other hand, pyroptosis, as a pro-inflammatory death, can promote tumor growth by creating a microenvironment suitable for tumor cell growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in digestive system tumors, such as gastric cancer, pancreatic ductal adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory response inhibits tumor development. The same process occurs in hepatocellular carcinoma and some colorectal cancers. The current review summarizes mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yang Liu
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Liwei Wang
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Li He
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| |
Collapse
|
62
|
Yang HL, Lin PY, Vadivalagan C, Lin YA, Lin KY, Hseu YC. Coenzyme Q 0 defeats NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects by inhibiting HIF-1α expression in human triple-negative breast cancer cells. Arch Toxicol 2023; 97:1047-1068. [PMID: 36847822 DOI: 10.1007/s00204-023-03456-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Coenzyme Q0 (CoQ0) is a derivative quinone from Antrodia camphorata (AC) that exerts anticancer activities. This study examined the anticancer attributes of CoQ0 (0-4 µM) on inhibited anti-EMT/metastasis and NLRP3 inflammasome, and altered Warburg effects via HIF-1α inhibition in triple-negative breast cancer (MDA-MB-231 and 468) cells. MTT assay, cell migration/invasion assays, Western blotting, immunofluorescence, metabolic reprogramming, and LC-ESI-MS were carried out to assess the therapy potential of CoQ0. CoQ0 inhibited HIF-1α expression and suppressed the NLRP3 inflammasome and ASC/caspase-1 expression, followed by downregulation of IL-1β and IL-18 expression in MDA-MB-231 and 468 cells. CoQ0 ameliorated cancer stem-like markers by decreasing CD44 and increasing CD24 expression. Notably, CoQ0 modulated EMT by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal marker N-cadherin. CoQ0 inhibited glucose uptake and lactate accumulation. CoQ0 also inhibited HIF-1α downstream genes involved in glycolysis, such as HK-2, LDH-A, PDK-1, and PKM-2 enzymes. CoQ0 decreased extracellular acidification rate (ECAR), glycolysis, glycolytic capacity, and glycolytic reserve in MDA-MB-231 and 468 cells under normoxic and hypoxic (CoCl2) conditions. CoQ0 inhibited the glycolytic intermediates lactate, FBP, and 2/3-PG, and PEP levels. CoQ0 increased oxygen consumption rate (OCR), basal respiration, ATP production, maximal respiration, and spare capacity under normoxic and hypoxic (CoCl2) conditions. CoQ0 increased TCA cycle metabolites, such as citrate, isocitrate, and succinate. CoQ0 inhibited aerobic glycolysis and enhanced mitochondrial oxidative phosphorylation in TNBC cells. Under hypoxic conditions, CoQ0 also mitigated HIF-1α, GLUT1, glycolytic-related (HK-2, LDH-A, and PFK-1), and metastasis-related (E-cadherin, N-cadherin, and MMP-9) protein or mRNA expression in MDA-MB-231 and/or 468 cells. Under LPS/ATP stimulation, CoQ0 inhibited NLRP3 inflammasome/procaspase-1/IL-18 activation and NFκB/iNOS expression. CoQ0 also hindered LPS/ATP-stimulated tumor migration and downregulated LPS/ATP-stimulated N-cadherin and MMP-2/-9 expression. The present study revealed that suppression of HIF-1α expression caused by CoQ0 may contribute to inhibition of NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects of triple-negative breast cancers.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Ping-Yu Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
63
|
Xia J, Jiang S, Dong S, Liao Y, Zhou Y. The Role of Post-Translational Modifications in Regulation of NLRP3 Inflammasome Activation. Int J Mol Sci 2023; 24:ijms24076126. [PMID: 37047097 PMCID: PMC10093848 DOI: 10.3390/ijms24076126] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) induce NLRP3 inflammasome activation, and subsequent formation of active caspase-1 as well as the maturation of interleukin-1β (IL-1β) and gasdermin D (GSDMD), mediating the occurrence of pyroptosis and inflammation. Aberrant NLRP3 inflammasome activation causes a variety of diseases. Therefore, the NLRP3 inflammasome pathway is a target for prevention and treatment of relative diseases. Recent studies have suggested that NLRP3 inflammasome activity is closely associated with its post-translational modifications (PTMs). This review focuses on PTMs of the components of the NLRP3 inflammasome and the resultant effects on regulation of its activity to provide references for the exploration of the mechanisms by which the NLRP3 inflammasome is activated and controlled.
Collapse
Affiliation(s)
- Jing Xia
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Songhong Jiang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Shiqi Dong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yonghong Liao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
64
|
Cox LA, Bogen KT, Conolly R, Graham U, Moolgavkar S, Oberdörster G, Roggli VL, Turci F, Mossman B. Mechanisms and shapes of causal exposure-response functions for asbestos in mesotheliomas and lung cancers. ENVIRONMENTAL RESEARCH 2023; 230:115607. [PMID: 36965793 DOI: 10.1016/j.envres.2023.115607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
This paper summarizes recent insights into causal biological mechanisms underlying the carcinogenicity of asbestos. It addresses their implications for the shapes of exposure-response curves and considers recent epidemiologic trends in malignant mesotheliomas (MMs) and lung fiber burden studies. Since the commercial amphiboles crocidolite and amosite pose the highest risk of MMs and contain high levels of iron, endogenous and exogenous pathways of iron injury and repair are discussed. Some practical implications of recent developments are that: (1) Asbestos-cancer exposure-response relationships should be expected to have non-zero background rates; (2) Evidence from inflammation biology and other sources suggests that there are exposure concentration thresholds below which exposures do not increase inflammasome-mediated inflammation or resulting inflammation-mediated cancer risks above background risk rates; and (3) The size of the suggested exposure concentration threshold depends on both the detailed time patterns of exposure on a time scale of hours to days and also on the composition of asbestos fibers in terms of their physiochemical properties. These conclusions are supported by complementary strands of evidence including biomathematical modeling, cell biology and biochemistry of asbestos-cell interactions in vitro and in vivo, lung fiber burden analyses and epidemiology showing trends in human exposures and MM rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Turci
- University of Turin, Department of Chemistry and "G. Scansetti" Center, Italy
| | - Brooke Mossman
- University of Vermont Larner College of Medicine, Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
65
|
Gu Q, Zou J, Zhou Y, Deng Q. Mechanism of inflammasomes in cancer and targeted therapies. Front Oncol 2023; 13:1133013. [PMID: 37020871 PMCID: PMC10067570 DOI: 10.3389/fonc.2023.1133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Inflammasomes, composed of the nucleotide-binding oligomerization domain(NOD)-like receptors (NLRs), are immune-functional protein multimers that are closely linked to the host defense mechanism. When NLRs sense pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), they assemble into inflammasomes. Inflammasomes can activate various inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, and produce a large number of proinflammatory cytokines, which are closely associated with multiple cancers. They can also accelerate the occurrence and development of cancer by providing suitable tumor microenvironments, promoting tumor cell proliferation, and inhibiting tumor cell apoptosis. Therefore, the exploitation of novel targeted drugs against various inflammasomes and proinflammatory cytokines is a new idea for the treatment of cancer. In recent years, more than 50 natural extracts and synthetic small molecule targeted drugs have been reported to be in the research stage or have been applied to the clinic. Herein, we will overview the mechanisms of inflammasomes in common cancers and discuss the therapeutic prospects of natural extracts and synthetic targeted agents.
