51
|
Western Diet Decreases the Liver Mitochondrial Oxidative Flux of Succinate: Insight from a Murine NAFLD Model. Int J Mol Sci 2021; 22:ijms22136908. [PMID: 34199098 PMCID: PMC8268937 DOI: 10.3390/ijms22136908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an essential role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Previously, we found that succinate-activated respiration was the most affected mitochondrial parameter in mice with mild NAFLD. In this study, we focused on the role of succinate dehydrogenase (SDH) in NAFLD pathogenesis. To induce the progression of NAFLD to nonalcoholic steatohepatitis (NASH), C57BL/6J mice were fed a Western-style diet (WD) or control diet for 30 weeks. NAFLD severity was evaluated histologically and the expression of selected proteins and genes was assessed. Mitochondrial respiration was measured by high-resolution respirometry. Liver redox status was assessed using glutathione, malondialdehyde, and mitochondrial production of reactive oxygen species (ROS). Metabolomic analysis was performed by GC/MS. WD consumption for 30 weeks led to reduced succinate-activated respiration. We also observed decreased SDH activity, decreased expression of the SDH activator sirtuin 3, decreased gene expression of SDH subunits, and increased levels of hepatic succinate, an important signaling molecule. Succinate receptor 1 (SUCNR1) gene and protein expression were reduced in the livers of WD-fed mice. We did not observe signs of oxidative damage compared to the control group. The changes observed in WD-fed mice appear to be adaptive to prevent mitochondrial respiratory chain overload and massive ROS production.
Collapse
|
52
|
Dekker FA, Rüdiger SGD. The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease. Front Mol Biosci 2021; 8:697913. [PMID: 34222342 PMCID: PMC8249562 DOI: 10.3389/fmolb.2021.697913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s Disease (AD) is the most common form of dementia, characterised by intra- and extracellular protein aggregation. In AD, the cellular protein quality control (PQC) system is derailed and fails to prevent the formation of these aggregates. Especially the mitochondrial paralogue of the conserved Hsp90 chaperone class, tumour necrosis factor receptor-associated protein 1 (TRAP1), is strongly downregulated in AD, more than other major PQC factors. Here, we review molecular mechanism and cellular function of TRAP1 and subsequently discuss possible links to AD. TRAP1 is an interesting paradigm for the Hsp90 family, as it chaperones proteins with vital cellular function, despite not being regulated by any of the co-chaperones that drive its cytosolic paralogues. TRAP1 encloses late folding intermediates in a non-active state. Thereby, it is involved in the assembly of the electron transport chain, and it favours the switch from oxidative phosphorylation to glycolysis. Another key function is that it ensures mitochondrial integrity by regulating the mitochondrial pore opening through Cyclophilin D. While it is still unclear whether TRAP1 itself is a driver or a passenger in AD, it might be a guide to identify key factors initiating neurodegeneration.
Collapse
Affiliation(s)
- Françoise A Dekker
- Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
53
|
Lopez-Crisosto C, Arias-Carrasco R, Sepulveda P, Garrido-Olivares L, Maracaja-Coutinho V, Verdejo HE, Castro PF, Lavandero S. Novel molecular insights and public omics data in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166200. [PMID: 34144090 DOI: 10.1016/j.bbadis.2021.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension is a rare disease with high morbidity and mortality which mainly affects women of reproductive age. Despite recent advances in understanding the pathogenesis of pulmonary hypertension, the high heterogeneity in the presentation of the disease among different patients makes it difficult to make an accurate diagnosis and to apply this knowledge to effective treatments. Therefore, new studies are required to focus on translational and personalized medicine to overcome the lack of specificity and efficacy of current management. Here, we review the majority of public databases storing 'omics' data of pulmonary hypertension studies, from animal models to human patients. Moreover, we review some of the new molecular mechanisms involved in the pathogenesis of pulmonary hypertension, including non-coding RNAs and the application of 'omics' data to understand this pathology, hoping that these new approaches will provide insights to guide the way to personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile
| | - Raul Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Sepulveda
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Cardiovascular Surgery, Division of Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
54
|
Serapian SA, Sanchez-Martín C, Moroni E, Rasola A, Colombo G. Targeting the mitochondrial chaperone TRAP1: strategies and therapeutic perspectives. Trends Pharmacol Sci 2021; 42:566-576. [PMID: 33992469 DOI: 10.1016/j.tips.2021.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
TRAP1, the mitochondrial isoform of heat shock protein (Hsp)90 chaperones, is a key regulator of metabolism and organelle homeostasis in diverse pathological states. While selective TRAP1 targeting is an attractive goal, classical active-site-directed strategies have proved difficult, due to high active site conservation among Hsp90 paralogs. Here, we discuss advances in developing TRAP1-directed strategies, from lead modification with mitochondria delivery groups to the computational discovery of allosteric sites and ligands. Specifically, we address the unique opportunities that targeting TRAP1 opens up in tackling fundamental questions on its biology and in unveiling new therapeutic approaches. Finally, we show how crucial to this endeavor is our ability to predict the activities of TRAP1-selective allosteric ligands and to optimize target engagement to avoid side effects.
Collapse
Affiliation(s)
- Stefano A Serapian
- Dipartimento di Chimica, Università di Pavia. via Taramelli 12, I-27100 Pavia, Italy
| | - Carlos Sanchez-Martín
- Dipartimento di Scienze Biomediche, Università di Padova, viale G. Colombo 3, I-35131 Padova, Italy
| | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, viale G. Colombo 3, I-35131 Padova, Italy.
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia. via Taramelli 12, I-27100 Pavia, Italy.
| |
Collapse
|
55
|
HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death Dis 2021; 12:434. [PMID: 33934112 PMCID: PMC8088431 DOI: 10.1038/s41419-021-03716-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
The mitochondrial paralog of the Hsp90 chaperone family TRAP1 is often induced in tumors, but the mechanisms controlling its expression, as well as its physiological functions remain poorly understood. Here, we find that TRAP1 is highly expressed in the early stages of Zebrafish development, and its ablation delays embryogenesis while increasing mitochondrial respiration of fish larvae. TRAP1 expression is enhanced by hypoxic conditions both in developing embryos and in cancer models of Zebrafish and mammals. The TRAP1 promoter contains evolutionary conserved hypoxic responsive elements, and HIF1α stabilization increases TRAP1 levels. TRAP1 inhibition by selective compounds or by genetic knock-out maintains a high level of respiration in Zebrafish embryos after exposure to hypoxia. Our data identify TRAP1 as a primary regulator of mitochondrial bioenergetics in highly proliferating cells following reduction in oxygen tension and HIF1α stabilization.
