51
|
Microwave Assisted Synthesis of Antimicrobial Nano-Films from Water Hyacinth <i>(Eichhornia crassipes)</i> and Roselle <i>(Hibiscus sabdariffa</i>) Plant Extract. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-ixf3fr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose based nanofilms have large applications in biomedical and related fields due to their antimicrobial properties. Their applicability depends upon purity of cellulose, composition, and structural properties of films. The nanofilms of cellulose extracted from Water Hyacinth (Eichhornia crassipes) and Roselle (Hibiscus Sabdariffa) plant possesses excellent properties for biomedical applications due to their biological origin and ZnO or other metal loading properties. Microwave assisted physical separation of cellulose provided excellent films formation properties and ZnO loading compared without any chemical traces. The presence of chemical impurities to affects structural, morphological properties and contact angle. It affects the biomedical applicability of cellulose based films. The microwave-based extraction was further assisted by use of polyethylene glycol with molecular weight 600, which increases the solubility and extractability of cellulose to 90 %. Formed films showed higher contact angle and hydrophobicity. This increased hydrophobicity of cellulosic nanofilms showed enhanced antimicrobial activities towards gram-negative and gram-positive bacteria by water hyacinth nanofilms. Thus, microwave-based synthesis of cellulose nanofilms resulted into enhanced microbial activities.
Collapse
|
52
|
Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Lam SE, Khandaker MU, Bradley DA. Biological agents for synthesis of nanoparticles and their applications. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101869. [DOI: 10.1016/j.jksus.2022.101869] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
53
|
Kaur J, Anwer MK, Sartaj A, Panda BP, Ali A, Zafar A, Kumar V, Gilani SJ, Kala C, Taleuzzaman M. ZnO Nanoparticles of Rubia cordifolia Extract Formulation Developed and Optimized with QbD Application, Considering Ex Vivo Skin Permeation, Antimicrobial and Antioxidant Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041450. [PMID: 35209242 PMCID: PMC8878222 DOI: 10.3390/molecules27041450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box-Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer-Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ali Sartaj
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif-21944, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al-Jouf 72341, Saudi Arabia; or
| | - Vinay Kumar
- Department of Pharmacology, KIET School of Pharmacy, Delhi-NCR, Meerut Road (NH-58), Ghaziabad 201206, India;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342802, India;
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342802, India
- Correspondence: ; Tel.: +91-725-1892-850
| |
Collapse
|
54
|
Sharma P, Urfan M, Anand R, Sangral M, Hakla HR, Sharma S, Das R, Pal S, Bhagat M. Green synthesis of zinc oxide nanoparticles using Eucalyptus lanceolata leaf litter: characterization, antimicrobial and agricultural efficacy in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:363-381. [PMID: 35400882 PMCID: PMC8943116 DOI: 10.1007/s12298-022-01136-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 05/07/2023]
Abstract
In the present study, green synthesis of zinc oxide nanoparticles (ZnO NP) using Eucalyptus lanceolatus (leaf litter) extract was explored after characterization with UV spectrophotometery, Fourier Transform Infrared analysis, X-ray diffraction and TEM studies. ZnO NPs stability was ensured with - 32.1 mV zeta potential, while TEM showed ZnO NP as hexagonal structure (100 nm). In vitro antimicrobial activity showed potential of ZnO NP against pathogens causing diseases in maize plants. Both in vitro and in vivo studies of ZnO NP and ZnSO4 (200 ppm and 400 ppm) over a two year period (2019, 2020) were conducted on Zea mays L. var. PG2458. ZnO NP seed priming improved seed vigor index, germination percentage, shoot and root length and fresh biomass. Foliar application improved stem diameter and leaf surface area. Physiological status was relatively better, while reproductive attributes got altered to guide resource allocation for better cob growth and biomass with ZnO NP. Leaf, cob, grain and total Zn was maximum for 200 ppm ZnO NP. Translocation of Zn from leaf to cob and cob to grain was faster for ZnO NP compared to ZnSO4. Higher concentration (400 ppm) of ZnO NPs and ZnSO4 proved phytotoxic for plant growth attributes. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01136-0.
Collapse
Affiliation(s)
- Pooja Sharma
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Mohammad Urfan
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Rythem Anand
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Monica Sangral
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Haroon Rashid Hakla
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Shubham Sharma
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Ranjan Das
- Department of Crop Physiology, Assam Agricultural University, Jorhat, 78501 India
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| |
Collapse
|
55
|
Azimpanah R, Solati Z, Hashemi M. Synthesis of ZnO Nanoparticles with Antibacterial Properties using
T. catappa
leaf extract. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Zahra Solati
- Chemistry Department Persian Gulf University Bushehr 75168 Iran
| | - Majid Hashemi
- Chemistry Department Persian Gulf University Bushehr 75168 Iran
| |
Collapse
|
56
|
Gharpure S, Yadwade R, Ankamwar B. Non-antimicrobial and Non-anticancer Properties of ZnO Nanoparticles Biosynthesized Using Different Plant Parts of Bixa orellana. ACS OMEGA 2022; 7:1914-1933. [PMID: 35071882 PMCID: PMC8771956 DOI: 10.1021/acsomega.1c05324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 05/02/2023]
Abstract
As traditional cancer therapy is toxic to both normal and cancer cells, there is a need for newer approaches to specifically target cancer cells. ZnO nanoparticles can be promising due their biocompatible nature. However, ZnO nanoparticles have also shown cytotoxicity against mammalian cells in some cases, because of which there is a need for newer synthesis approaches for biocompatible ZnO nanoparticles to be used as carrier molecules in drug delivery applications. Here, we report the biosynthesis of ZnO nanoparticles using different plant parts (leaf, seed, and seed coat) of Bixa orellana followed by different characterizations. The UV-visible spectra of ZnO showed absorption maxima at 341 and 353 nm, 378 and 373 nm, and 327 and 337 nm, respectively, before and after calcination corresponding to the band gap energy of 3.636 and 3.513 eV, 3.280 and 3.324 eV, and 3.792 and 3.679 eV for L-ZnO, S-ZnO, and Sc-ZnO, respectively. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structures. Attenuated total reflectance infrared spectra revealed the presence of stretching vibrations of C-C, C=C, C=O, and NH3 + groups along with C-H deformation involving biomolecules from extracts responsible for reduction and stabilization of nanoparticles. Field emission scanning electron microscopy and transmission electron microscopy images showed spherical and almond-like morphologies of L-ZnO and Sc-ZnO with spherical morphologies, whereas S-ZnO showed almond-like morphologies. The presence of antibacterial activity was observed in L-ZnO against Staphylococcus aureus and Bacillus subtilis, in S-ZnO nanoparticles only against Escherichia coli, and in Sc-ZnO only against Staphylococcus aureus. Uncalcinated ZnO nanoparticles showed weak antibacterial activities, whereas calcinated ZnO nanoparticles showed a non-antibacterial nature. The antifungal activity against different fungi (Penicillium sp., Aspergillus flavus, Fusarium oxysporum, and Rhizoctonia solani) and cytotoxicity against HCT-116 cancer cells were not observed before and after calcination in all three ZnO nanoparticles. The antimicrobial nature and biocompatibility of ZnO nanoparticles were influenced by different parameters of the nanoparticles along with microorganisms and the human cells. Non-antimicrobial properties of ZnO nanoparticles can be treated as a pre-requisite for its biocompatibility due to its inert nature. Thus, biosynthesized ZnO nanoparticles showed a nontoxic nature, which can be exploited as promising alternatives in biomedical applications.