Collapse
Affiliation(s)
- Qingdan Gu
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated 5 Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Ying Zhou
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Qiuchan Deng
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
- *Correspondence: Qiuchan Deng,
| |
Collapse
|
66
|
The Role of NLRP3, a Star of Excellence in Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054860. [PMID: 36902299 PMCID: PMC10003372 DOI: 10.3390/ijms24054860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) is the most widely investigated inflammasome member whose overactivation can be a driver of several carcinomas. It is activated in response to different signals and plays an important role in metabolic disorders and inflammatory and autoimmune diseases. NLRP3 belongs to the pattern recognition receptors (PRRs) family, expressed in numerous immune cells, and it plays its primary function in myeloid cells. NLRP3 has a crucial role in myeloproliferative neoplasms (MPNs), considered to be the diseases best studied in the inflammasome context. The investigation of the NLRP3 inflammasome complex is a new horizon to explore, and inhibiting IL-1β or NLRP3 could be a helpful cancer-related therapeutic strategy to improve the existing protocols.
Collapse
|
67
|
Ma X, Wang D, Liu Y, Liu B, Feng X, Yang W. Transcriptomics and experimental validation-based approach to understand the effect and mechanism of Huangqin tang interfeience with colitis associated colorectal cancer. Heliyon 2023; 9:e13739. [PMID: 36925536 PMCID: PMC10011003 DOI: 10.1016/j.heliyon.2023.e13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023] Open
Abstract
Context Chronic inflammation is usually caused by persistent irritation or uncontrolled infection and is characterized by ongoing tissue damage, injury-induced cellular proliferation and tissue repair. Colitis-associated colorectal cancer (CAC) isone of the classic examples of tumors that are tightly related to chronic inflammation. Background To investigated the key pharmacodynamic genes of HQT interventions in CAC by using transcriptome predictions and experiments.Materials & Methods: We used the azoxymethane/dextran sodium sulfate method to induce the mice CAC model. After preventive administration of HQT to the mice model, colonic tissues were taken for transcriptome sequencing and the transcriptome results were then experimentally validated using quantitative Real-Time PCR technique. Results Transcriptome sequencing revealed that the effect of the mechanism of HQT on the CAC mice model maybe related to its inhibition of accelerated epithelial mesenchymal transition and induction of pyroptosis. The levels of Matrix-metalloproteinases such as MMP-2, MMP-9 were significantly reduced in CAC mice treated with HQT; The mRNA expression for Krt17, App, CD44 and WNT pathway related sites such as Lrrc15, Cldn-1, Mpc1, Agr2 which are related factors affecting the epithelial mesenchymal transition were significantly reduced in CAC mice treated with HQT; the aberrant mRNA expression of inflammasome components that drive pyroptosis, including Nlrp3, Caspase-1, ASC, GSDMD and its mediated product IL-18 have been improved. Conclusions Our findings provide preliminary clarification that inhibiting the progression of CAC by using HQT is effective, the mechanism of action may be relatedto the inhibition of epithelial mesenchymal transition and induction of pyroptosis during tumorigenesis.
Collapse
Affiliation(s)
- Xuran Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine. Jinan, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaqing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
68
|
Correa VSMC, Efstathiou NE, Ntentakis DP, Yu Z, Narimatsu T, Gragoudas E, Kim IK, Vavvas DG. The NLRP3 inflammasome - interleukin 1β axis in uveal melanoma. FEBS Open Bio 2023; 13:545-555. [PMID: 36707938 PMCID: PMC9989921 DOI: 10.1002/2211-5463.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular cancer in the adult population. Recent studies suggested that the NLRP3 inflammasome could be a therapeutic target for cutaneous melanoma (CM), but the role of NLRP3 in UM remains unknown. Here, we analyzed the NLRP3-IL-1β axis in 5 UM and 4 CM cell lines. Expression of NLRP3 mRNA in UM and CM was low, and expression in UM was lower than in CM (P < 0.001). NLRP3 protein levels were below detection limit for all cell lines. UM exhibited lower baseline IL-1β secretion than CM, especially when compared to the Hs294t cell line (P < 0.05). Bioinformatic analysis of human tumor samples showed that UM has significantly lower expression of NLRP3 and IL-1β compared with CM. In conclusion, our work shows evidence of extremely low NLRP3 expression and IL-1β secretion by melanoma cells and highlight differences between CM and UM.
Collapse
Affiliation(s)
- Victor S. M. C. Correa
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Nikolaos E. Efstathiou
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Dimitrios P. Ntentakis
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Zhen Yu
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Toshio Narimatsu
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Evangelos Gragoudas
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Ivana K. Kim
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Demetrios G. Vavvas
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
69
|
Barsoumian HB, He K, Hsu E, Bertolet G, Sezen D, Hu Y, Cortez MA, Welsh JW. NLRP3 agonist enhances radiation-induced immune priming and promotes abscopal responses in anti-PD1 resistant model. RESEARCH SQUARE 2023:rs.3.rs-2570782. [PMID: 36824846 PMCID: PMC9949246 DOI: 10.21203/rs.3.rs-2570782/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. Although NLRP3 is typically observed for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also be protective and augment the effect of XRT when used in proper dosing and sequencing. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gy x 3 fractions of stereotactic XRT was better than 5Gy x 3, while 1Gy x 2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.