Collapse
|
56
|
Xu J, Simonelli F, Li X, Spinello A, Laporte S, Torre V, Magistrato A. Molecular Mechanisms of the Blockage of Glioblastoma Motility. J Chem Inf Model 2021; 61:2967-2980. [PMID: 33861592 DOI: 10.1021/acs.jcim.1c00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor. GBM has a remarkable degree of motility and is able to infiltrate the healthy brain. In order to perform a rationale-based drug-repositioning study, we have used known inhibitors of two small Rho GTPases, Rac1 and Cdc42, which are upregulated in GBM and are involved in the signaling processes underlying the orchestration of the cytoskeleton and cellular motility. The selected inhibitors (R-ketorolac and ML141 for Cdc42 and R-ketorolac and EHT 1864 for Rac1) have been successfully employed to reduce the infiltration propensity of GBM in live cell imaging studies. Complementarily, all-atom simulations have elucidated the molecular basis of their inhibition mechanism, identifying the binding sites targeted by the inhibitors and dissecting their impact on the small Rho GTPases' function. Our results demonstrate the potential of targeting the Rac1 and Cdc42 proteins with small molecules to contrast GBM infiltration growth and supply precious information for future drug discovery studies aiming to fight GBM and other infiltrative cancer types.
Collapse
Affiliation(s)
- Jing Xu
- International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy.,Institute for Systems Medicine, Suzhou, Jiangsu 215123, P. R. China
| | - Federica Simonelli
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Xiaoyun Li
- International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Angelo Spinello
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Sara Laporte
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Alessandra Magistrato
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
57
|
Shin DH, Nguyen T, Ozpolat B, Lang F, Alonso M, Gomez-Manzano C, Fueyo J. Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J Immunother Cancer 2021; 9:jitc-2020-002086. [PMID: 33795384 PMCID: PMC8021759 DOI: 10.1136/jitc-2020-002086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer virotherapy is a paradigm-shifting treatment modality based on virus-mediated oncolysis and subsequent antitumor immune responses. Clinical trials of currently available virotherapies showed that robust antitumor immunity characterizes the remarkable and long-term responses observed in a subset of patients. These data suggest that future therapies should incorporate strategies to maximize the immunotherapeutic potential of oncolytic viruses. In this review, we highlight the recent evidence that the antiviral immunity of the patients may limit the immunotherapeutic potential of oncolytic viruses and summarize the most relevant approaches to strategically redirect the immune response away from the viruses and toward tumors to heighten the clinical impact of viro-immunotherapy platforms.
Collapse
Affiliation(s)
- Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teresa Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
58
|
Sanchez-Martin C, Menon D, Moroni E, Ferraro M, Masgras I, Elsey J, Arbiser JL, Colombo G, Rasola A. Honokiol Bis-Dichloroacetate Is a Selective Allosteric Inhibitor of the Mitochondrial Chaperone TRAP1. Antioxid Redox Signal 2021; 34:505-516. [PMID: 32438819 PMCID: PMC8020504 DOI: 10.1089/ars.2019.7972] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aims: TNF receptor-associated protein 1 (TRAP1), the mitochondrial paralog of the heat shock protein 90 (Hsp90) family of molecular chaperones, is required for neoplastic growth in several tumor cell models, where it inhibits succinate dehydrogenase (SDH) activity, thus favoring bioenergetic rewiring, maintenance of redox homeostasis, and orchestration of a hypoxia-inducible factor 1-alpha (HIF1α)-mediated pseudohypoxic program. Development of selective TRAP1 inhibitors is instrumental for targeted development of antineoplastic drugs, but it has been hampered up to now by the high degree of homology among catalytic pockets of Hsp90 family members. The vegetal derivative honokiol and its lipophilic bis-dichloroacetate ester, honokiol DCA (HDCA), are small-molecule compounds with antineoplastic activity. HDCA leads to oxidative stress and apoptosis in in vivo tumor models and displays an action that is functionally opposed to that of TRAP1, as it induces both SDH and the mitochondrial deacetylase sirtuin-3 (SIRT3), which further enhances SDH activity. We investigated whether HDCA could interact with TRAP1, inhibiting its chaperone function, and the effects of HDCA on tumor cells harboring TRAP1. Results: An allosteric binding site in TRAP1 is able to host HDCA, which inhibits TRAP1 but not Hsp90 ATPase activity. In neoplastic cells, HDCA reverts TRAP1-dependent downregulation of SDH, decreases proliferation rate, increases mitochondrial superoxide levels, and abolishes tumorigenic growth. Innovation: HDCA is a potential lead compound for the generation of antineoplastic approaches based on the allosteric inhibition of TRAP1 chaperone activity. Conclusions: We have identified a selective TRAP1 inhibitor that can be used to better dissect TRAP1 biochemical functions and to tailor novel tumor-targeting strategies.
Collapse
Affiliation(s)
| | - Daniela Menon
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Elisabetta Moroni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| | | | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy.,Istituto di Neuroscienze, CNR, Padova, Italy
| | - Justin Elsey
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jack L Arbiser
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy.,Dipartimento di Chimica, Università di Pavia, Pavia, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| |
Collapse
|
59
|
Kotrasová V, Keresztesová B, Ondrovičová G, Bauer JA, Havalová H, Pevala V, Kutejová E, Kunová N. Mitochondrial Kinases and the Role of Mitochondrial Protein Phosphorylation in Health and Disease. Life (Basel) 2021; 11:life11020082. [PMID: 33498615 PMCID: PMC7912454 DOI: 10.3390/life11020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Collapse
Affiliation(s)
- Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Barbora Keresztesová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
| | - Gabriela Ondrovičová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Henrieta Havalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- Correspondence: (E.K.); (N.K.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
- Correspondence: (E.K.); (N.K.)