Collapse
|
57
|
Wang Q, Mei S, Manivel P, Ma H, Chen X. Zinc oxide nanoparticles synthesized using coffee leaf extract assisted with ultrasound as nanocarriers for mangiferin. Curr Res Food Sci 2022; 5:868-877. [PMID: 35647560 PMCID: PMC9133588 DOI: 10.1016/j.crfs.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Plant extracts have been widely used to green synthesize zinc oxide nanoparticles (ZnO NPs); however, how the combination of ultrasound and coffee leaf extract (CLE) affects the structure characteristics and the yield of ZnO NPs remains unknown. In this study, we used CLE to green synthesize ZnO NPs with the help of ultrasound. The highest yield (43.59 ± 0.13%) of ZnO NPs was obtained under the optimal processing conditions of pH = 8.0, mass ratio of coffee leaves to C4H6O4Zn•2H2O = 1.71, ultrasound time = 10 min, ultrasound frequency = 28/40 kHz, ultrasound power = 180 W, and synthesis temperature = 30 °C. The as-synthesized ZnO NPs were characterized by UV–Vis, SEM, EDX, TEM, FTIR, XRD, and zeta potential analyses. SEM and TEM analyses revealed that ZnO NPs synthesized using ultrasound-assisted method were spherical with an average particle size of 8.29 ± 1.38 nm, which was smaller than ZnO NPs synthesized without ultrasound treatment (10.48 ± 1.57 nm) and the chemically synthesized ZnO NPs (17.15 ± 2.84 nm). HPLC analysis showed that the phenolic compounds in coffee leaves, especially 5-CQA, were the main reductants and chelating agents for ZnO NPs synthesis. The synthesized ZnO NPs were used to load mangiferin, which was control released under pH 7.4 over 132 h. Our study provides an easy and eco-friendly method using CLE assisted with ultrasound for green synthesis of ZnO NPs which can be used as nanocarriers to control release of mangiferin. Ultrasound increased the yield of ZnO NPs synthesized using coffee leaf extract. Ultrasound reduced the particle size and increased the stability of ZnO NPs. 5-CQA was the main reductant for ZnO NPs synthesis. Caffeine and trigonelline were less potent reductants for ZnO NPs synthesis. Mangiferin loaded ZnO NPs can achieve long-term controlled release at pH 7.4.
Collapse
|
58
|
Szymanski M, Dobrucka R. Application of Phytotests to Study of Environmental Safety of Biologicaly Synthetised Au and Au/ZnO Nanoparticles Using Tanacetum parthenium Extract. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractDue to their small sizes and high reactivity, nanoparticles have a completely different toxicity profile than larger particles, and it is difficult to predict their potential ecological impact. There is a need for broad ecotoxicological studies of nanomaterials in order to specify their environmental impact and ensure safe application of nanotechnology products. In this work, we have assessed the toxicity of Au and Au/ZnO metal nanoparticles obtained with the use of Tanacetum parthenium (herba) extract. The obtained nanoparticles were characterized by UV–Vis spectrophotometry (UV–VIS), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). In order to assess the toxicity of biologically synthesized nanoparticles, we used seeds of various plants: Lepidium sativum, Linum flavum, Zea mays, Salvia hispanica-chia, Lupinus angustifolius, Petroselinum crispum subsp. Crispum, Beta vulgaris, Phaseolus vulgaris. The in vitro phytotests showed that gold nanoparticles at a specific range of concentrations for all plants stimulated their growth. The highest growth activity was exhibited by the solution at the concentration of 0.300 mg/ml towards corn (Aw ≈ − 135 ± 16) and flax (Aw ≈ − 44 ± 10). Only for parsley the IC50 was determined at 0.57 mg/ml, but solutions at the concentration of 0.030 to 0.150 mg/ml also stimulated plant growth. Au/ZnO had a toxic effect at all concentrations applied in the study.
Collapse
|
59
|
MalligArjuna Rao S, Kotteeswaran S, Visagamani AM. Green synthesis of zinc oxide nanoparticles from camellia sinensis: Organic dye degradation and antibacterial activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
60
|
Alias MFA, Abd – Alsada A. The Influence of Zinc Oxide with Carbon Nanotube Composite NanoMaterials on Antibacterial Activity. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 2114:012089. [DOI: 10.1088/1742-6596/2114/1/012089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
A novel hybrid substance, ZnO: MWCNT, are fabricated from prepared pellets using a pulsed laser ablation liquid technique at varied MWCNT concentrations (0, 3, 5, 10, and 15) wt%. The study cast at the effect of MWCNT concentration on the structure of prepared samples using FTIR and tested for different types of antimicrobial activity. From FTIR examination, one can observe that all the prepared ZnO: MWCNT samples with different concentrations have different types of band (stretching and bending). All the prepared composite samples with various concentrations have showed influence on different types of bacterial, however in general the annealing ZnO, MWCNT and the composite nanomaterial with 15%MWCNT have higher zone of antibacterial activity for studying types of bacterial inhibition.
Collapse
|
61
|
Effect of UV Irradiation (A and C) on Casuarina equisetifolia-Mediated Biosynthesis and Characterization of Antimicrobial and Anticancer Activity of Biocompatible Zinc Oxide Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111977. [PMID: 34834392 PMCID: PMC8622962 DOI: 10.3390/pharmaceutics13111977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
The green synthesis of nanoparticles has emerged as a simple, safe, sustainable, reliable and eco-friendly protocol. Among different types of NPs, green-synthesized zinc oxide NPs (ZnONPs) show various promising biological uses due to their interesting magnetic, electrical, optical and chemical characteristics. Keeping in view the dependence of the therapeutic efficacy of NPs on their physico-chemical characteristics, the green synthesis of ZnONPs using Casuarina equisetifolia leaf extract under UV-A and UV-C light was carried out in this study. UV-irradiation helped to control the size and morphology of ZnONPs by exciting the electrons in the photoactive compounds of plant extracts to enhance the bio-reduction of ZnO into ZnONPs. C. equisetifolia leaf extract was found enriched with phenolic (2.47 ± 0.12 mg GAE/g DW) and flavonoid content (0.88 ± 0.28 mg QE/g DW) contributing to its 74.33% free-radical scavenging activity. FTIR spectra showed the involvement of polyphenols in the bio-reduction, stabilization and capping of ZnONPs. Moreover, SEM-EDX and XRD analyses showed great potential of UV-C light in yielding smaller (34–39 nm) oval-shaped ZnONPs, whereas UV-A irradiation resulted in the formation of fairly spherical 67–71 nm ZnONPs and control ZnONPs were of mixed shape and even larger size (84–89 nm). Green-synthesized ZnONPs, notably CE-UV-C-ZnONPs, showed promising anti-bacterial activities against Bacillus subtilis, Pseudomonas fluorescens and Pseudomonas aeruginosa. Moreover, ZnONPs also enhanced ROS production which led to a significant loss of mitochondrial membrane potential and activated caspase-3 gene expression and caspase-3/7 activity in human hepatocellular carcinoma (HepG2) cells. CE-UV-C-ZnONP treatment reduced HepG2 cell viability to as low as 36.97% owing to their unique shape and smaller size. Lastly, ZnONPs were found to be highly biocompatible towards brine shrimp and human red blood cells suggesting their bio-safe nature. This research study sheds light on the plausible role of UV radiation in the green synthesis of ZnONPs with reasonable control over their size and morphology, thus improving their biological efficacy.