Collapse
Affiliation(s)
| | - Kewen He
- Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute
| | - Ethan Hsu
- The University of Texas MD Anderson Cancer Center
| | | | - Duygu Sezen
- The University of Texas MD Anderson Cancer Center
| | - Yun Hu
- The University of Texas MD Anderson Cancer Center
| | | | | |
Collapse
|
70
|
The Multifaceted Role and Regulation of Nlrp3 Inflammasome in Colitis-Associated Colo-Rectal Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043472. [PMID: 36834883 PMCID: PMC9959003 DOI: 10.3390/ijms24043472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colitis-associated colo-rectal cancer remains the leading cause of mortality in inflammatory bowel diseases, with inflammation remaining one of the bridging points between the two pathologies. The NLRP3 inflammasome complex plays an important role in innate immunity; however, its misregulation can be responsible for the apparition of various pathologies such as ulcerative colitis. Our review focuses on the potential pathways of upregulation or downregulation of the NLRP3 complex, in addition to evaluating its role in the current clinical setting. Eighteen studies highlighted the potential pathways of NLRP3 complex regulation as well as its role in the metastatic process in colo-rectal cancer, with promising results. Further research is, however, needed in order to validate the results in a clinical setting.
Collapse
|
71
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
72
|
NLRP3 Inflammasome in Atherosclerosis: Putting Out the Fire of Inflammation. Inflammation 2023; 46:35-46. [PMID: 35953687 DOI: 10.1007/s10753-022-01725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with thickening or hardening of the arteries, which led to the built-up of plaques in the inner lining of an artery. Among all the clarified pathogenesis, the over-activation of inflammatory reaction is one of the most acknowledged one. The nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome, as a vital and special form of inflammation and innate immunity, has been widely revealed to participate in the onset and development of AS. This review will introduce the process of the pathogenesis and progression of AS, and will describe the biological features of the NLRP3 inflammasome. Furthermore, the role of the NLRP3 inflammasome in AS and the possible mechanisms will be discussed. In addition, several kinds of agents with the effect of anti-atherosclerotic taking advantage of the NLRP3 inflammasome intervention will be described and discussed in detail, including natural compounds (baicalin, dihydromyricetin, luteolin, 5-deoxy-rutaecarpine (R3) and Salvianolic acid A, etc.), microRNAs (microRNA-30c-5p, microRNA-9, microRNA-146a-5p, microRNA-16-5p and microRNA-181a, etc.), and autophagy regulators (melatonin, dietary PUFA and arglabin, etc.). We aim to provide novel insights in the exploration of the specific mechanisms of AS and the development of new treatments of AS.
Collapse
|
73
|
Wang Z, Dai Z, Zhang H, Zhang N, Liang X, Peng L, Zhang J, Liu Z, Peng Y, Cheng Q, Liu Z. Comprehensive analysis of pyroptosis-related gene signatures for glioblastoma immune microenvironment and target therapy. Cell Prolif 2023; 56:e13376. [PMID: 36681858 PMCID: PMC9977674 DOI: 10.1111/cpr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumour, but its subtypes (mesenchymal, classical, and proneural) show different prognoses. Pyroptosis is a programmed cell death relating to tumour progression, but its association with GBM is poorly understood. In this work, we collected 73 GBM samples (the Xiangya GBM cohort) and reported that pyroptosis involves tumour-microglia interaction and tumour response to interferon-gamma. GBM samples were grouped into different subtypes, cluster 1 and cluster 2, based on pyroptosis-related genes. Cluster 1 samples manifested a worse prognosis and had a more complicated immune landscape than cluster 2 samples. Single-cell RNA-seq data analysis supported that cluster 1 samples respond to interferon-gamma more actively. Moreover, the machine learning algorithm screened several potential compounds, including nutlin-3, for cluster 1 samples as a novel treatment. In vitro experiments supported that cluster 1 cell line, T98G, is more sensitive to nutlin-3 than cluster 2 cell line, LN229. Nutlin-3 can trigger oxidative stress by increasing DHCR24 expression. Moreover, pyroptosis-resistant genes were upregulated in LN229, which may participate against nutlin-3. Therefore, we hypothesis that GBM may be able to upregulate pyroptosis resistant related genes to against nutlin-3-triggered cell death. In summary, we conclude that pyroptosis highly associates with GBM progression, tumour immune landscape, and tumour response to nutlin-3.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina,MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,One‐Third Lab, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Luo Peng
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yun Peng
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina,Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| |
Collapse
|
74
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
75
|
Neuwirt E, Magnani G, Ćiković T, Wöhrle S, Fischer L, Kostina A, Flemming S, Fischenich NJ, Saller BS, Gorka O, Renner S, Agarinis C, Parker CN, Boettcher A, Farady CJ, Kesselring R, Berlin C, Backofen R, Rodriguez-Franco M, Kreutz C, Prinz M, Tholen M, Reinheckel T, Ott T, Groß CJ, Jost PJ, Groß O. Tyrosine kinase inhibitors can activate the NLRP3 inflammasome in myeloid cells through lysosomal damage and cell lysis. Sci Signal 2023; 16:eabh1083. [PMID: 36649377 DOI: 10.1126/scisignal.abh1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.
Collapse
Affiliation(s)
- Emilia Neuwirt
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Giovanni Magnani
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Tamara Ćiković
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, 81675 Munich, Germany
| | - Svenja Wöhrle
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Fischer
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna Kostina
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Stephan Flemming
- Bioinformatics Group, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Nora J Fischenich
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Benedikt S Saller
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Claudia Agarinis
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Andreas Boettcher
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Rebecca Kesselring
- Department for General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany
| | - Christopher Berlin
- Department for General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany
| | - Rolf Backofen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Bioinformatics Group, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany
| | | | - Clemens Kreutz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Institute of Medical Biometry and Statistics (IMBI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martina Tholen
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Reinheckel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany.,Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Ott
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christina J Groß
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp J Jost
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
76
|
Awwad SF, Assaf RH, Emam AA, Fouad AA, Arafa LF, El-Hanafy AA. NLRP3 inflammasome activation By 17β-estradiol is a potential therapeutic target in hepatocellular carcinoma treatment. Med Oncol 2023; 40:94. [PMID: 36763290 PMCID: PMC9918588 DOI: 10.1007/s12032-022-01945-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it mostly arises as a consequence of persistent chronic inflammation. Recently, NLRP3 inflammasome has caught the attention of many research groups due to its involvement in different types of cancer. However, its direct role in HCC remains elusive. Our study aimed to evaluate the role of NLRP3 inflammasome and pyroptosis in HCC and to clarify the potential mechanism by which 17β-estradiol (E2) can be used as a protective factor against HCC. NLRP3, caspase-1 (CASP1) as well as gasdermin-D (GSDMD) mRNA expression levels were assessed in human HCC tissues and adjacent non-cancerous liver tissues. Also, HepG2 HCC cells were cultured and treated with E2, followed by detection of the mRNA levels of these three genes. Our results revealed that NLRP3, CASP1, and GSDMD mRNA expressions were significantly lower in HCC tissues than in controls, and this under-expression was closely correlated with advanced HCC stages and grades. In contrast, HepG2 HCC cells displayed significantly higher expression levels of NLRP3 inflammasome components and GSDMD in the two E2-treated groups compared to the untreated group. Also, NLRP3, CASP1, and GSDMD mRNA expression levels were positively correlated with each other. This study confirmed that lack of NLRP3 inflammasome is involved in HCC progression and 17β-estradiol-induced activation of NLRP3 inflammasome may be effective in HCC treatment as it inhibited tumor cell growth and proliferation by triggering CASP1-dependent pyroptosis in HCC cells.