| |
Collapse
|
60
|
Ferraro M, Moroni E, Ippoliti E, Rinaldi S, Sanchez-Martin C, Rasola A, Pavarino LF, Colombo G. Machine Learning of Allosteric Effects: The Analysis of Ligand-Induced Dynamics to Predict Functional Effects in TRAP1. J Phys Chem B 2020; 125:101-114. [PMID: 33369425 PMCID: PMC8016192 DOI: 10.1021/acs.jpcb.0c09742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Allosteric
molecules provide a powerful means to modulate protein
function. However, the effect of such ligands on distal orthosteric
sites cannot be easily described by classical docking methods. Here,
we applied machine learning (ML) approaches to expose the links between
local dynamic patterns and different degrees of allosteric inhibition
of the ATPase function in the molecular chaperone TRAP1. We focused
on 11 novel allosteric modulators with similar affinities to the target
but with inhibitory efficacy between the 26.3 and 76%. Using a set
of experimentally related local descriptors, ML enabled us to connect
the molecular dynamics (MD) accessible to ligand-bound (perturbed)
and unbound (unperturbed) systems to the degree of ATPase allosteric
inhibition. The ML analysis of the comparative perturbed ensembles
revealed a redistribution of dynamic states in the inhibitor-bound
versus inhibitor-free systems following allosteric binding. Linear
regression models were built to quantify the percentage of experimental
variance explained by the predicted inhibitor-bound TRAP1 states.
Our strategy provides a comparative MD–ML framework to infer
allosteric ligand functionality. Alleviating the time scale issues
which prevent the routine use of MD, a combination of MD and ML represents
a promising strategy to support in silico mechanistic
studies and drug design.
Collapse
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy
| | - Emiliano Ippoliti
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany
| | - Silvia Rinaldi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy
| | - Carlos Sanchez-Martin
- Dipartimento di Scienze Biomediche, Università di Padova, viale G. Colombo 3, 35131 Padova, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, viale G. Colombo 3, 35131 Padova, Italy
| | - Luca F Pavarino
- Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 5, 27100 Pavia Italy
| | - Giorgio Colombo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy.,Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
61
|
Albakova Z, Siam MKS, Sacitharan PK, Ziganshin RH, Ryazantsev DY, Sapozhnikov AM. Extracellular heat shock proteins and cancer: New perspectives. Transl Oncol 2020; 14:100995. [PMID: 33338880 PMCID: PMC7749402 DOI: 10.1016/j.tranon.2020.100995] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
High expression of extracellular heat shock proteins (HSPs) indicates highly aggressive tumors. HSP profiling of extracellular vesicles (EVs) derived from various biological fluids and released by immune cells may open new perspectives for an identification of diagnostic, prognostic and predictive biomarkers of cancer. Identification of specific microRNAs targeting HSPs in EVs may be a promising strategy for the discovery of novel biomarkers of cancer.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 199192 Moscow, Russia.
| | | | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
62
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
63
|
Sanchez J, Carter TR, Cohen MS, Blagg BSJ. Old and New Approaches to Target the Hsp90 Chaperone. Curr Cancer Drug Targets 2020; 20:253-270. [PMID: 31793427 DOI: 10.2174/1568009619666191202101330] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990's, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone's Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.
Collapse
Affiliation(s)
- Jackee Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trever R Carter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
64
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
65
|
Lettini G, Condelli V, Pietrafesa M, Crispo F, Zoppoli P, Maddalena F, Laurenzana I, Sgambato A, Esposito F, Landriscina M. TRAP1 Regulates Wnt/β-Catenin Pathway through LRP5/6 Receptors Expression Modulation. Int J Mol Sci 2020; 21:E7526. [PMID: 33065966 PMCID: PMC7589514 DOI: 10.3390/ijms21207526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/01/2022] Open
Abstract
Wnt/β-Catenin signaling is involved in embryonic development, regeneration, and cellular differentiation and is responsible for cancer stemness maintenance. The HSP90 molecular chaperone TRAP1 is upregulated in 60-70% of human colorectal carcinomas (CRCs) and favors stem cells maintenance, modulating the Wnt/β-Catenin pathway and preventing β-Catenin phosphorylation/degradation. The role of TRAP1 in the regulation of Wnt/β-Catenin signaling was further investigated in human CRC cell lines, patient-derived spheroids, and CRC specimens. TRAP1 relevance in the activation of Wnt/β-Catenin signaling was highlighted by a TCF/LEF Cignal Reporter Assay in Wnt-off HEK293T and CRC HCT116 cell lines. Of note, this regulation occurs through the modulation of Wnt ligand receptors LRP5 and LRP6 that are both downregulated in TRAP1-silenced cell lines. However, while LRP5 mRNA is significantly downregulated upon TRAP1 silencing, LRP6 mRNA is unchanged, suggesting independent mechanisms of regulation by TRAP1. Indeed, LRP5 is regulated upon promoter methylation in CRC cell lines and human CRCs, whereas LRP6 is controlled at post-translational level by protein ubiquitination/degradation. Consistently, human CRCs with high TRAP1 expression are characterized by the co-upregulation of active β-Catenin, LRP5 and LRP6. Altogether, these data suggest that Wnt/β-Catenin signaling is modulated at multiple levels by TRAP1.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
66
|
Molecular Chaperones: Molecular Assembly Line Brings Metabolism and Immunity in Shape. Metabolites 2020; 10:metabo10100394. [PMID: 33023034 PMCID: PMC7600384 DOI: 10.3390/metabo10100394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular chaperones are a set of conserved proteins that have evolved to assist the folding of many newly synthesized proteins by preventing their misfolding under conditions such as elevated temperatures, hypoxia, acidosis and nutrient deprivation. Molecular chaperones belong to the heat shock protein (HSP) family. They have been identified as important participants in immune functions including antigen presentation, immunostimulation and immunomodulation, and play crucial roles in metabolic rewiring and epigenetic circuits. Growing evidence has accumulated to indicate that metabolic pathways and their metabolites influence the function of immune cells and can alter transcriptional activity through epigenetic modification of (de)methylation and (de)acetylation. However, whether molecular chaperones can regulate metabolic programs to influence immune activity is still largely unclear. In this review, we discuss the available data on the biological function of molecular chaperones to immune responses during inflammation, with a specific focus on the interplay between molecular chaperones and metabolic pathways that drive immune cell fate and function.