Collapse
|
62
|
Trichoderma harzianum-Mediated ZnO Nanoparticles: A Green Tool for Controlling Soil-Borne Pathogens in Cotton. J Fungi (Basel) 2021; 7:jof7110952. [PMID: 34829239 PMCID: PMC8619580 DOI: 10.3390/jof7110952] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
ZnO-based nanomaterials have high antifungal effects, such as inhibition of growth and reproduction of some pathogenic fungi, such as Fusarium sp., Rhizoctonia solani and Macrophomina phaseolina. Therefore, we report the extracellular synthesis of ZnONPs using a potential fungal antagonist (Trichoderma harzianum). ZnONPs were then characterized for their size, shape, charge and composition by visual analysis, UV–visible spectrometry, X-ray diffraction (XRD), Zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). The TEM test confirmed that the size of the produced ZnONPs was 8–23 nm. The green synthesized ZnONPs were characterized by Fourier transform infrared spectroscopy (FTIR) studies to reveal the functional group attributed to the formation of ZnONPs. For the first time, trichogenic ZnONPs were shown to have fungicidal action against three soil–cotton pathogenic fungi in the laboratory and greenhouse. An antifungal examination was used to evaluate the bioactivity of the mycogenic ZnONPs in addition to two chemical fungicides (Moncut and Maxim XL) against three soil-borne pathogens, including Fusarium sp., Rhizoctonia solani and Macrophomina phaseolina. The findings of this study show a novel fungicidal activity in in vitro assay for complete inhibition of fungal growth of tested plant pathogenic fungi, as well as a considerable reduction in cotton seedling disease symptoms under greenhouse conditions. The formulation of a trichogenic ZnONPs form was found to increase its antifungal effect significantly. Finally, the utilization of biocontrol agents, such as T. harzianum, could be a safe strategy for the synthesis of a medium-scale of ZnONPs and employ it for fungal disease control in cotton.
Collapse
|
63
|
Selvanathan V, Aminuzzaman M, Tey LH, Razali SA, Althubeiti K, Alkhammash HI, Guha SK, Ogawa S, Watanabe A, Shahiduzzaman M, Akhtaruzzaman M. Muntingia calabura Leaves Mediated Green Synthesis of CuO Nanorods: Exploiting Phytochemicals for Unique Morphology. MATERIALS 2021; 14:ma14216379. [PMID: 34771914 PMCID: PMC8585435 DOI: 10.3390/ma14216379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
In this study, phytochemical assisted nanoparticle synthesis was performed using Muntingia calabura leaf extracts to produce copper oxide nanoparticles (CuO NPs) with interesting morphology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of the biosynthesized CuO NPs reveal formation of distinct, homogeneous, and uniform sized CuO nanorods structure with thickness and length of around 23 nm and 79 nm, respectively. Based on Fourier-transform infrared (FTIR) analysis, the unique combinations of secondary metabolites such as flavonoid and polyphenols in the plant extract are deduced to be effective capping agents to produce nanoparticles with unique morphologies similar to conventional chemical synthesis. X-ray diffraction (XRD) analysis verified the monoclinical, crystalline structure of the CuO NPs. The phase purity and chemical identity of the product was consolidated via X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopic data which indicate the formation of a single phase CuO without the presence of other impurities. The direct and indirect optical band gap energies of the CuO nanorods were recorded to be 3.65 eV and 1.42 eV.
Collapse
Affiliation(s)
- Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia
- Correspondence: (M.A.); (M.A.)
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
| | - Syaza Amira Razali
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hend Ibraheem Alkhammash
- Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia;
| | - Samar Kumar Guha
- Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology, 141-142, Love Road, Tejgaon I/A, Dhaka 1208, Bangladesh;
| | - Sayaka Ogawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; (S.O.); (A.W.)
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; (S.O.); (A.W.)
| | - Md. Shahiduzzaman
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
- Correspondence: (M.A.); (M.A.)
