51
|
Wyckhuys KAG, Furlong MJ, Zhang W, Gc YD. Carbon benefits of enlisting nature for crop protection. NATURE FOOD 2022; 3:299-301. [PMID: 37117560 DOI: 10.1038/s43016-022-00510-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- University of Queensland, Brisbane, Queensland, Australia.
- Fujian Agriculture and Forestry University, Fuzhou, China.
- Chrysalis Consulting, Hanoi, Vietnam.
| | | | - Wei Zhang
- International Food Policy Research Institute (IFPRI), Washington DC, USA
| | - Yubak D Gc
- United Nations Food and Agriculture Organization (FAO), Bangkok, Thailand
| |
Collapse
|
52
|
New Polyfunctional Biorationals Use to Achieve Competitive Yield of Organic Potatoes in the North-West Russian Ecosystem. PLANTS 2022; 11:plants11070962. [PMID: 35406942 PMCID: PMC9003074 DOI: 10.3390/plants11070962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/22/2022]
Abstract
To increase the organic potato yield, it is necessary to provide the crop with sufficient nutrients and effective means of biocontrol the diseases. The research goal was to characterize the biorationals’ efficacy to achieve competitive organic potatoes’ yield under various weather conditions. A 4-year trial was carried out in the Leningrad region using Udacha variety potatoes. The tests used liquid forms of new polyfunctional biologicals Kartofin based on highly active Bacillus subtilis I-5-12/23 and organic fertilizer BIAGUM obtained from poultry manure by aerobic fermentation in a closed biofermenter. Significant stimulation in plant growth and development to the flowering phase regardless of the hydrothermal conditions of the growing season was noted. The stimulating effect was determined by the combined use of biorationals pro rata to BIAGUM dose. Kartofin biologicals and BIAGUM almost doubled the potato tubers’ yield compared to the control, regardless of the growing season conditions. At the flowering phase, the biological efficacy in potato fungal diseases incidence and development was near 90% under optimal and 50–75% under drought hydrothermal conditions. At the end of vegetation, the efficiency in fungal diseases incidence and development made up 45–65% under optimal and 45–70% under dry conditions. BIAGUM effectiveness in reducing disease development reached 45–50% regardless of growing season conditions.
Collapse
|
53
|
Suman A, Govindasamy V, Ramakrishnan B, Aswini K, SaiPrasad J, Sharma P, Pathak D, Annapurna K. Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Front Microbiol 2022; 12:805498. [PMID: 35360654 PMCID: PMC8963471 DOI: 10.3389/fmicb.2021.805498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions among the plant microbiome and its host are dynamic, both spatially and temporally, leading to beneficial or pathogenic relationships in the rhizosphere, phyllosphere, and endosphere. These interactions range from cellular to molecular and genomic levels, exemplified by many complementing and coevolutionary relationships. The host plants acquire many metabolic and developmental traits such as alteration in their exudation pattern, acquisition of systemic tolerance, and coordination of signaling metabolites to interact with the microbial partners including bacteria, fungi, archaea, protists, and viruses. The microbiome responds by gaining or losing its traits to various molecular signals from the host plants and the environment. Such adaptive traits in the host and microbial partners make way for their coexistence, living together on, around, or inside the plants. The beneficial plant microbiome interactions have been exploited using traditional culturable approaches by isolating microbes with target functions, clearly contributing toward the host plants' growth, fitness, and stress resilience. The new knowledge gained on the unculturable members of the plant microbiome using metagenome research has clearly indicated the predominance of particular phyla/genera with presumptive functions. Practically, the culturable approach gives beneficial microbes in hand for direct use, whereas the unculturable approach gives the perfect theoretical information about the taxonomy and metabolic potential of well-colonized major microbial groups associated with the plants. To capitalize on such beneficial, endemic, and functionally diverse microbiome, the strategic approach of concomitant use of culture-dependent and culture-independent techniques would help in designing novel "biologicals" for various crops. The designed biologicals (or bioinoculants) should ensure the community's persistence due to their genomic and functional abilities. Here, we discuss the current paradigm on plant-microbiome-induced adaptive functions for the host and the strategies for synthesizing novel bioinoculants based on functions or phylum predominance of microbial communities using culturable and unculturable approaches. The effective crop-specific inclusive microbial community bioinoculants may lead to reduction in the cost of cultivation and improvement in soil and plant health for sustainable agriculture.