Collapse
Affiliation(s)
- Sara F. Awwad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Raymonde H. Assaf
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Emam
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amgad A. Fouad
- Gastroenterology Surgical Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lamiaa F. Arafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya A. El-Hanafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
77
|
Zhao H, Zhang Y, Zhang Y, Chen C, Liu H, Yang Y, Wang H. The role of NLRP3 inflammasome in hepatocellular carcinoma. Front Pharmacol 2023; 14:1150325. [PMID: 37153780 PMCID: PMC10157400 DOI: 10.3389/fphar.2023.1150325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasomes play an important role in innate immunity. As a signal platform, they deal with the excessive pathogenic products and cellular products related to stress and injury. So far, the best studied and most characteristic inflammasome is the NLR-family pyrin domain-containing protein 3(NLRP3) inflammasome, which is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. The formation of NLRP3 inflammasome complexes results in the activation of caspase-1, the maturation of interleukin (IL)-1β and IL-18, and pyroptosis. Many studies have demonstrated that NLRP3 inflammasome not only participates in tumorigenesis, but also plays a protective role in some cancers. Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality. Currently, due to the lack of effective treatment methods for HCC, the therapeutic effect of HCC has not been ideal. Therefore, it is particularly urgent to explore the pathogenesis of HCC and find its effective treatment methods. The increasing evidences indicate that NLRP3 inflammasome plays a vital role in HCC, however, the related mechanisms are not fully understood. Hence, we focused on the recent progress about the role of NLRP3 inflammasome in HCC, and analyzed the relevant mechanisms in detail to provide reference for the future in-depth researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yiming Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| | - Huiyang Liu
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yihan Yang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| |
Collapse
|
78
|
Ishabiyi FO, Ogidi JO, Olukade BA, Amorha CC, El-Sharkawy LY, Okolo CC, Adeniyi TM, Atasie NH, Ibrahim A, Balogun TA. Computational Evaluation of Azadirachta indica-Derived Bioactive Compounds as Potential Inhibitors of NLRP3 in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S67-S85. [PMID: 36683510 PMCID: PMC10473084 DOI: 10.3233/jad-221020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The development of therapeutic agents against Alzheimer's disease (AD) has stalled recently. Drug candidates targeting amyloid-β (Aβ) deposition have often failed clinical trials at different stages, prompting the search for novel targets for AD therapy. The NLRP3 inflammasome is an integral part of innate immunity, contributing to neuroinflammation and AD pathophysiology. Thus, it has become a promising new target for AD therapy. OBJECTIVE The study sought to investigate the potential of bioactive compounds derived from Azadirachta-indica to inhibit the NLRP3 protein implicated in the pathophysiology of AD. METHODS Structural bioinformatics via molecular docking and density functional theory (DFT) analysis was utilized for the identification of novel NLRP3 inhibitors from A. indica bioactive compounds. The compounds were further subjected to pharmacokinetic and drug-likeness analysis. Results obtained from the compounds were compared against that of oridonin, a known NLRP3 inhibitor. RESULTS The studied compounds optimally saturated the binding site of the NLRP3 NACHT domain, forming principal interactions with the different amino acids at its binding site. The studied compounds also demonstrated better bioactivity and chemical reactivity as ascertained by DFT analysis and all the compounds except 7-desacetyl-7-benzoylazadiradione, which had two violations, conformed to Lipinski's rule of five. CONCLUSION In silico studies show that A. indica derived compounds have better inhibitory potential against NLRP3 and better pharmacokinetic profiles when compared with the reference ligand (oridonin). These compounds are thus proposed as novel NLRP3 inhibitors for the treatment of AD. Further wet-lab studies are needed to confirm the potency of the studied compounds.
Collapse
Affiliation(s)
- Felix Oluwasegun Ishabiyi
- Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - James Okwudirichukwu Ogidi
- Faculty of Pharmacy, University of Nigeria, Nsukka, Enugu, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Baliqis Adejoke Olukade
- Physiology Department, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu Campus, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chizoba Christabel Amorha
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, United Kingdom
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Chukwuemeka Calistus Okolo
- Department of Veterinary Medicine University of Nigeria, Nsukka, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Titilope Mary Adeniyi
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Nkechi Hope Atasie
- Nigerian Correctional Services, Enugu Custodial Center, Enugu State, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | - Abdulwasiu Ibrahim
- Department of Biochemistry, Drosophila Laboratory, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Institute of Bioinformatics and Molecular Therapeutics, Oshogbo, Osun State, Nigeria
| | | |
Collapse
|
79
|
Chen L, Wan SC, Mao L, Huang CF, Bu LL, Sun ZJ. NLRP3 in tumor-associated macrophages predicts a poor prognosis and promotes tumor growth in head and neck squamous cell carcinoma. Cancer Immunol Immunother 2022; 72:1647-1660. [PMID: 36586012 DOI: 10.1007/s00262-022-03357-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays cell- and tissue-specific roles in cancer, meaning that its activation in different tumors or cells may play different roles in tumor progression. We have previously described the tumor-promoting function of tumor-intrinsic NLRP3/IL-1β signaling in head and neck squamous cell carcinoma (HNSCC), but its role in immune cells remains unclear. In this study, we found that NLRP3 was highly expressed in tumor-associated macrophages (TAMs) in both mouse and human HNSCC, and the expression of NLRP3 was positively correlated with the density of TAMs according to immunohistochemistry, immunofluorescence, and flow cytometry analyses. Importantly, the number of NLRP3high TAMs was related to worse overall survival in HNSCC patients. Knocking out NLRP3 inhibited M2-like macrophage differentiation in vitro. Moreover, the carcinogenic effect induced by 4-nitroquinoline-1-oxide was decreased in Nlrp3-deficient mice, which had smaller tumor sizes. Genetic depletion of NLRP3 reduced the expression of protumoral cytokines, such as IL-1β, IL-6, IL-10, and CCL2, and suppressed the accumulation of TAMs and myeloid-derived suppressor cells (MDSCs) in mouse HNSCC. Thus, activation of NLRP3 in TAMs may contribute to tumor progression and have prognostic significance in HNSCC.