Collapse
|
67
|
Dutta Gupta S, Pan CH. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int J Biol Macromol 2020; 161:1086-1098. [DOI: 10.1016/j.ijbiomac.2020.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
68
|
Identification and Characterization of Three Heat Shock Protein 90 (Hsp90) Homologs in the Brown Planthopper. Genes (Basel) 2020; 11:genes11091074. [PMID: 32932648 PMCID: PMC7563703 DOI: 10.3390/genes11091074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Hsp90 (heat shock protein 90) chaperone machinery is considered to be a key regulator of proteostasis under both physiological and stress growth conditions in eukaryotic cells. The high conservation of both the sequence and function of Hsp90 allows for the utilization of various species to explore new phenotypes and mechanisms. In this study, three Hsp90 homologs were identified in the brown planthopper (BPH), Nilaparvata lugens: cytosolic NlHsp90, endoplasmic reticulum (ER) NlGRP94 and mitochondrial NlTRAP1. Sequence analysis and phylogenetic construction showed that these proteins belonged to distinct classes consistent with the predicted localization and suggested an evolutionary relationship between NlTRAP1 and bacterial HtpG (high-temperature protein G). Temporospatial expression analyses showed that NlHsp90 was inducible under heat stress throughout the developmental stage, while NlGRP94 was only induced at the egg stage. All three genes had a significantly high transcript level in the ovary. The RNA interference-mediated knockdown of NlHsp90 its essential role in nymph development and oogenesis under physiological conditions. NlGRP94 was also required during the early developmental stage and played a crucial role in oogenesis, fecundity and late embryogenesis. Notably, we first found that NlHsp90 and NlGRP94 were likely involved in the cuticle structure of female BPH. Together, our research revealed multifunctional roles of Hsp90s in the BPH.
Collapse
|
69
|
Flerin NC, Pinioti S, Menga A, Castegna A, Mazzone M. Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037044. [PMID: 31615868 PMCID: PMC7461771 DOI: 10.1101/cshperspect.a037044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Sotiria Pinioti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
70
|
Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 2020; 34:13106-13124. [PMID: 32808332 DOI: 10.1096/fj.202000767r] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.
Collapse
Affiliation(s)
- Philippe Marchetti
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Quentin Fovez
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Nicolas Germain
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Raeeka Khamari
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Jérôme Kluza
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| |
Collapse
|
71
|
Purushottam Dharaskar S, Paithankar K, Kanugovi Vijayavittal A, Shabbir Kara H, Amere Subbarao S. Mitochondrial chaperone, TRAP1 modulates mitochondrial dynamics and promotes tumor metastasis. Mitochondrion 2020; 54:92-101. [PMID: 32784002 DOI: 10.1016/j.mito.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in regulating cellular energy metabolism. However, the present understanding of mitochondria has changed from its unipotent functions to pluripotent and insists on understanding the role of mitochondria not only in regulating the life and death of cells, but in pathological conditions such as cancer. Unlike other cellular organelles, subtle alterations in mitochondrial organization may significantly influence the balance between metabolic networks and cellular behavior. Therefore, the delicate balance between the fusion and fission dynamics of mitochondrion can indicate cell fate. Here, we present mitochondrial chaperone TRAP1 influence on mitochondrial architecture and its correlation with tumor growth and metastasis. We show that TRAP1 overexpression (TRAP1 OE) promotes mitochondrial fission, whereas, TRAP1 knockdown (TRAP1 KD) promotes mitochondrial fusion. Interestingly, TRAP1 OE or KD had a negligible effect on mitochondrial integrity. However, TRAP1 OE cells exhibited enhanced proliferative potential, while TRAP1 KD cells showing increased doubling time. Further, TRAP1 dependent mitochondrial dynamic alterations appeared to be unique since mitochondrial localization of TRAP1 is a mandate for dynamic changes. The expression patterns of fusion and fission genes have failed to correlate with TRAP1 expression, indicating a possibility that the dynamic changes can be independent of these genes. In agreement with enhanced proliferative potential, TRAP1 OE cells also exhibited enhanced migration in vitro and tumor metastasis in vivo. Further, TRAP1 OE cells showed altered homing properties, which may challenge site-specific anticancer treatments. Our findings unravel the TRAP1 role in tumor metastasis, which is in addition to altered energy metabolism.
Collapse
Affiliation(s)
- Shrikant Purushottam Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India; AcSIR - Academy of Scientific & Innovative Research, Government of India, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | | | - Hatim Shabbir Kara
- Presently at Life Sciences & Chemistry, Jacobs University Bremen gGmbh, Bremen, Germany
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| |
Collapse
|
72
|
Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020; 10:1177. [PMID: 32766157 PMCID: PMC7378685 DOI: 10.3389/fonc.2020.01177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
Collapse
Affiliation(s)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.,Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| |
Collapse
|
73
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
74
|
Rahimi S. HPV-related squamous cell carcinoma of oropharynx: a review. J Clin Pathol 2020; 73:624-629. [PMID: 32499224 DOI: 10.1136/jclinpath-2020-206686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
Abstract
In early 1930, R. E. Shope paved the way for the recognition of human papillomavirus (HPV) as a causative agent of some types of cancers. In early 2000, the relationship between HPV and a subset of head and neck cancers, mostly located in the oropharynx, was discovered. In the last 20 years, we have made great progress in the recognition and treatment of HPV-positive head and neck cancers. However, there are still grey areas that leave room to subjective interpretation and need to be addressed. The majority of high risk (HR) HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) shows a 'basaloid' morphology, and despite the variegated morphological spectrum of this malignancy, highlighted by some very recent publications, there is a lack of consensus on a universal morphological classification of HPV-OPSCC. The advent of immunohistochemistry with p16 ink4a (p16) protein made the diagnosis of HPV-related OPSCC more straightforward; currently patients with OPSCC are stratified in p16-positive and p16-negative. Although p16 is an excellent surrogate of HR HPV infection, it is not the direct demonstration of the presence of virus. At present, there is no univocal 'gold-standard' technique for the detection of oncogenic HPV infection. It is well known that HR HPV-related (OPSCC) bear significantly better survival outcome than HPV-negative cases. Consequently, the eighth edition of the American Joint Committee on Cancer and the Union for International Cancer Control now have separate staging systems for these two distinct malignancies. The present review discusses the salient features of HR HPV-driven OPSCC.