| |
Collapse
|
64
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|
65
|
Obayomi KS, Oluwadiya AE, Lau SY, Dada AO, Akubuo-Casmir D, Adelani-Akande TA, Fazle Bari A, Temidayo SO, Rahman MM. Biosynthesis of Tithonia diversifolia leaf mediated Zinc Oxide Nanoparticles loaded with flamboyant pods (Delonix regia) for the treatment of Methylene Blue Wastewater. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
66
|
Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, Nor Hazhar NJ, Noman E, Alkhadher S. Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: Optimization, mechanisms, techno-economic analysis. CHEMOSPHERE 2021; 281:130661. [PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
Collapse
Affiliation(s)
- G Yashni
- Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - N Vo Dai-Viet
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, Bld#5, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nurul Jihan Nor Hazhar
- Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Efaq Noman
- Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, Taiz, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000, Panchor, Johor, Malaysia
| | - Sadeq Alkhadher
- Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
67
|
Selvakesavan RK, Franklin G. Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. Nanotechnol Sci Appl 2021; 14:179-195. [PMID: 34588770 PMCID: PMC8476107 DOI: 10.2147/nsa.s333467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords "green synthesis" and "nanoparticles" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (Bhasma) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of Bhasma.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
68
|
Yusuf A, Al Jitan S, Garlisi C, Palmisano G. A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. CHEMOSPHERE 2021; 278:130440. [PMID: 33838416 DOI: 10.1016/j.chemosphere.2021.130440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present a critical review on antimicrobial nanomaterials with demonstrated potential for application as a disinfection technology in wastewater treatment. Studies involving fabrication and testing of antimicrobial nanomaterials for wastewater treatment were gathered, critically reviewed, and analyzed. Our review shows that there are only a few eligible candidate nanoparticles (NPs) (metal and metal oxide) that can adequately serve as an antimicrobial agent. Nanosilver (nAg) was the most studied and moderately understood metal NPs with proven antimicrobial activity followed by ZnO (among antimicrobial metal oxide NPs) which outperformed titania (in the absence of light) in efficacy due to its better solubility in aqueous condition. The direction of future work was found to be in the development of antimicrobial nanocomposites, since they provide more stability for antimicrobial metal and metal oxides NPs in water, thereby increasing their activity. This review will serve as an updated survey, yet touching also the fundamentals of the antimicrobial activity, with vital information for researchers planning to embark on the development of superior antimicrobial nanomaterials for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Corrado Garlisi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
69
|
Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Verbič A, Šala M, Jerman I, Gorjanc M. Novel Green In Situ Synthesis of ZnO Nanoparticles on Cotton Using Pomegranate Peel Extract. MATERIALS 2021; 14:ma14164472. [PMID: 34442994 PMCID: PMC8399875 DOI: 10.3390/ma14164472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
This work presents the novel and entirely green in situ synthesis of zinc oxide nanoparticles (ZnO-NP) on cotton fabric. Pomegranate peel extract was used as a reducing agent and wood ash extract was used as an alkali source for the formation of ZnO-NP from zinc acetate. Four different synthesis methods, which varied in drying between immersion of fabric in the active solutions for synthesis and the use of padding and ultrasonication, were investigated to evaluate the most suitable one to achieve excellent ultraviolet (UV) protective properties of the functionalized textile. For comparison, the cotton fabrics were also functionalized with each active solution separately or in a combination of two (i.e., Zn-acetate and plant extract). Scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICP-MS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) analysis, and atomic force microscopy (AFM) confirm the successful formation of ZnO-NP on cotton. Among the synthesis methods, the method that included continuous drying of the samples between immersion in the active solutions for synthesis (Method 4) was found to be the most suitable to deliver uniformly impregnated cotton fibers with numerous small ZnO wurtzite structured crystals and excellent UV protection, with a UV protection factor of 154.0. This research presents an example of a green circular economy where a bio-waste material can be used to produce ZnO-NP directly on cotton at low temperatures and short treatment times without the addition of chemicals and enables the production of cellulosic fabrics with excellent UV protection.
Collapse
Affiliation(s)
- Anja Verbič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia;
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (I.J.)
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (I.J.)
| | - Marija Gorjanc
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-12003256
| |
Collapse
|
71
|
Bangroo A, Malhotra A, Sharma U, Jain A, Kaur A. Biosynthesis of Zinc Oxide Nanoparticles Using Catharanthus roseus Leaves and Their Therapeutic Response in Breast Cancer (MDA-MB-231) Cells. Nutr Cancer 2021; 74:1489-1496. [PMID: 34309470 DOI: 10.1080/01635581.2021.1952622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zinc oxide nanomaterials are effective in cancer treatments, including the destruction of tumor cells with minimal damage to healthy cells. In the study, the biologically synthesized (Catharanthus roseus) zinc oxide nanomaterials with a broad 18-30 nm range were produced and the toxicity of zinc oxide nanomaterials was checked in vitro in the human breast cancer line MDA-MB-231. Inverse relation of the percentage of viable cells to the concentration of zinc oxide nanomaterials at increasing molar levels was assessed. The cytotoxicity analysis used in the MTT test shows the substantial viable MDA-MB-231-cells despite the increased concentration of exposure to zinc oxide nanomaterials. Reduction in the ratio of viable MDA-MB-231 cells after being exposed to zinc oxide nanomaterials was compared to untreated cancerous cells. The present approach to biosynthesis is quick, inexpensive, eco-friendly, and high-rise stable nanomaterials of zinc oxide with substantial cancer potential. This is the first study that reports molar concentrations as an anticancer agent for breast cancer and potential clinical uses for synthesized zinc oxide nanomaterials.
Collapse
Affiliation(s)
- Apoorva Bangroo
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Akshay Malhotra
- Institute of Experimental Internal Medicine, Otto von Guericke Universität, Magdeburg, Germany
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Anupreet Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| |
Collapse
|
72
|
El-Sayed HS, El-Sayed SM, Youssef AM. Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt. Food Chem 2021; 365:130513. [PMID: 34247045 DOI: 10.1016/j.foodchem.2021.130513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
This research aimed to biosynthesizing zinc oxide nanoparticles (ZnO-NPs) using lactobacilli strains. All tested lactobacilli able to biosynthesis ZnO-NPs indicated by white precipitates. The characteristics of the biosynthesis ZnO-NPs from Lactobacillus gasseri were studied using UV-visible spectroscopy, TEM, SEM, DLS, FT-IR, XRD, and antimicrobial activity. The characteristic examination depicted cubic structures, pure and spherical ZnO-NPs with a diameter size of 22 nm. Antimicrobial study of ZnO-NPs displayed better higher antimicrobial activity on food pathogens in a dose-dependent manner. Moreover, integrated biosynthesis ZnO-NPs in yogurt positively affected the shelf life of yogurt during storage for four weeks without changes in the sensory evaluation. The microbiological population of fortified yogurt significantly reduced during storage than control. But chemically evaluation of fortified yogurt indicated an increase in dry matter, protein, and ash content than control. The achieved results suggested that the low amount of biosynthesized ZnO-NPs lead to the development of properties of integrated yogurt. Furthermore, the biosynthesized ZnO-NPs additive to yogurt could be a good food source for groups suffering from zinc deficiency such as the elderly groups or vegetarians who do not eat meat and at risk of zinc inadequacy.
Collapse
Affiliation(s)
- Hoda S El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
73
|
Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenço IM, Seabra AB. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics (Basel) 2021; 10:783. [PMID: 34203129 PMCID: PMC8300690 DOI: 10.3390/antibiotics10070783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Much progress has been achieved in the preparation and application of engineered nanoparticles (NPs) in the field of medicine, mainly for antibacterial and antiviral applications. In the war against bacteria and viruses, besides traditional antibiotics and antiviral drugs, metal-based nanoparticles, such as silver (AgNPs), copper (CuNPs), copper oxides (CuO-NPs), iron oxide (FeO-NPs), zinc oxide (ZnO-NPs), and titanium oxide (TiO2-NPs) have been used as potent antimicrobial agents. These nanoparticles can be synthesized by traditional methods, such as chemical and physical routes, or more recently by biogenic processes. A great variety of macro and microorganisms can be successfully used as reducing agents of metal salt precursors in the biogenic synthesis of metal-based NPs for antimicrobial activity. Depending on the nature of the biological agent, NPs with different sizes, aggregation states, morphology, surface coatings and charges can be obtained, leading to different antimicrobial effects. Considering the drug resistance to traditional therapies, the development of versatile nanomaterials with potent antimicrobial effects is under intensive investigation. In this sense, this review presents and discusses the recent progress in the preparation and application of metal-based nanoparticles biogenically synthesized for antibacterial and antivirus applications. The strength and limitations are critically discussed.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (O.R.); (P.F.)
