53
|
Kadzielawa K, Mathew B, Stelman CR, Lei AZ, Torres L, Roth S. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol 2018; 256:935-949. [PMID: 29504043 DOI: 10.1007/s00417-018-3905-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia. METHODS To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed. RESULTS There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions. CONCLUSION Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.
Collapse
Affiliation(s)
- Konrad Kadzielawa
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R Stelman
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Arden Zhengdeng Lei
- Center for Research Bioinformatics, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Anesthesiology, MC 515, University of Illinois Medical Center, 1740 West Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
54
|
Groth CL, Berman BD. Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype. Tremor Other Hyperkinet Mov (N Y) 2018; 8:534. [PMID: 29416937 PMCID: PMC5801325 DOI: 10.7916/d80s0zjq] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism.
Collapse
Affiliation(s)
- Christopher L. Groth
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D. Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neurology Section, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
55
|
Thompson JR, Gustafsson HC, DeCapo M, Takahashi DL, Bagley JL, Dean TA, Kievit P, Fair DA, Sullivan EL. Maternal Diet, Metabolic State, and Inflammatory Response Exert Unique and Long-Lasting Influences on Offspring Behavior in Non-Human Primates. Front Endocrinol (Lausanne) 2018; 9:161. [PMID: 29740395 PMCID: PMC5924963 DOI: 10.3389/fendo.2018.00161] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
Nutritional status influences brain health and gestational exposure to metabolic disorders (e.g. obesity and diabetes) increases the risk of neuropsychiatric disorders. The aim of the present study was to further investigate the role of maternal Western-style diet (WSD), metabolic state, and inflammatory factors in the programming of Japanese macaque offspring behavior. Utilizing structural equation modeling, we investigated the relationships between maternal diet, prepregnancy adiposity, third trimester insulin response, and plasma cytokine levels on 11-month-old offspring behavior. Maternal WSD was associated with greater reactive and ritualized anxiety in offspring. Maternal adiposity and third trimester macrophage-derived chemokine (MDC) exerted opposing effects on offspring high-energy outbursts. Elevated levels of this behavior were associated with low maternal MDC and increased prepregnancy adiposity. This is the first study to show that maternal MDC levels influence offspring behavior. We found no evidence suggesting maternal peripheral inflammatory response mediated the effect of maternal diet and metabolic state on aberrant offspring behavior. Additionally, the extent of maternal metabolic impairment differentially influenced chemokine response. Elevated prepregnancy adiposity suppressed third trimester chemokines, while obesity-induced insulin resistance augmented peripheral chemokine levels. WSD also directly increased maternal interleukin-12. This is the first non-human primate study to delineate the effects of maternal diet and metabolic state on gestational inflammatory environment and subsequent offspring behavior. Our findings give insight to the complex mechanisms by which diet, metabolic state, and inflammation during pregnancy exert unique influences on offspring behavioral regulation.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Madison DeCapo
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Diana L. Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jennifer L. Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Tyler A. Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Damien A. Fair
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
- *Correspondence: Elinor L. Sullivan,
| |
Collapse
|
56
|
Hsu WCJ, Wildburger NC, Haidacher SJ, Nenov MN, Folorunso O, Singh AK, Chesson BC, Franklin WF, Cortez I, Sadygov RG, Dineley KT, Rudra JS, Taglialatela G, Lichti CF, Denner L, Laezza F. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol 2017; 295:1-17. [PMID: 28522250 DOI: 10.1016/j.expneurol.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive impairment in humans with Alzheimer's disease (AD) and in animal models of Aβ-pathology can be ameliorated by treatments with the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ) agonists, such as rosiglitazone (RSG). Previously, we demonstrated that in the Tg2576 animal model of AD, RSG treatment rescued cognitive deficits and reduced aberrant activity of granule neurons in the dentate gyrus (DG), an area critical for memory formation. METHODS We used a combination of mass spectrometry, confocal imaging, electrophysiology and split-luciferase assay and in vitro phosphorylation and Ingenuity Pathway Analysis. RESULTS Using an unbiased, quantitative nano-LC-MS/MS screening, we searched for potential molecular targets of the RSG-dependent rescue of DG granule neurons. We found that S226 phosphorylation of fibroblast growth factor 14 (FGF14), an accessory protein of the voltage-gated Na+ (Nav) channels required for neuronal firing, was reduced in Tg2576 mice upon treatment with RSG. Using confocal microscopy, we confirmed that the Tg2576 condition decreased PanNav channels at the AIS of the DG, and that RSG treatment of Tg2576 mice reversed the reduction in PanNav channels. Analysis from previously published data sets identified correlative changes in action potential kinetics in RSG-treated T2576 compared to untreated and wildtype controls. In vitro phosphorylation and mass spectrometry confirmed that the multifunctional kinase GSK-3β, a downstream target of insulin signaling highly implicated in AD, phosphorylated FGF14 at S226. Assembly of the FGF14:Nav1.6 channel complex and functional regulation of Nav1.6-mediated currents by FGF14 was impaired by a phosphosilent S226A mutation. Bioinformatics pathway analysis of mass spectrometry and biochemistry data revealed a highly interconnected network encompassing PPARγ, FGF14, SCN8A (Nav 1.6), and the kinases GSK-3 β, casein kinase 2β, and ERK1/2. CONCLUSIONS These results identify FGF14 as a potential PPARγ-sensitive target controlling Aβ-induced dysfunctions of neuronal activity in the DG underlying memory loss in early AD.
Collapse
Affiliation(s)
- Wei-Chun J Hsu
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; M.D./Ph.D. Combined Degree Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Sigmund J Haidacher
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Miroslav N Nenov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Brent C Chesson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Whitney F Franklin
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Ibdanelo Cortez
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Rovshan G Sadygov
- Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Kelly T Dineley
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jay S Rudra
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Cheryl F Lichti
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Larry Denner
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|