Collapse
Affiliation(s)
- Siavash Rahimi
- Frontier Pathology-Histopathology, Brighton and Sussex University Hospitals NHS Trust, Brighton, Brighton and Hove, UK .,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| |
Collapse
|
75
|
Faienza F, Rizza S, Giglio P, Filomeni G. TRAP1: A Metabolic Hub Linking Aging Pathophysiology to Mitochondrial S-Nitrosylation. Front Physiol 2020; 11:340. [PMID: 32411008 PMCID: PMC7201090 DOI: 10.3389/fphys.2020.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Fiorella Faienza
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University of Rome, Rome, Italy.,Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
76
|
Pant K, Richard S, Peixoto E, Gradilone SA. Role of Glucose Metabolism Reprogramming in the Pathogenesis of Cholangiocarcinoma. Front Med (Lausanne) 2020; 7:113. [PMID: 32318579 PMCID: PMC7146077 DOI: 10.3389/fmed.2020.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most lethal cancers, and its rate of occurrence is increasing annually. The diagnoses of CCA patients remain elusive due to the lack of early symptoms and is misdiagnosed as HCC in a considerable percentage of patients. It is crucial to explore the underlying mechanisms of CCA carcinogenesis and development to find out specific biomarkers for early diagnosis of CCA and new promising therapeutic targets. In recent times, the reprogramming of tumor cells metabolism has been recognized as a hallmark of cancer. The modification from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in CCA meets the demands of cancer cell proliferation and provides a favorable environment for tumor development. The alteration of metabolic programming in cancer cells is complex and may occur via mutations and epigenetic modifications within oncogenes, tumor suppressor genes, signaling pathways, and glycolytic enzymes. Herein we review the altered metabolism in cancer and the signaling pathways involved in this phenomena as they may affect CCA development. Understanding the regulatory pathways of glucose metabolism such as Akt/mTOR, HIF1α, and cMyc in CCA may further develop our knowledge of this devastating disease and may offer relevant information in the exploration of new diagnostic biomarkers and targeted therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
77
|
Sanchez-Martin C, Moroni E, Ferraro M, Laquatra C, Cannino G, Masgras I, Negro A, Quadrelli P, Rasola A, Colombo G. Rational Design of Allosteric and Selective Inhibitors of the Molecular Chaperone TRAP1. Cell Rep 2020; 31:107531. [DOI: 10.1016/j.celrep.2020.107531] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
|
78
|
Faienza F, Lambrughi M, Rizza S, Pecorari C, Giglio P, Salamanca Viloria J, Allega MF, Chiappetta G, Vinh J, Pacello F, Battistoni A, Rasola A, Papaleo E, Filomeni G. S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli. Biochem Pharmacol 2020; 176:113869. [PMID: 32088262 DOI: 10.1016/j.bcp.2020.113869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
The mitochondrial chaperone TRAP1 has been involved in several mitochondrial functions, and modulation of its expression/activity has been suggested to play a role in the metabolic reprogramming distinctive of cancer cells. TRAP1 posttranslational modifications, i.e. phosphorylation, can modify its capability to bind to different client proteins and modulate its oncogenic activity. Recently, it has been also demonstrated that TRAP1 is S-nitrosylated at Cys501, a redox modification associated with its degradation via the proteasome. Here we report molecular dynamics simulations of TRAP1, together with analysis of long-range structural communication, providing a model according to which Cys501 S-nitrosylation induces conformational changes to distal sites in the structure of the protein. The modification is also predicted to alter open and closing motions for the chaperone function. By means of colorimetric assays and site directed mutagenesis aimed at generating C501S variant, we also experimentally confirmed that selective S-nitrosylation of Cys501 decreases ATPase activity of recombinant TRAP1. Coherently, C501S mutant was more active and conferred protection to cell death induced by staurosporine. Overall, our results provide the first in silico, in vitro and cellular evidence of the relevance of Cys501 S-nitrosylation in TRAP1 biology.
Collapse
Affiliation(s)
- Fiorella Faienza
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Chiara Pecorari
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Juan Salamanca Viloria
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Giovanni Chiappetta
- Laboratory of Proteomics and Biological Mass Spectrometry, USR, CNRS - ESPCI Paris, PSL University, 3149, 10 rue, Vauquelin, Paris cedex, 05 75231, France
| | - Joëlle Vinh
- Laboratory of Proteomics and Biological Mass Spectrometry, USR, CNRS - ESPCI Paris, PSL University, 3149, 10 rue, Vauquelin, Paris cedex, 05 75231, France
| | - Francesca Pacello
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Andrea Battistoni
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark.
| |
Collapse
|
79
|
Hu S, Ferraro M, Thomas AP, Chung JM, Yoon NG, Seol JH, Kim S, Kim HU, An MY, Ok H, Jung HS, Ryu JH, Colombo G, Kang BH. Dual Binding to Orthosteric and Allosteric Sites Enhances the Anticancer Activity of a TRAP1-Targeting Drug. J Med Chem 2020; 63:2930-2940. [DOI: 10.1021/acs.jmedchem.9b01420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazionale delle Ricerche (CNR), Milan 20131, Italy
| | - Ajesh P. Thomas
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Min Chung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Hoon Seol
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han-ul Kim
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mi Young An
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haewon Ok
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Suk Jung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Giorgio Colombo
- University of Pavia, Department of Chemistry, Pavia 27100, Italy
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
80
|
Joshi A, Dai L, Liu Y, Lee J, Ghahhari NM, Segala G, Beebe K, Jenkins LM, Lyons GC, Bernasconi L, Tsai FTF, Agard DA, Neckers L, Picard D. The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol 2020; 18:10. [PMID: 31987035 PMCID: PMC6986101 DOI: 10.1186/s12915-020-0740-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. Results We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. Conclusions Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.
Collapse
Affiliation(s)
- Abhinav Joshi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.,Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Li Dai
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Yanxin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Jungsoon Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Present address: Department of Pediatrics, Tropical Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nastaran Mohammadi Ghahhari
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Gregory Segala
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Gaelyn C Lyons
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
81
|
Park HK, Yoon NG, Lee JE, Hu S, Yoon S, Kim SY, Hong JH, Nam D, Chae YC, Park JB, Kang BH. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med 2020; 52:79-91. [PMID: 31956271 PMCID: PMC7000702 DOI: 10.1038/s12276-019-0360-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity.
Collapse
Affiliation(s)
- Hye-Kyung Park
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Nam Gu Yoon
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Ji-Eun Lee
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sung Hu
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sora Yoon
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - So Yeon Kim
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Jun-Hee Hong
- 0000 0004 0628 9810grid.410914.9Rare Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Dougu Nam
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Young Chan Chae
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Jong Bae Park
- 0000 0004 0628 9810grid.410914.9Rare Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, 10408 Republic of Korea ,0000 0004 0628 9810grid.410914.9Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Byoung Heon Kang
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
82
|
Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules 2020; 10:biom10010135. [PMID: 31947673 PMCID: PMC7023176 DOI: 10.3390/biom10010135] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s.