Collapse
Affiliation(s)
- Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
80
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
81
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
82
|
Vasconcelos DP, Águas AP, Barbosa JN. The inflammasome in biomaterial-driven immunomodulation. J Tissue Eng Regen Med 2022; 16:1109-1120. [PMID: 36327091 PMCID: PMC10092308 DOI: 10.1002/term.3361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
83
|
Wu D, Zhang C, Liao G, Leng K, Dong B, Yu Y, Tai H, Huang L, Luo F, Zhang B, Zhan T, Hu Q, Tai S. Targeting uridine-cytidine kinase 2 induced cell cycle arrest through dual mechanism and could improve the immune response of hepatocellular carcinoma. Cell Mol Biol Lett 2022; 27:105. [PMID: 36447138 PMCID: PMC9707060 DOI: 10.1186/s11658-022-00403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pyrimidine metabolism is critical for tumour progression. Uridine-cytidine kinase 2 (UCK2), a key regulator of pyrimidine metabolism, is elevated during hepatocellular carcinoma (HCC) development and exhibits carcinogenic effects. However, the key mechanism of UCK2 promoting HCC and the therapeutic value of UCK2 are still undefined. The aim of this study is to investigate the potential of UCK2 as a therapeutic target for HCC. METHODS Gene expression matrices were obtained from public databases. RNA-seq, co-immunoprecipitation and RNA-binding protein immunoprecipitation were used to determine the mechanism of UCK2 promoting HCC. Immune cell infiltration level and immune-related functional scores were evaluated to assess the link between tumour microenvironment and UCK2. RESULTS In HCC, the expression of UCK2 was upregulated in part by TGFβ1 stimulation. UCK2 promoted cell cycle progression of HCC by preventing the degradation of mTOR protein and maintaining the stability of PDPK1 mRNA. We also identified UCK2 as a novel RNA-binding protein. Downregulation of UCK2 induced cell cycle arrest and activated the TNFα/NFκB signalling pathway-related senescence-associated secretory phenotype to modify the tumour microenvironment. Additionally, UCK2 was a biomarker of the immunosuppressive microenvironment. Downregulated UCK2 induced a secretory phenotype, which could improve the microenvironment, and decreased UCK2 remodelling metabolism could lower the resistance of tumour cells to T-cell-mediated killing. CONCLUSIONS Targeting UCK2 inhibits HCC progression and could improve the response to immunotherapy in patients with HCC. Our study suggests that UCK2 could be an ideal target for HCC.
Collapse
Affiliation(s)
- Dehai Wu
- grid.412463.60000 0004 1762 6325Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, #246Xuefu Road, Harbin, 150086 Heilongjiang China
| | - Congyi Zhang
- grid.412463.60000 0004 1762 6325Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, #246Xuefu Road, Harbin, 150086 Heilongjiang China
| | - Guanqun Liao
- grid.284723.80000 0000 8877 7471Department of Hepatobiliary Surgery, Foshan Hospital Affiliated to Southern Medical University, Foshan, 528000 China
| | - Kaiming Leng
- grid.415468.a0000 0004 1761 4893Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 China
| | - Bowen Dong
- grid.410736.70000 0001 2204 9268Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, 150081 China
| | - Yang Yu
- grid.412463.60000 0004 1762 6325Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, #246Xuefu Road, Harbin, 150086 Heilongjiang China
| | - Huilin Tai
- McGill Mathematics and Statistics Department, Montreal, Canada
| | - Lining Huang
- grid.89957.3a0000 0000 9255 8984Department of Hepatobiliary Surgery, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008 China
| | - Feng Luo
- grid.412463.60000 0004 1762 6325Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, #246Xuefu Road, Harbin, 150086 Heilongjiang China
| | - Bin Zhang
- grid.412463.60000 0004 1762 6325Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, #246Xuefu Road, Harbin, 150086 Heilongjiang China
| | - Tiexiang Zhan
- grid.511083.e0000 0004 7671 2506Department of Intensive Care Unit, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 528406 China
| | - Qiuhui Hu
- Department of Hepatobiliary Surgery, Second Cancer Hospital of Heilongjiang Province, Harbin, 150088 China
| | - Sheng Tai
- grid.412463.60000 0004 1762 6325Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, #246Xuefu Road, Harbin, 150086 Heilongjiang China
| |
Collapse
|
84
|
Van Linthout S, Volk HD. Immuno-cardio-oncology: Killing two birds with one stone? Front Immunol 2022; 13:1018772. [PMID: 36466820 PMCID: PMC9714344 DOI: 10.3389/fimmu.2022.1018772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Inflammation and a dysregulated immune system are common denominators of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology addresses the interconnected immunological aspect in both cancer and CVD and the integration of immunotherapies and anti-inflammatory therapies in both distinct disease entities. Building on prominent examples of convergent inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer and CVD/heart failure, the review tackles both the roadblocks and opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in both fields, and discusses the use of advanced therapies e.g. chimeric antigen receptor (CAR) T cells, that can address the raising burden of both cancer and CVD. Finally, it is discussed how inspired by precision medicine in oncology, the use of biomarker-driven patient stratification is needed to better guide anti-inflammatory/immunomodulatory therapeutic interventions in cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Institute of Medical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
85
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
86
|
Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14215287. [PMID: 36358706 PMCID: PMC9658892 DOI: 10.3390/cancers14215287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Systemic inflammation is associated with an increased aggressiveness of breast cancer and can contribute to a decreased activity of neoadjuvant treatments. Biomarkers of systemic inflammation are easily obtained from routine blood counts and are highly cost-effective, having great potential to steer cancer prognosis in clinical practice. In our study, we tested the hypothesis that high values of these biomarkers might have an effect on the clinical outcomes in a population of patients treated with neoadjuvant chemotherapy for breast cancer. The results of our study, together with data from the literature, hint at a possible role of inflammatory markers in the diagnostic and therapeutic algorithm of breast cancer, where specific pre-operative blood cell ratios could be used in combination with biological and clinical factors to tailor adjuvant therapy. Abstract Immune inflammatory biomarkers are easily obtained and inexpensive blood-based parameters that recently showed prognostic and predictive value in many solid tumors. In this study, we aimed to investigate the role of these biomarkers in predicting distant relapse in breast cancer patients treated with neoadjuvant chemotherapy (NACT). All breast cancer patients who referred to our Breast Unit and underwent NACT were retrospectively reviewed. The pre-treatment neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and pan-immune-inflammation value (PIV) were calculated from complete blood counts. The primary outcome was 5-year distant-metastasis-free survival (DMFS). In receiver operating characteristic analyses, the optimal cutoff values for the NLR, PLR, MLR, and PIV were determined at 2.25, 152.46, 0.25, and 438.68, respectively. High levels of the MLR, but not the NLR, PLR, or PIV, were associated with improved 5-year DMSF in the study population using both univariate (HR 0.52, p = 0.03) and multivariate analyses (HR, 0.44; p = 0.02). Our study showed that the MLR was a significant independent parameter affecting DMFS in breast cancer patients undergoing NACT. Prospective studies are required to confirm this finding and to define reliable cutoff values, thus leading the way for the clinical application of this biomarker.