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| | - Paola Duran
- Biocontrol Research Laboratory, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Isabella M. Lourenço
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil; (J.C.P.); (I.M.L.); (A.B.S.)
| |
Collapse
|
74
|
Liu H, Kang P, Liu Y, An Y, Hu Y, Jin X, Cao X, Qi Y, Ramesh T, Wang X. Zinc oxide nanoparticles synthesised from the Vernonia amygdalina shows the anti-inflammatory and antinociceptive activities in the mice model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1068-1078. [PMID: 32815404 DOI: 10.1080/21691401.2020.1809440] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we synthesised the zinc oxide nanoparticles from Vernonia amygdalina and evaluated its anti-inflammatory and antinociceptive potentials against the different inflammation and pain induced mice model. The synthesised zinc oxide nanoparticles were characterised by UV, SEM, XRD and FTIR techniques. The anti-nociceptive effects of V. amygdalina were examined by different stimuli e.g. acetic acid, glutamate, capsaicin, and formalin-induced nociception in mice. The anti-inflammatory effects of synthesised zinc oxide nanoparticles were assessed by air sack assessment and the level of inflammatory cytokines were studied. The muscle tension of animals were studied through open field assessment. The present study exhibited proficient antinociceptive and anti-inflammatory actions of the synthesised Zinc oxide nanoparticles from V. amygdalina. The sormulated zinc oxide nanoparticles were appreciably reduced the acetic acid, glutamate, capsaicin, and formalin-induced nociceptive responses in mice. Further the zinc nanoparticles were exhibited the potent anti-inflammatory actions via reducing the inflammatory response and pro-inflammatory cytokines level in the mice. In conclusion, the findings of this study proved the beneficial effects of zinc oxide nanoparticles from V. amygdalina against the different pain and inflammation-induced mice. Hence, it was clear that the zinc nanoparticles from V. amygdalina could be promising antinociceptive and anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Hairui Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peipei Kang
- Department of Anesthesiology, Department of Nantong Tumor Hospital, Nantong city, Jiangsu, China
| | - Ying Liu
- Department of Anesthesiology, Qinghai Women and Children's Hospital Qinghai, Gansu, China
| | - Yifan An
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanting Hu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiyuan Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Cao
- Department of Anesthesiology, XIN FENG XIAN People's Hospital Ganzhou, Jiangxi, China
| | - Yunfei Qi
- Department of Anesthesiology, PLA 949 Hospital Aletai City, Xinjiang, China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Xiao Wang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
75
|
Norouzi Jobie F, Ranjbar M, Hajizadeh Moghaddam A, Kiani M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
76
|
Al-Kordy HMH, Sabry SA, Mabrouk MEM. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7. Sci Rep 2021; 11:10924. [PMID: 34035407 PMCID: PMC8149680 DOI: 10.1038/s41598-021-90408-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Green synthesis of zinc oxide nanoparticles (ZnO NPs) through simple, rapid, eco-friendly and an economical method with a new haloalkaliphilic bacterial strain (Alkalibacillus sp. W7) was investigated. Response surface methodology (RSM) based on Box-Behnken design (BP) was used to optimize the process parameters (ZnSO4.7H2O concentration, temperature, and pH) affecting the size of Alkalibacillus-ZnO NPs (Alk-ZnO NPs). The synthesized nanoparticles were characterized using UV-visible spectrum, X-ray diffraction (XRD), Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Zeta potential. The UV-Vis spectrum of ZnO NPs revealed a characteristic surface plasmon resonance (SPR) peak at 310 nm. XRD pattern confirmed the hexagonal wurtzite structure of highly pure with a crystallite size 19.5 nm. TEM proved the quasi-spherical shape nanoparticles of size ranging from 1 to 30 nm. SEM-EDX showed spherical shaped and displayed a maximum elemental distribution of zinc and oxygen. FTIR provided an evidence that the biofunctional groups of metabolites in Alkalibacillus sp.W7 supernatant acted as viable reducing, capping and stabilizing agents.
Collapse
Affiliation(s)
- Hend M H Al-Kordy
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Soraya A Sabry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona E M Mabrouk
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
77
|
Asif N, Fatima S, Aziz MN, Shehzadi, Zaki A, Fatma T. Biofabrication and characterization of cyanobacteria derived ZnO NPs for their bioactivity comparison with commercial chemically synthesized nanoparticles. Bioorg Chem 2021; 113:104999. [PMID: 34062406 DOI: 10.1016/j.bioorg.2021.104999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Due to unique properties of the nanoparticles (NPs) with biocompatibility, their application as drug in drug delievery and diagnostics, the recent scientific branch nanotechnology has emerged as hope in modern medicine. Zinc oxide nanoparticles (ZnO NPs) have gained tremendous interest due to their potential use as chemotherapeutic and antimicrobial agents. They are included in the category of "generally recognized as safe (GRAS) metal oxide". There is an urgent need for developing additional sources of ZnO NPs. Therefore, in the present study 30 cyanobacterial extracts were screened for ZnO NPs synthesis.. The color change of the reaction mixture from blue to pale white indicated the synthesis of ZnO NPs. It was further confirmed by UV-Visible spectroscopy that showed the absorption peak at 372 nm. The SEM analysis during screening revealed that Oscillatoria sp. synthesized smallest ZnO NPs (~40 nm) that were further optimized for their higher yield by altering reaction conditions (pH, temperature, reaction time, concentration of extract and metal precursor). Best conditions for ZnO NPs synthesis are (0.02 M zinc nitrate, 10 ml of extract volume, pH 8, at 80 °C for 3 h). The NPs were purified through calcination at 350°C and characterized by UV-Vis, FTIR, XRD, SEM-EDAX, TEM, Zeta potential and DLS analysis. The comparative analysis of purified biogenic ZnO NPs with commercial chemically synthesized ZnO NPs (CS), exhibited their superior nature as antioxidant and anti-bacterial agent against both gram-positive and gram-negative bacteria. Synergistic effects of biogenic ZnO NPs and streptomycin additionally favored for their future use as a potential biomedical agent.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Md Nafe Aziz
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Shehzadi
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Almaz Zaki
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
78
|
Rogowska A, Railean-Plugaru V, Pomastowski P, Walczak-Skierska J, Król-Górniak A, Gołębiowski A, Buszewski B. The Study on Molecular Profile Changes of Pathogens via Zinc Nanocomposites Immobilization Approach. Int J Mol Sci 2021; 22:5395. [PMID: 34065496 PMCID: PMC8160681 DOI: 10.3390/ijms22105395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
The most critical group of all includes multidrug resistant bacteria that pose a particular threat in hospitals, as they can cause severe and often deadly infections. Modern medicine still faces the difficult task of developing new agents for the effective control of bacterial-based diseases. The targeted administration of nanoparticles can enhance the efficiency of conventional pharmaceutical agents. However, the interpretation of interfaces' interactions between nanoparticles and biological systems still remains a challenge for researchers. In fact, the current research presents a strategy for using ZnO NPs immobilization with ampicillin and tetracycline. Firstly, the study provides the mechanism of the ampicillin and tetracycline binding on the surface of ZnO NPs. Secondly, it examines the effect of non-immobilized ZnO NPs, immobilized with ampicillin (ZnONPs/AMP) and tetracycline (ZnONPs/TET), on the cells' metabolism and morphology, based on the protein and lipid profiles. A sorption kinetics study showed that the antibiotics binding on the surface of ZnONPs depend on their structure. The efficiency of the process was definitely higher in the case of ampicillin. In addition, flow cytometry results showed that immobilized nanoparticles present a different mechanism of action. Moreover, according to the MALDI approach, the antibacterial activity mechanism of the investigated ZnO complexes is mainly based on the destruction of cell membrane integrity by lipids and proteins, which is necessary for proper cell function. Additionally, it was noticed that some of the identified changes indicate the activation of defense mechanisms by cells, leading to a decrease in the permeability of a cell's external barriers or the synthesis of repair proteins.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (A.R.); (V.R.-P.); (P.P.); (A.K.-G.); (A.G.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland;
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (A.R.); (V.R.-P.); (P.P.); (A.K.-G.); (A.G.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (A.R.); (V.R.-P.); (P.P.); (A.K.-G.); (A.G.)