Collapse
|
83
|
Emerging neuroprotective effect of metformin in Parkinson's disease: A molecular crosstalk. Pharmacol Res 2019; 152:104593. [PMID: 31843673 DOI: 10.1016/j.phrs.2019.104593] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and Lewy pathology. PD is a major concern of today's aging population and has emerged as a global health burden. Despite the rapid advances in PD research over the past decades, the gold standard therapy provides only symptomatic relief and fails to halt disease progression. Therefore, exploring novel disease-modifying therapeutic strategies is highly demanded. Metformin, which is currently used as a first-line therapy for type 2 diabetes mellitus (T2DM), has recently demonstrated to exert a neuroprotective role in several neurodegenerative disorders including PD, both in vitro and in vivo. In this review, we explore the neuroprotective potential of metformin based on emerging evidence from pre-clinical and clinical studies. Regarding the underlying molecular mechanisms, metformin has been shown to inhibit α-synuclein (SNCA) phosphorylation and aggregation, prevent mitochondrial dysfunction, attenuate oxidative stress, modulate autophagy mainly via AMP-activated protein kinase (AMPK) activation, as well as prevent neurodegeneration and neuroinflammation. Overall, the neuroprotective effects of metformin in PD pathogenesis present a novel promising therapeutic strategy that might overcome the limitations of current PD treatment.
Collapse
|
84
|
Park SH, Hong M, Lee HS, Ye BD, Hwang SW, Jung S, Baek J, Moon JW, Kim BM, Oh SH, Kim KM, Lee I, Im CN, Liu J, McGovern DPB, Yang SK, Song K. Association of TRAP1 with infliximab-induced mucosal healing in Crohn's disease. J Gastroenterol Hepatol 2019; 34:2118-2125. [PMID: 31039275 DOI: 10.1111/jgh.14696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Anti-tumor necrosis factor (TNF) agents, such as infliximab (IFX), have been increasingly used to induce and maintain disease remission in patients with Crohn's disease (CD). Despite a considerable non-response rate, little is known about the genetic predictors of response to anti-TNF therapy in CD. Our aim in this study was to investigate the genetic factors associated with response to anti-TNF therapy in patients with CD. METHODS We performed a two-stage genome-wide association study (GWAS) to identify loci influencing the response to IFX among Korean patients with CD, comprising 42 good responders with mucosal healing and 70 non-responders. The achievement of mucosal healing was assessed by endoscopy and imaging. The functional significance of TRAP1 (TNF receptor associated protein 1) was examined using dextran sodium sulfate-induced colitis model in TRAP1 transgenic mice. RESULTS The GWAS identified rs2158962, an intronic single nucleotide polymorphism (SNP) of TRAP1, significantly associated with mucosal healing (odds ratio = 4.94; Pcombined = 1.35 × 10-7 ). In the dextran sodium sulfate-induced acute colitis, TRAP1 transgenic mice showed a better response to IFX than the wild-type mice. CONCLUSIONS The TRAP1 gene is associated with mucosal healing in CD patients following IFX therapy. Identifying the genetic predictors of mucosal healing to anti-TNF therapy can prevent patients from exposure to ineffective therapies.
Collapse
Affiliation(s)
- Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| | - Myunghee Hong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Won Moon
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Byoung Mok Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Inchul Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang-Nim Im
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Cancer Evolution Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jianjun Liu
- Human Genetics Group, Genome Institute of Singapore, Singapore
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
85
|
Montemurro L, Raieli S, Angelucci S, Bartolucci D, Amadesi C, Lampis S, Scardovi AL, Venturelli L, Nieddu G, Cerisoli L, Fischer M, Teti G, Falconi M, Pession A, Hrelia P, Tonelli R. A Novel MYCN-Specific Antigene Oligonucleotide Deregulates Mitochondria and Inhibits Tumor Growth in MYCN-Amplified Neuroblastoma. Cancer Res 2019; 79:6166-6177. [PMID: 31615807 DOI: 10.1158/0008-5472.can-19-0008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022]
Abstract
Approximately half of high-risk neuroblastoma is characterized by MYCN amplification. N-Myc promotes tumor progression by inducing cell growth and inhibiting differentiation. MYCN has also been shown to play an active role in mitochondrial metabolism, but this relationship is not well understood. Although N-Myc is a known driver of the disease, it remains a target for which no therapeutic drug exists. Here, we evaluated a novel MYCN-specific antigene PNA oligonucleotide (BGA002) in MYCN-amplified (MNA) or MYCN-expressing neuroblastoma and investigated the mechanism of its antitumor activity. MYCN mRNA and cell viability were reduced in a broad set of neuroblastoma cell lines following BGA002 treatment. Furthermore, BGA002 decreased N-Myc protein levels and apoptosis in MNA neuroblastoma. Analysis of gene expression data from patients with neuroblastoma revealed that MYCN was associated with increased reactive oxygen species (ROS), downregulated mitophagy, and poor prognosis. Inhibition of MYCN caused profound mitochondrial damage in MNA neuroblastoma cells through downregulation of the mitochondrial molecular chaperone TRAP1, which subsequently increased ROS. Correspondingly, inhibition of MYCN reactivated mitophagy. Systemic administration of BGA002 downregulated N-Myc and TRAP1, with a concomitant decrease in MNA neuroblastoma xenograft tumor weight. In conclusion, this study highlights the role of N-Myc in blocking mitophagy in neuroblastoma and in conferring protection to ROS in mitochondria through upregulation of TRAP1. BGA002 is a potently improved MYCN-specific antigene oligonucleotide that reverts N-Myc-dysregulated mitochondrial pathways, leading to loss of the protective effect of N-Myc against mitochondrial ROS. SIGNIFICANCE: A second generation antigene peptide oligonucleotide targeting MYCN induces mitochondrial damage and inhibits growth of MYCN-amplified neuroblastoma cells.