Collapse
|
87
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
88
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
89
|
Biavasco F, Zeiser R. FLT3-inhibitor therapy for prevention and treatment of relapse after allogeneic hematopoietic cell transplantation. Int J Hematol 2022; 116:341-350. [PMID: 35460465 PMCID: PMC9392688 DOI: 10.1007/s12185-022-03352-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023]
Abstract
The curative potential of allogeneic hematopoietic cell transplantation (allo-HCT) for acute myeloid leukemia (AML) relies on the graft-versus-leukemia (GVL)-effect. Relapse after allo-HCT occurs in a considerable proportion of patients, and has a dismal prognosis with very limited curative potential, especially for patients with FLT-ITD-mutated AML. Since the first description of sorafenib for treatment of FLT3-ITD-mutated AML, several clinical trials have tried to determine the efficacy of FLT3 inhibitors for preventing and treating AML relapse after allo-HSCT, but many questions regarding differences among compounds and mechanisms of action remain unanswered. This review provides an overview on the established and evolving use of FLT3 inhibitors to prevent or treat relapse of AML in the context of allo-HCT, focusing on the recently discovered immunogenic potential of some FLT3 inhibitors and addressing the possible mechanisms of leukemia drug-escape.
Collapse
Affiliation(s)
- Francesca Biavasco
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University Hospital Freiburg, 79106, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University Hospital Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
90
|
Zheng L, Liu H. Prognostic association between NLRP3 inflammasome expression level and operable pancreatic adenocarcinoma. Int J Biol Markers 2022; 37:314-321. [PMID: 35686324 DOI: 10.1177/03936155221096690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The NLRP3 inflammasome is significantly associated with tumor development and metastasis in various malignancies. However, the significance of the NLRP3 inflammasome in pancreatic adenocarcinoma has not been fully determined. Therefore, we try to evaluate the expression of the NLRP3 inflammasome in pancreatic adenocarcinoma and analyzed its prognostic significance. METHODS This cohort study enrolled 98 patients with primary pancreatic adenocarcinoma who received curative surgery. The NLRP3 inflammasome expression levels in cancer tissue were determined by immunohistochemistry, and compared with that of adjacent normal tissues. The association between NLRP3 inflammasome expression levels and baseline clinicopathological characteristics were also analyzed. Moreover, the correlation between NLRP3 inflammasome expression levels and survival was analyzed by log-rank test, and the survival curve was made by the Kaplan-Meier survival analysis. RESULTS Expression of each NLRP3 inflammasome component in cancer tissue was higher than that in the adjacent normal tissues (all P < 0.05), including NLRP3, IL-1β, ASC, and Caspase-1. All four components of the NLRP3 inflammasome were closely associated with clinical stage and lymph node status (all P < 0.05). The Kaplan-Meier log rank test showed that the high expression level of the NLRP3 inflammasome was significantly related to poor overall survival in pancreatic adenocarcinoma patients. CONCLUSIONS NLRP3 inflammasome expression was upregulated in cancer tissue and closely associated with the prognosis of operable pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Lina Zheng
- Ambulatory Care Department, The Seventh Medical Centre, 104607Chinese PLA General Hospital, Beijing 100700, China
| | - Hailiang Liu
- Department of Burn and Plastic Surgery, The Fourth Medical Center, 104607Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
91
|
Yao Y, Guan X, Bao G, Liang J, Li T, Zhong X. Whole-exome sequencing and bioinformatics analysis of a case of non-alpha-fetoprotein-elevated lung hepatoid adenocarcinoma. Front Pharmacol 2022; 13:945038. [PMID: 36091765 PMCID: PMC9462446 DOI: 10.3389/fphar.2022.945038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatoid adenocarcinoma of the lung (HAL) is an exceptionally rare malignant tumor with prominent hepatocellular carcinoma (HCC)-like characteristics in organs or tissues outside the liver, while there is no tumor in the liver. Most HAL cases have various degrees of serum alpha-fetoprotein (AFP) levels and exhibit a similar origin and clonal evolution process to HCC. We studied a case of HAL without elevating the AFP level by performing whole-exome sequencing (WES) and bioinformatics analyses after surgical resection. Our results showed mutations in two driver genes, NLRP3 and PBX1, and we identified HNRNPR, TP73, CFAP57, COL11A1, RUSC1, SLC6A9, DISC1, NBPF26, and OR10K1 as potential driver mutation genes in HAL. In addition, 76 significantly mutated genes (SMG) were identified after the statistical test of each mutation type on genes.