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland;
| | - Anna Król-Górniak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (A.R.); (V.R.-P.); (P.P.); (A.K.-G.); (A.G.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland;
| | - Adrian Gołębiowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (A.R.); (V.R.-P.); (P.P.); (A.K.-G.); (A.G.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland;
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland; (A.R.); (V.R.-P.); (P.P.); (A.K.-G.); (A.G.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
79
|
Bayat M, Zargar M, Astarkhanova T, Pakina E, Ladan S, Lyashko M, Shkurkin SI. Facile Biogenic Synthesis and Characterization of Seven Metal-Based Nanoparticles Conjugated with Phytochemical Bioactives Using Fragaria ananassa Leaf Extract. Molecules 2021; 26:3025. [PMID: 34069463 PMCID: PMC8159137 DOI: 10.3390/molecules26103025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
In this investigation, for the first time, we used Fragaria ananassa (strawberry) leaf extract as a source of natural reducing, capping or stabilizing agents to develop an eco-friendly, cost-effective and safe process for the biosynthesis of metal-based nanoparticles including silver, copper, iron, zinc and magnesium oxide. Calcinated and non-calcinated zinc oxide nanoparticles also synthesized during a method different from our previous study. To confirm the successful formation of nanoparticles, different characterization techniques applied. UV-Vis spectroscopy, X-ray Diffraction (XRD) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), Photon Cross-Correlation Spectroscopy (PCCS) and Fourier Transformed Infrared Spectroscopy (FT-IR) were used to study the unique structure and properties of biosynthesized nanoparticles. The results show the successful formation of metal-based particles in the range of nanometer, confirmed by different characterization techniques. Finally, the presented approach has been demonstrated to be effective in the biosynthesis of metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Tamara Astarkhanova
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Elena Pakina
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Sergey Ladan
- All-Russian Scientific and Research Institute of Agrochemistry, Federal State Budgetary Institution, 344006 Moscow, Russia; (S.L.); (S.I.S.)
| | - Marina Lyashko
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Sergey I. Shkurkin
- All-Russian Scientific and Research Institute of Agrochemistry, Federal State Budgetary Institution, 344006 Moscow, Russia; (S.L.); (S.I.S.)
| |
Collapse
|
80
|
Alavi M, Dehestaniathar S, Mohammadi S, Maleki A, Karimi N. Antibacterial Activities of Phytofabricated ZnO and CuO NPs by Mentha pulegium Leaf/Flower Mixture Extract against Antibiotic Resistant Bacteria. Adv Pharm Bull 2021; 11:497-504. [PMID: 34513624 PMCID: PMC8421631 DOI: 10.34172/apb.2021.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: In this study, leaf/flower aqueous extract of medicinal plant species Mentha pulegium was used to synthesize ZnO and CuO nanoparticles (NPs) as a cost-effective, one-step, and eco-friendly method. Methods: Physicochemical properties of both metal oxide NPs (MONPs) were determined by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) techniques. Results: Phytofabricated ZnONPs and CuNPs illustrated 65.02±7.55 and 26.92±4.7 nm with antibacterial activities against antibiotic-resistant Escherichia coli and Staphylococcus aureus. Higher antibacterial activities were observed for CuONPs compared with ZnONPs. Conclusion: Large surface area and more reactivity resulted from smaller size as well as higher production of reactive oxygen species (ROS) were considered to antibacterial efficiency of CuONPs against antibiotic-resistant E. coli and S. aureus.
Collapse
Affiliation(s)
- Mehran Alavi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Saeed Dehestaniathar
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shadieh Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Naser Karimi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
81
|
Evaluation of Sonocatalytic and Photocatalytic Processes Efficiency for Degradation of Humic Compounds Using Synthesized Transition-Metal-Doped ZnO Nanoparticles in Aqueous Solution. J CHEM-NY 2021. [DOI: 10.1155/2021/9938579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The existence of a humic substance in water causes the growth of microorganisms and reduces the quality of water; therefore, the removal of these materials is crucial. Here, the ZnO nanoparticles doped using transition metals, copper (Cu) and manganese (Mn), were used as an effective catalyst for photocatalytic removal of humic substances in an aqueous environment under ultraviolet, visible light, and light-emitting diode irradiations. Also, we study the effect of the sonocatalytic method. A solvothermal procedure is used for doping, and the Cu- and Mn-doped ZnO nanocatalyst were characterized by means of FTIR, XRD, AFM, SEM, and EDAX analyses. We investigate the effect of operational variables, including doping ratio, initial pH, catalyst dose, initial HS content, and illuminance on the removal efficiency of the processes. The findings of the analyses used for the characterization of the nanoparticles illustrate the appropriate synthesis of the Cu- and Mn-doped ZnO nanocatalysts. We observe the highest removal efficiency rate under acidic conditions and the process efficiency decreased with increasing solution pH, when we tested it in the range of 3–7. Photocatalytic decomposition of HS increases with a rise in catalyst dose, but an increase in initial HS content results in decreasing the removal efficiency. We observe the highest photocatalytic degradation of humic acid while using the visible light, and the highest removal efficiency is obtained using Cu.ZnO. The Cu.ZnO also shows better performance under ultraviolet irradiation compared to other agents.