Collapse
Affiliation(s)
- Luca Montemurro
- Interdepartmental Center for Cancer Research, University of Bologna, Bologna, Italy
| | | | - Silvia Angelucci
- Interdepartmental Center for Cancer Research, University of Bologna, Bologna, Italy
| | - Damiano Bartolucci
- Interdepartmental Center for Cancer Research, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences-DBNS, University of Bologna, Bologna, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences-DBNS, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Interdepartmental Center for Cancer Research, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy.
| |
Collapse
|
86
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
87
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
88
|
Saha S, Murmu KC, Biswas M, Chakraborty S, Basu J, Madhulika S, Kolapalli SP, Chauhan S, Sengupta A, Prasad P. Transcriptomic Analysis Identifies RNA Binding Proteins as Putative Regulators of Myelopoiesis and Leukemia. Front Oncol 2019; 9:692. [PMID: 31448224 PMCID: PMC6691814 DOI: 10.3389/fonc.2019.00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common and aggressive hematological malignancy. Acquisition of heterogeneous genetic aberrations and epigenetic dysregulation lead to the transformation of hematopoietic stem cells (HSC) into leukemic stem cells (LSC), which subsequently gives rise to immature blast cells and a leukemic phenotype. LSCs are responsible for disease relapse as current chemotherapeutic regimens are not able to completely eradicate these cellular sub-populations. Therefore, it is critical to improve upon the existing knowledge of LSC specific markers, which would allow for specific targeting of these cells more effectively allowing for their sustained eradication from the cellular milieu. Although significant milestones in decoding the aberrant transcriptional network of various cancers, including leukemia, have been achieved, studies on the involvement of post-transcriptional gene regulation (PTGR) in disease progression are beginning to unfold. RNA binding proteins (RBPs) are key players in mediating PTGR and they regulate the intracellular fate of individual transcripts, from their biogenesis to RNA metabolism, via interactions with RNA binding domains (RBDs). In this study, we have used an integrative approach to systematically profile RBP expression and identify key regulatory RBPs involved in normal myeloid development and AML. We have analyzed RNA-seq datasets (GSE74246) of HSCs, common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), monocytes, LSCs, and blasts. We observed that normal and leukemic cells can be distinguished on the basis of RBP expression, which is indicative of their ability to define cellular identity, similar to transcription factors. We identified that distinctly co-expressing modules of RBPs and their subclasses were enriched in hematopoietic stem/progenitor (HSPCs) and differentiated monocytes. We detected expression of DZIP3, an E3 ubiquitin ligase, in HSPCs, knockdown of which promotes monocytic differentiation in cell line model. We identified co-expression modules of RBP genes in LSCs and among these, distinct modules of RBP genes with high and low expression. The expression of several AML-specific RBPs were also validated by quantitative polymerase chain reaction. Network analysis identified densely connected hubs of ribosomal RBP genes (rRBPs) with low expression in LSCs, suggesting the dependency of LSCs on altered ribosome dynamics. In conclusion, our systematic analysis elucidates the RBP transcriptomic landscape in normal and malignant myelopoiesis, and highlights the functional consequences that may result from perturbation of RBP gene expression in these cellular landscapes.
Collapse
Affiliation(s)
- Subha Saha
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Krushna Chandra Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Mayukh Biswas
- Translational Research Unit of Excellence (TRUE), Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, India
| | - Sohini Chakraborty
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jhinuk Basu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Swati Madhulika
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | | | - Santosh Chauhan
- Cell Biology and Infectious Disease Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Amitava Sengupta
- Translational Research Unit of Excellence (TRUE), Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
89
|
Zhang X, Zhong Z, Li W. Downregulation of TRAP1 aggravates injury of H9c2 cardiomyocytes in a hyperglycemic state. Exp Ther Med 2019; 18:2681-2686. [PMID: 31572516 DOI: 10.3892/etm.2019.7847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy increases the risk of heart failure and is one of the major causes of death in patients with diabetes. The present study investigated the expression and function of tumor necrosis factor receptor-associated protein 1 (TRAP1) in cardiomyocytes in a hyperglycemic state. For the in vitro study, H9c2 cells (rat cardiomyoblasts) were treated with normal glucose, high glucose. TRAP1 expression was determined by reverse transcription-quantitative PCR and western blot analysis. Viability of cardiomyocytes was detected using the CellTiter 96® AQueous One Solution assay. The intracellular reactive oxygen species (ROS) content was detected using a fluorescent 2',7'-dichlorodihydrofluorescein diacetate probe, and the change in mitochondrial membrane potential was detected by JC-1 fluorescent staining. Changes in cell viability, ROS content and mitochondrial membrane potential were determined following small interfering (si) RNA-mediated knockdown of TRAP1. Results demonstrated that compared with the normal control group, the expression of TRAP1 in H9c2 cells decreased in the high glucose group which was accompanied by a reduction in mitochondrial membrane potential and cell viability, and increased intracellular ROS production. TRAP1 expression was significantly decreased following TRAP1-siRNA transfection which was accompanied by enhanced ROS production, lower mitochondrial membrane potential and impaired cell viability. In conclusion, the present findings suggested that the decrease in cardiomyocyte TRAP1 expression under high glucose conditions was associated with myocardial injury. It was hypothesized that TRAP1 may have a protective role on cardiomyocytes under high glucose surroundings.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Zhen Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
90
|
Ralph SJ, Nozuhur S, ALHulais RA, Rodríguez‐Enríquez S, Moreno‐Sánchez R. Repurposing drugs as pro‐oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers. Med Res Rev 2019; 39:2397-2426. [DOI: 10.1002/med.21589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Stephen J. Ralph
- School of Medical ScienceGriffith University Southport Australia
| | - Sam Nozuhur
- School of Medical ScienceGriffith University Southport Australia
| | | | | | | |
Collapse
|
91
|
Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol 2019; 9:348. [PMID: 31139559 PMCID: PMC6527883 DOI: 10.3389/fonc.2019.00348] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have increased energy requirements in comparison to normal cells. Thus, an enhanced metabolism is needed in order to accommodate tumor cells' accelerated biological functions, including increased proliferation, vigorous migration during metastasis, and adaptation to different tissues from the primary invasion site. In this context, the assessment of tumor cell metabolic pathways generates crucial data pertaining to the mechanisms through which tumor cells survive and grow in a milieu of host defense mechanisms. Indeed, various studies have demonstrated that the metabolic signature of tumors is heterogeneous. Furthermore, these metabolic changes induce the exacerbated production of several molecules, which result in alterations that aid an inflammatory milieu. The therapeutic armentarium for oncology should thus include metabolic and inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor cells, whether from solid tumors or hematologic malignancies, may provide the basis for the development of tailor-made cancer therapies.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Doctoral School, Biology Faculty, University of Bucharest, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Dana Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donato Zipeto