Collapse
Affiliation(s)
- Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Second Affiliated Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xinwen Zhong, ; Tian Li,
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
- *Correspondence: Xinwen Zhong, ; Tian Li,
| |
Collapse
|
92
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
93
|
Tezcan G, Alsaadi M, Hamza S, Garanina EE, Martynova EV, Ziganshina GR, Farukshina ER, Rizvanov AA, Khaiboullina SF. Azithromycin and Ceftriaxone Differentially Activate NLRP3 in LPS Primed Cancer Cells. Int J Mol Sci 2022; 23:ijms23169484. [PMID: 36012769 PMCID: PMC9409354 DOI: 10.3390/ijms23169484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cancer patients are prescribed antibiotics, such as macrolides and lactamides, for infection treatment. However, the effect of these antibiotics on NLRP3 activation remains largely unknown. Method: Lung cancer (A549) and prostate cancer (PC3) cell lines were primed with lipopolysaccharide (LPS) to activate NLRP3 transcription. Cells were then treated with azithromycin (Az) or ceftriaxone (Cf). NLRP3 activation was analyzed by qPCR, Western blot, and ELISA. Cell growth and viability were assessed by real-time cell analysis and Annexin V expression. Levels of 41 cytokines were also analyzed using a multiplex assay. Results: LPS-Az activated transcription of NLRP3, Pro-CASP-1, and Pro-IL-1β in A549 cells, while failing to upregulate NLRP3 and Pro-IL-1β in PC3 cells. LPS-Az decreased the secretion of pro-inflammatory cytokines while it induced the pro-angiogenic factors in A549 and PC3 cells. In contrast, LPS-Cf suppressed the expression of NLRP3-associated genes, NLRP3 protein expression, the inflammatory cytokine secretion in A549 and PC3 cells. LPS-Az and LPS-Cf had a limited effect on cell growth and viability. Discussion: Our data suggest that Cf could suppress LPS induced NLRP3, which should be considered when selecting antibiotics for cancer treatment. In contrast, the effect of Az on LPS primed NLRP3 and the inflammatory cytokines production appears to depend on the cancer cell origin. Therefore, these data indicate that considerations are required when selecting Az for the treatment of cancer patients.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina V. Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Gulshat R. Ziganshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elina R. Farukshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or
| |
Collapse
|
94
|
Salvucci M, Crawford N, Stott K, Bullman S, Longley DB, Prehn JHM. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut 2022; 71:1600-1612. [PMID: 34497144 PMCID: PMC9279747 DOI: 10.1136/gutjnl-2021-325193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Transcriptomic-based subtyping, consensus molecular subtyping (CMS) and colorectal cancer intrinsic subtyping (CRIS) identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B) and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates and host contexture to refine patient stratification and to identify druggable context-specific vulnerabilities. DESIGN We coupled cell culture experiments with characterisation of Fn/Fusobacteriales prevalence and host biology/microenviroment in tumours from two independent colorectal cancer patient cohorts (Taxonomy: n=140, colon and rectal cases of The Cancer Genome Atlas (TCGA-COAD-READ) cohort: n=605). RESULTS In vitro, Fn infection induced inflammation via nuclear factor kappa-light-chain-enhancer of activated B cells/tumour necrosis factor alpha in HCT116 and HT29 cancer cell lines. In patients, high Fn/Fusobacteriales were found in CMS1, microsatellite unstable () tumours, with infiltration of M1 macrophages, reduced M2 macrophages, and high interleukin (IL)-6/IL-8/IL-1β signalling. Analysis of the Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower Fn load than CMS1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential association between Fusobacteriales relative abundance and outcome when stratifying patients in mesenchymal (either CMS4 and/or CRIS-B) versus non-mesenchymal (neither CMS4 nor CRIS-B). Patients with mesenchymal tumours and high Fusobacteriales had approximately twofold higher risk of worse outcome. These associations were null in non-mesenchymal patients. Modelling the three-way association between Fusobacteriales prevalence, molecular subtyping and host contexture with logistic models with an interaction term disentangled the pathogen-host signalling relationship and identified aberrations (including NOTCH, CSF1-3 and IL-6/IL-8) as candidate targets. CONCLUSION This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nyree Crawford
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Katie Stott
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Susan Bullman
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
95
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
96
|
Huang Y, Li R, Yang Y. Role of Pyroptosis in Gynecological Oncology and Its Therapeutic Regulation. Biomolecules 2022; 12:biom12070924. [PMID: 35883480 PMCID: PMC9313147 DOI: 10.3390/biom12070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
With the continuous advances in molecular biotechnology, many new cell death methods have been discovered. Pyroptosis is a programmed cell death process that differs from apoptosis and autophagy in cell morphology and function. Compared with apoptosis and autophagy, pyroptosis is primarily mediated by intracellular inflammasome and gasdermin D of the gasdermin protein family and involves the release of numerous inflammatory factors. Pyroptosis has been found to be involved in the occurrence and development of infectious diseases and other diseases involving the nervous system and the cardiovascular system. Recent studies have also reported the occurrence of pyroptosis in tumor cells. Accordingly, exploring its effect on tumors has become one of the research hotspots. Herein, recent research progress on pyroptosis is reviewed, especially its role in the development of gynecological tumors. As the pathogenesis of gynecological tumor is better understood, new targets have been introduced for the prevention and clinical treatment of gynecological tumors.
Collapse
Affiliation(s)
- Yi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Yuan Yang
- The Reproductive Medicine Center, The 1st Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
97
|
Datta J, Bianchi A, De Castro Silva I, Deshpande NU, Cao LL, Mehra S, Singh S, Rafie C, Sun X, Chen X, Dai X, Colaprico A, Sharma P, Dosch AR, Pillai A, Hosein PJ, Nagathihalli NS, Komanduri KV, Wilson JM, Ban Y, Merchant NB. Distinct mechanisms of innate and adaptive immune regulation underlie poor oncologic outcomes associated with KRAS-TP53 co-alteration in pancreatic cancer. Oncogene 2022; 41:3640-3654. [PMID: 35701533 DOI: 10.1038/s41388-022-02368-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Co-occurrent KRAS and TP53 mutations define a majority of patients with pancreatic ductal adenocarcinoma (PDAC) and define its pro-metastatic proclivity. Here, we demonstrate that KRAS-TP53 co-alteration is associated with worse survival compared with either KRAS-alone or TP53-alone altered PDAC in 245 patients with metastatic disease treated at a tertiary referral cancer center, and validate this observation in two independent molecularly annotated datasets. Compared with non-TP53 mutated KRAS-altered tumors, KRAS-TP53 co-alteration engenders disproportionately innate immune-enriched and CD8+ T-cell-excluded immune signatures. Leveraging in silico, in vitro, and in vivo models of human and murine PDAC, we discover a novel intersection between KRAS-TP53 co-altered transcriptomes, TP63-defined squamous trans-differentiation, and myeloid-cell migration into the tumor microenvironment. Comparison of single-cell transcriptomes between KRAS-TP53 co-altered and KRAS-altered/TP53WT tumors revealed cancer cell-autonomous transcriptional programs that orchestrate innate immune trafficking and function. Moreover, we uncover granulocyte-derived inflammasome activation and TNF signaling as putative paracrine mediators of innate immunoregulatory transcriptional programs in KRAS-TP53 co-altered PDAC. Immune subtyping of KRAS-TP53 co-altered PDAC reveals conflation of intratumor heterogeneity with progenitor-like stemness properties. Coalescing these distinct molecular characteristics into a KRAS-TP53 co-altered "immunoregulatory program" predicts chemoresistance in metastatic PDAC patients enrolled in the COMPASS trial, as well as worse overall survival.