Collapse
|
82
|
Ferreira NS, Sasaki JM, Silva RS, Attah-Baah JM, Macêdo MA. Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [ VZn+ VO+] Defects in Self-Assembled ZnO Nanoparticles. Inorg Chem 2021; 60:4475-4496. [PMID: 33710867 DOI: 10.1021/acs.inorgchem.0c03327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defect influences on the photoactivity of ZnO nanoparticles prepared by a powdered coconut water (ACP) assisted synthesis have been studied. The crystalline phase and morphology of ZnO nanoparticles were effectively controlled by adjusting the calcination temperature (400-700 °C). An induced transition of hybrid Zn5(CO3)2(OH)6/ZnO nanoparticles to single-phase ZnO nanoparticles was obtained at 480 °C. The morphological analysis revealed a formation of ZnO nanoparticles with semispherical (∼6.5 nm)- and rod-like (∼96 nm) shapes when the calcination temperatures were 400 and 700 °C, respectively. Photoluminescence characterizations revealed several defects types in the samples with VZn and VO+ being in the self-assembly of semispherical- and rod-like ZnO nanoparticles. The photocatalytic activity of the ZnO nanoparticles was examined by assessing the degradation of methylene blue in an aqueous solution under low-intensity visible-light irradiation (∼3 W m-2). The results point toward the self-assembly of semispherical- and rod-like ZnO nanoparticles that had significantly better photocatalytic activity (∼31%) in comparison to that of spherical-agglomerated- or near-spherical-like species within 120 min of irradiation. The possible photocatalytic mechanism is discussed in detail, and the morphology-driven intrinsic [VZn+VO+] defects are proposed to be among the active sites of the ZnO nanoparticles enhancing the photocatalytic activity.
Collapse
Affiliation(s)
- Nilson S Ferreira
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - José M Sasaki
- Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | - Romualdo S Silva
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - John M Attah-Baah
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Marcelo A Macêdo
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| |
Collapse
|
83
|
Rahman A, Harunsani MH, Tan AL, Khan MM. Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 2021; 44:1333-1372. [PMID: 33661388 DOI: 10.1007/s00449-021-02530-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are considered as very significant and essential material due to its multifunctional properties, stability, low cost and wide usage. Many green and biogenic approaches for ZnO NPs synthesis have been reported using various sources such as plants and microorganisms. Plants contain biomolecules that can act as capping, oxidizing and reducing agents that increase the rate of reaction and stabilizes the NPs. This review emphasizes and compiles different types of plants and parts of plant used for the synthesis of ZnO and its potential applications at one place. The influence of biogenic and phytogenic synthesized ZnO on its properties and possible mechanisms for its fabrication has been discussed. This review also highlights the potential applications and future prospects of phytogenic synthesized ZnO in the field of energy production and storage, sun light harvesting, environmental remediation, and biological applications.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
84
|
Jin SE, Jin HE. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:263. [PMID: 33498491 PMCID: PMC7922830 DOI: 10.3390/nano11020263] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/31/2022]
Abstract
Zinc oxide (ZnO) nano/microparticles (NPs/MPs) have been studied as antibiotics to enhance antimicrobial activity against pathogenic bacteria and viruses with or without antibiotic resistance. They have unique physicochemical characteristics that can affect biological and toxicological responses in microorganisms. Metal ion release, particle adsorption, and reactive oxygen species generation are the main mechanisms underlying their antimicrobial action. In this review, we describe the physicochemical characteristics of ZnO NPs/MPs related to biological and toxicological effects and discuss the recent findings of the antimicrobial activity of ZnO NPs/MPs and their combinations with other materials against pathogenic microorganisms. Current biomedical applications of ZnO NPs/MPs and combinations with other materials are also presented. This review will provide the better understanding of ZnO NPs/MPs as antibiotic alternatives and aid in further development of antibiotic agents for industrial and clinical applications.
Collapse
Affiliation(s)
- Su-Eon Jin
- Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea
| |
Collapse
|
85
|
Preeti, Radhakrishnan VS, Mukherjee S, Mukherjee S, Singh SP, Prasad T. ZnO Quantum Dots: Broad Spectrum Microbicidal Agent Against Multidrug Resistant Pathogens E. coli and C. albicans. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.576342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
86
|
Ekennia A, Uduagwu D, Olowu O, Nwanji O, Oje O, Daniel B, Mgbii S, Emma-Uba C. Biosynthesis of zinc oxide nanoparticles using leaf extracts of Alchornea laxiflora and its tyrosinase inhibition and catalytic studies. Micron 2020; 141:102964. [PMID: 33232905 DOI: 10.1016/j.micron.2020.102964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) were synthesized using a simple, low cost and safe method involving aqueous leaf extracts of Alchornea laxiflora and a zinc precursor salt. The nanoparticles were characterized by ultraviolet-visible (UV-vis), Fourier transform (FT-IR) spectroscopy, Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Scanning electron microscope (SEM). They were evaluated for their potentials as tyrosinase inhibitors and as catalysts in the degradation of Congo red dye. The UV-vis spectra gave characteristic surface Plasmon bands within the range 276-456 nm. The band gap energies of the ZnO-NPs were of the range, 2.50-3.67 ev. The SEM results showed average sizes of 29 nm and 38 nm for particles obtained using 1 mL and 2 mL of the plant extracts respectively. EDX plot showed the elemental compositions of the nanoparticles with zinc and oxygen being pronounced. The ZnO nanoparticles exhibited good photocatalytic efficiency of 87 % degradation of Congo red (CR) dye molecules in 60 min, They also showed good anti-tyrosinase ability with an IC50 of 66.28 μg/mL. Overall the biogenic ZnO nanoparticles are promising materials for dual applications as photocatalysts in the degradation of Congo red dye and as tyrosinase inhibitors.
Collapse
Affiliation(s)
- Anthony Ekennia
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria.
| | - Dickson Uduagwu
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Olawale Olowu
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Obianuju Nwanji
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Obinna Oje
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Blessing Daniel
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Sandra Mgbii
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Chimerem Emma-Uba
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
87
|
|
88
|
Jasim NA, Al-Gasha'a FA, Al-Marjani MF, Al-Rahal AH, Abid HA, Al-Kadhmi NA, Jakaria M, Rheima AM. ZnO nanoparticles inhibit growth and biofilm formation of vancomycin-resistant S. aureus (VRSA). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
89
|
Abou Hammad AB, Hemdan BA, El Nahrawy AM. Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110816. [PMID: 32501235 DOI: 10.1016/j.jenvman.2020.110816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Disinfection using chlorine has paramount importance in the treatment of either drinking water or sewage since it can kill and inhibit all waterborne pathogens, but it may result in carcinogenic substances when interacting with organic matter. An eco-friendly sol-gel process with citrate was used to prepare the nano-cubic activated nickel-zinc ferrite magnetic nanostructures (Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4). The activated nanomagnetic samples were characterized using XRD, HR-TEM, HR-SEM, FTIR, and VSM techniques. The structural and magnetic results showed that the nano-cubes magnetic-structures exhibited higher crystalline degrees and an increase in the total magnetization, enabling spinel nano-ferrite to possess potentials for excellent industry various applications. Likewise, the VSM results reveal that Ce2O3 had a significant influence on the magnetic behavior such as the coercivity (Hc; 69.226-133.15) saturation and magnetization (Ms; 24.562-52.174). The results revealed that all Magnetic nanoparticles (MNPs) had an outstanding inhibitory effect on microbes tested. The manufactured particles showed a remarkable ability to eliminate pathogenic bacteria in real sewage samples. The results obtained endorsed that the manufactured magnetic nanoparticles (MNPs) are powerful nano-weapons with an excellent anticipated output for the deactivation of pathogenic microbes during sewage treatment, with, nickel-zinc-cerium ferrite being more effective in inhibiting microbial growth than nickel-zinc-cerium ferrite.