- Department Neuroscience, Biomedicine and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Concettina Fenga
- Biomedical, Odontoiatric, Morphological and Functional Images Department, Occupational Medicine Section, University of Messina, Messina, Italy
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
92
|
Nicolas E, Demidova EV, Iqbal W, Serebriiskii IG, Vlasenkova R, Ghatalia P, Zhou Y, Rainey K, Forman AF, Dunbrack RL, Golemis EA, Hall MJ, Daly MB, Arora S. Interaction of germline variants in a family with a history of early-onset clear cell renal cell carcinoma. Mol Genet Genomic Med 2019; 7:e556. [PMID: 30680959 PMCID: PMC6418363 DOI: 10.1002/mgg3.556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Identification of genetic factors causing predisposition to renal cell carcinoma has helped improve screening, early detection, and patient survival. Methods We report the characterization of a proband with renal and thyroid cancers and a family history of renal and other cancers by whole‐exome sequencing (WES), coupled with WES analysis of germline DNA from additional affected and unaffected family members. Results This work identified multiple predicted protein‐damaging variants relevant to the pattern of inherited cancer risk. Among these, the proband and an affected brother each had a heterozygous Ala45Thr variant in SDHA, a component of the succinate dehydrogenase (SDH) complex. SDH defects are associated with mitochondrial disorders and risk for various cancers; immunochemical analysis indicated loss of SDHB protein expression in the patient’s tumor, compatible with SDH deficiency. Integrated analysis of public databases and structural predictions indicated that the two affected individuals also had additional variants in genes including TGFB2, TRAP1, PARP1, and EGF, each potentially relevant to cancer risk alone or in conjunction with the SDHA variant. In addition, allelic imbalances of PARP1 and TGFB2 were detected in the tumor of the proband. Conclusion Together, these data suggest the possibility of risk associated with interaction of two or more variants.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena V Demidova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Kazan Federal University, Kazan, Russia
| | - Waleed Iqbal
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Kazan Federal University, Kazan, Russia
| | | | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kim Rainey
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrea F Forman
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roland L Dunbrack
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
93
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
94
|
Morán Luengo T, Mayer MP, Rüdiger SGD. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends Cell Biol 2018; 29:164-177. [PMID: 30502916 DOI: 10.1016/j.tcb.2018.10.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Conserved families of molecular chaperones assist protein folding in the cell. Here we review the conceptual advances on three major folding routes: (i) spontaneous, chaperone-independent folding; (ii) folding assisted by repetitive Hsp70 cycles; and (iii) folding by the Hsp70-Hsp90 cascades. These chaperones prepare their protein clients for folding on their own, without altering their folding path. A particularly interesting role is reserved for Hsp90. The function of Hsp90 in folding is its ancient function downstream of Hsp70, free of cochaperone regulation and present in all kingdoms of life. Eukaryotic signalling networks, however, embrace Hsp90 by a plethora of cochaperones, transforming the profolding machinery to a folding-on-demand factor. We discuss implications for biology and molecular medicine.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
95
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
96
|
Cannino G, Ciscato F, Masgras I, Sánchez-Martín C, Rasola A. Metabolic Plasticity of Tumor Cell Mitochondria. Front Oncol 2018; 8:333. [PMID: 30197878 PMCID: PMC6117394 DOI: 10.3389/fonc.2018.00333] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023] Open
Abstract
Mitochondria are dynamic organelles that exchange a multiplicity of signals with other cell compartments, in order to finely adjust key biological routines to the fluctuating metabolic needs of the cell. During neoplastic transformation, cells must provide an adequate supply of the anabolic building blocks required to meet a relentless proliferation pressure. This can occur in conditions of inconstant blood perfusion leading to variations in oxygen and nutrient levels. Mitochondria afford the bioenergetic plasticity that allows tumor cells to adapt and thrive in this ever changing and often unfavorable environment. Here we analyse how mitochondria orchestrate the profound metabolic rewiring required for neoplastic growth.
Collapse
Affiliation(s)
- Giuseppe Cannino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
97
|
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 2018; 17:1048-1055. [PMID: 29886783 DOI: 10.1080/15384101.2018.1475828] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Laura J Niedernhofer
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Paul D Robbins
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
98
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
99
|
Kuebler WM. Lessons from Cancer: Subcellular Drug Targeting of Mitochondrial HSP90 in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2018; 198:9-11. [PMID: 29438624 DOI: 10.1164/rccm.201801-0200ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wolfgang M Kuebler
- 1 Institute of Physiology Charité-Universitaetsmedizin Berlin Berlin, Germany.,2 Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto, Canada.,3 Department of Surgery and.,4 Department of Physiology University of Toronto Toronto, Canada
| |
Collapse
|
100
|
Verkhivker GM. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:899-912. [PMID: 29684503 DOI: 10.1016/j.bbapap.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023]
Abstract
Allosteric interactions of the Hsp90 chaperones with cochaperones and diverse protein clients can often exhibit distinct asymmetric features that determine regulatory mechanisms and cellular functions in many signaling networks. The recent crystal structures of the mitochondrial Hsp90 isoform TRAP1 in complexes with ATP analogs have provided first evidence of significant asymmetry in the closed dimerized state that triggers independent activity of the chaperone protomers, whereby preferential hydrolysis of the buckled protomer is followed by conformational flipping between protomers and hydrolysis of the second protomer. Despite significant insights in structural characterizations of the TRAP1 chaperone, the atomistic details and mechanics of allosteric interactions that couple sequential ATP hydrolysis with asymmetric conformational switching in the TRAP1 protomers remain largely unknown. In this work, we explored atomistic and coarse-grained simulations of the TRAP1 dimer structures in combination with the ensemble-based network modeling and perturbation response scanning of residue interaction networks to probe salient features underlying allosteric signaling mechanism. This study has revealed that key effector sites that orchestrate allosteric interactions occupy the ATP binding region and N-terminal interface of the buckled protomer, whereas the main sensors of allosteric signals that drive functional conformational changes during ATPase cycle are consolidated near the client binding region of the straight protomer, channeling the energy of ATP hydrolysis for client remodeling. The community decomposition analysis of the interaction networks and reconstruction of allosteric communication pathways in the TRAP1 structures have quantified mechanism of allosteric regulation, revealing control points and interactions that coordinate asymmetric switching during ATP hydrolysis.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States.
| |
Collapse
|