Collapse
Affiliation(s)
- Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Anna Bianchi
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U Deshpande
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Long Long Cao
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine Rafie
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiaodian Sun
- Biostatistics and Bioinformatics Shared Resource, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xi Chen
- Biostatistics and Bioinformatics Shared Resource, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonio Colaprico
- Biostatistics and Bioinformatics Shared Resource, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Prateek Sharma
- Department of Surgery, University of Nebraska, Omaha, NE, USA
| | - Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Asha Pillai
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Peter J Hosein
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Krishna V Komanduri
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
98
|
Liang X, Sun T, Cui Y, Zhou S, Liang X. Bone Marrow Mesenchymal Stem Cells (BMSCs)-Triggered Up-Regulation of miR-1297/NLR Family Pyrin Domain Containing 3 (NLRP3) Facilitates the Aggressive Proliferation of Lung Cancer Cells via Inducing Inflammatory Factor Release. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miR-1297 derived from BMSC-originated exosomes participates in modulating multiple malignancies. Our study aims to clarify the effect of miR-1297 derived from BMSC-originated exosomes on the oxidative stress and inflammatory damage of lung cancer cells. miR-1297 and NLRP3 level was
measured in lung cancer tissues and para-cancerous tissues, as well as in lung cancer cell lines and pulmonary epithelial cells. After miR-1297-mimics transfection or BMSC co-cultivation, cell viability was assessed by MTT and cytokines were evaluated by ELISA along with analysis of SOD activity
and cell apoptosis. miR-1297 and NLRP3 were significantly elevated in lung cancer tissues and cell lines. Overexpression of miR-1297 enhanced oxidative stress and inflammatory response, along with increased cell viability and decreased apoptosis. Additionally, co-culture with BMSC protect
the viability of lung cancer cells by facilitating miR-1297/NLRP3. In conclusion, a significant elevation of miR-1297 is found in lung cancer tissues and cells. Its overexpression induced the release of inflammatory factors, thereby protecting the proliferating activity of lung cancer cells
and restraining apoptosis, indicating that miR-1297 may serve a promising target for early diagnosis of lung cancers.
Collapse
Affiliation(s)
- Xiujun Liang
- Department of Basic Medical School, Chengde Medical College, Chengde, Hebei, 067000, China
| | - Tongyou Sun
- Department of Chemoradiotherapy, Chengde Central Hospital, Chengde, Hebei, 067000, China
| | - Yujie Cui
- Department of Oncology Department, Hebei Provincial People’s Hospital, Shijiazhuang, Hebei, 050057, China
| | - Shuo Zhou
- Department of Graduate School, Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xiujun Liang
- Department of Basic Medical School, Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
99
|
Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 2022; 22:397-413. [PMID: 35355007 DOI: 10.1038/s41568-022-00462-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
Abstract
The immune system plays a critical role in shaping all facets of cancer, from the early initiation stage through to metastatic disease and resistance to therapy. Our understanding of the importance of the adaptive arm of the immune system in antitumour immunity has led to the implementation of immunotherapy with immune checkpoint inhibitors in numerous cancers, albeit with differing efficacy. By contrast, the clinical utility of innate immunity in cancer has not been exploited, despite dysregulated innate immunity being a feature of at least one-third of all cancers associated with tumour-promoting chronic inflammation. The past two decades have seen innate immune pattern recognition receptors (PRRs) emerge as critical regulators of the immune response to microbial infection and host tissue damage. More recently, it has become apparent that in many cancer types, PRRs play a central role in modulating a vast array of tumour-inhibiting and tumour-promoting cellular responses both in immune cells within the tumour microenvironment and directly in cancer cells. Herein, we provide a comprehensive overview of the fast-evolving field of PRRs in cancer, and discuss the potential to target PRRs for drug development and biomarker discovery in a wide range of oncology settings.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
100
|
Role of Inflammasomes in Keloids and Hypertrophic Scars-Lessons Learned from Chronic Diabetic Wounds and Skin Fibrosis. Int J Mol Sci 2022; 23:ijms23126820. [PMID: 35743263 PMCID: PMC9223684 DOI: 10.3390/ijms23126820] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Keloids and hypertrophic scars are pathological cutaneous scars. They arise from excessive wound healing, which induces chronic dermal inflammation and results in overwhelming fibroblast production of extracellular matrix. Their etiology is unclear. Inflammasomes are multiprotein complexes that are important in proinflammatory innate-immune system responses. We asked whether inflammasomes participate in pathological scarring by examining the literature on scarring, diabetic wounds (also characterized by chronic inflammation), and systemic sclerosis (also marked by fibrosis). Pathological scars are predominantly populated by anti-inflammatory M2 macrophages and recent literature hints that this could be driven by non-canonical inflammasome signaling. Diabetic-wound healing associates with inflammasome activation in immune (macrophages) and non-immune (keratinocytes) cells. Fibrotic conditions associate with inflammasome activation and inflammasome-induced transition of epithelial cells/endothelial cells/macrophages into myofibroblasts that deposit excessive extracellular matrix. Studies suggest that mechanical stimuli activate inflammasomes via the cytoskeleton and that mechanotransduction-inflammasome crosstalk is involved in fibrosis. Further research should examine (i) the roles that various inflammasome types in macrophages, (myo)fibroblasts, and other cell types play in keloid development and (ii) how mechanical stimuli interact with inflammasomes and thereby drive scar growth. Such research is likely to significantly advance our understanding of pathological scarring and aid the development of new therapeutic strategies.
Collapse
|