Collapse
Affiliation(s)
- Ali B Abou Hammad
- Solid-State Physics Department, Physics Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amany M El Nahrawy
- Solid-State Physics Department, Physics Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
90
|
Green Synthesis of Biogenic Zinc Oxide Nanoflower as Dual Agent for Photodegradation of an Organic Dye and Tyrosinase Inhibitor. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01729-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
Krishnan RA, Mhatre O, Sheth J, Prabhu S, Jain R, Dandekar P. Synthesis of zinc oxide nanostructures using orange peel oil for fabricating chitosan-zinc oxide composite films and their antibacterial activity. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2033-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
92
|
Green Synthesized ZnO Nanoparticles Mediated by Mentha Spicata Extract Induce Plant Systemic Resistance against Tobacco Mosaic Virus. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155054] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Globally, plant viral infection is one of the most difficult challenges of food security, where considerable losses in crop production occur. Nanoparticles are an effective control agent against numerous plant pathogens. However, there is limited knowledge concerning their effects against viral infection. In the present study, the green synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf extract of Mentha spicata was achieved. X-ray diffraction patterns confirmed the crystalline nature of the prepared ZnO NPs. Dynamic light scattering and scanning electron microscopy analyses revealed that the resultant ZnO NPs were spherical in shape with a particle size ranged from 11 to 88 nm. Fourier transmission infrared spectroscopy detected different functional groups, capping and stability agents, and showed Zn-O bond within wavenumber of 487 cm−1. Under greenhouse conditions, the antiviral activity of biological synthesized ZnO NPs (100 µg/mL) against Tobacco mosaic virus (TMV) was evaluated. The double foliar application of the prepared ZnO NPs, 24 h before and 24 h after TMV-inoculation, was the most effective treatment that showed a 90.21% reduction of viral accumulation level and disease severity. Additionally, the transcriptional levels of PAL, PR-1 (salicylic acid marker gene), CHS, and POD genes were induced and up-regulated in all ZnO NPs treated plants. Notably, the results exhibited that aqueous extract of Mentha spicata was an effective reducing agent for the green synthesis of ZnO NPs, which showed significant antiviral activity. Finally, the detected protective and curative activity of ZnO NPs against TMV can encourage us to recommend its application for plant viral disease management. To our knowledge, this is the first study describing the antiviral activity of the green synthesized ZnO NPs.
Collapse
|
93
|
Akintelu SA, Folorunso AS. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00774-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
94
|
Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128107] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
95
|
Ijaz M, Zafar M, Islam A, Afsheen S, Iqbal T. A Review on Antibacterial Properties of Biologically Synthesized Zinc Oxide Nanostructures. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01603-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
96
|
Kinetics and mechanisms of Zn2+ release from antimicrobial food packaging based on poly (butylene adipate-co-terephthalate) and zinc oxide nanoparticles. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03145-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
97
|
Suriyaprabha R, Balu KS, Karthik S, Prabhu M, Rajendran V, Aicher WK, Maaza M. A sensitive refining of in vitro and in vivo toxicological behavior of green synthesized ZnO nanoparticles from the shells of Jatropha curcas for multifunctional biomaterials development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109621. [PMID: 31520953 DOI: 10.1016/j.ecoenv.2019.109621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
ZnO nanoparticles (NPs) possess a wide range of biological functions in pharmaceutical and cosmetic applications due to their excellent antimicrobial, optical and UV protective properties. This study first reports the toxicological assessment of ZnO NPs green synthesized from Jatropha curcas shells for multifunctional biomedical applications. The hot water extract of J.curcas shells is utilized as a chelating agent for the reduction of zinc acetate and then, the prepared ZnO NPs are broadly characterized using X-ray spectroscopic and electron microscopic observations. The prepared ZnO NPs acquire high purity (100%) wurtzite crystal with hexagonal structure with the average particle size of 53 nm. In vitro and in vivo toxicity evaluation against human tumor cell lines and zebrafish embryos have ascertained the purpose of ZnO NPs in clinical research. Toxic effects of ZnO NPs were observed by a dose-dependent reduction of bacterial growth at ≥1 μg ml-1, by teratogenicity and genotoxicity in zebrafish embryos (from 3 to 90 μg ml-1) and by a significant nanoparticle uptake (0.5 ng μl-1) by a fish serum. In contrast, ZnO NPs fail to reduce the proliferation of human bladder tumor cells (UC6) and cell viability of A549 cells in vitro up to 500 μg ml-1. All these observations limit the unobstructed application of ZnO NPs at higher concentrations. Thus, abundantly used metal oxide nanoparticles like ZnO NPs examined in our present study in different animal models under in vitro and in vivo conditions will be the significant screening strategy to determine the nanotoxicity.
Collapse
Affiliation(s)
- R Suriyaprabha
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India
| | - K S Balu
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India
| | - S Karthik
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India
| | - M Prabhu
- Department of Biomedical Engineering, Mahendra Institute of Technology Mahendhirapuri, 637503, Tamil Nadu, India
| | - V Rajendran
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India; Centre for Research, Dr. N. G. P. Arts and Science College, Coimbatore, 641048, Tamil Nadu, India.
| | - Wilhelm K Aicher
- Department of Urology, University of Tübingen Hospital, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| |
Collapse
|
98
|
Mahdavi B, Saneei S, Qorbani M, Zhaleh M, Zangeneh A, Zangeneh MM, Pirabbasi E, Abbasi N, Ghaneialvar H. Ziziphora clinopodioides
Lam leaves aqueous extract mediated synthesis of zinc nanoparticles and their antibacterial, antifungal, cytotoxicity, antioxidant, and cutaneous wound healing properties under
in vitro
and
in vivo
conditions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5164] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Behnam Mahdavi
- Department of ChemistryHakim Sabzevari University Sabzevar Iran
| | - Sania Saneei
- Department of Dermatology, School of MedicineKermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Qorbani
- Department of ChemistryHakim Sabzevari University Sabzevar Iran
| | - Mohsen Zhaleh
- Department of Medical Laboratory Sciences, School of ParamedicineKermanshah University of Medical Sciences Kermanshah Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | | | - Naser Abbasi
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
- Department of Clinical Biochemistry, Faculty of MedicineIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
99
|
|