Collapse
Affiliation(s)
- Archna Suman
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022; 375:abe0725. [PMID: 35239372 DOI: 10.1126/science.abe0725] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Collapse
Affiliation(s)
- Oksana Coban
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Gerlinde B De Deyn
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Martine van der Ploeg
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
55
|
Chen C, Wang M, Zhu J, Tang Y, Zhang H, Zhao Q, Jing M, Chen Y, Xu X, Jiang J, Shen Z. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. MICROBIOME 2022; 10:36. [PMID: 35209943 PMCID: PMC8876431 DOI: 10.1186/s40168-022-01236-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/23/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Soil microbiomes are considered a cornerstone of the next green revolution, and plant growth-promoting bacteria (PGPB) are critical for microbiome engineering. However, taking plant-beneficial microorganisms from discovery to agricultural application remains challenging, as the mechanisms underlying the interactions between beneficial strains and plants in native soils are still largely unknown. Increasing numbers of studies have indicated that strains introduced to manipulate microbiomes are usually eliminated in soils, while others have reported that application of PGPB as inocula significantly improves plant growth. This contradiction suggests the need for a deeper understanding of the mechanisms underlying microbe-induced growth promotion. RESULTS We showed PGPB-induced long-term plant growth promotion after elimination of the PGPB inoculum in soils and explored the three-way interactions among the exogenous inoculum, indigenous microbiome, and plant, which were key elements of the plant growth-promoting process. We found the rhizosphere microbiome assembly was mainly driven by plant development and root recruitments greatly attenuated the influence of inocula on the rhizosphere microbiome. Neither changes in the rhizosphere microbiome nor colonization of inocula in roots was necessary for plant growth promotion. In roots, modification of DNA methylation in response to inoculation affects gene expression related to PGPB-induced growth promotion, and disruptions of the inoculation-induced DNA methylation patterns greatly weakened the plant growth promotion. Together, our results showed PGPB-induced DNA methylation modifications in roots mediated the promotion process and these modifications remained functional after elimination of the inoculum from the microbiome. CONCLUSION This study suggests a new mechanism in which PGPB affect DNA methylation in roots to promote plant growth, which provides important insights into microbiome-plant interactions and offers new strategies for plant microbiome engineering beyond the perspective of maintaining inoculum persistence in soils. Video abstract.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Miao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jingzhi Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yongwei Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiming Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
56
|
Prihatna C, Pramudito TE, Arifin AR, Nguyen TKN, Purnamasari MI, Suwanto A. Antifungal Peptides from a Burkholderia Strain Suppress Basal Stem Rot Disease of Oil Palm. PHYTOPATHOLOGY 2022; 112:238-248. [PMID: 34156264 DOI: 10.1094/phyto-11-20-0529-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Basal stem rot (BSR) is the most common disease of oil palm (Elaeis guineensis) in Southeast Asia. BSR is caused by a white-rot fungus Ganoderma boninense. The disease is difficult to manage. Therefore, development of novel and environmentally safe approaches to control the disease is important. Species of Burkholderia are known to have diverse lifestyles, some of which can benefit plants by suppressing diseases or increasing plant growth. In the present study, antifungal peptides produced by a bacterial strain isolated from the rhizosphere of an oil palm tree, Burkholderia sp. strain CP01, exhibited strong growth inhibition on G. boninense. A loss-of-function mutant of CP01 was generated, and it has enabled the identification of a 1.2-kDa peptide and its variants as the active antifungal compounds. High-resolution mass spectrometry revealed six analogous compounds with monoisotopic masses similar to the previously reported cyclic lipopeptides occidiofungin and burkholdine. The antifungal compounds of CP01 were secreted into media, and we sought to use CP01 culture extract without living cells to control BSR disease. Glasshouse experiments showed that CP01 culture extract suppressed BSR disease in oil palm seedlings. The ability of CP01 to produce an antifungal substance and suppress plant disease suggests its potential applications as a biofungicide in agriculture.
Collapse
Affiliation(s)
- Cahya Prihatna
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
| | - Theodorus Eko Pramudito
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Tangerang, Indonesia 15345
| | - Arild Ranlym Arifin
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
| | | | - Maria Indah Purnamasari
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
| | - Antonius Suwanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University. Bogor, Jawa Barat, Indonesia 16680
| |
Collapse
|
57
|
Beneficial Microorganisms in Sustainable Agriculture: Harnessing Microbes’ Potential to Help Feed the World. PLANTS 2022; 11:plants11030372. [PMID: 35161353 PMCID: PMC8839818 DOI: 10.3390/plants11030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
|
58
|
Ribeiro VP, Gomes EA, de Sousa SM, de Paula Lana UG, Coelho AM, Marriel IE, de Oliveira-Paiva CA. Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize. Arch Microbiol 2022; 204:143. [PMID: 35044594 DOI: 10.1007/s00203-022-02759-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Usage of Bacillus and Azospirillum as new eco-friendly microbial consortium inoculants is a promising strategy to increase plant growth and crop yield by improving nutrient availability in agricultural sustainable systems. In this study, we designed a multispecies inoculum containing B. thuringiensis (strain B116), B. subtillis (strain B2084) and Azospirillum sp. (strains A1626 and A2142) to investigate their individual or co-inoculated ability to solubilize and mineralize phosphate, produce indole acetic acid (IAA) and their effect on maize growth promotion in hydroponics and in a non-sterile soil. All strains showed significant IAA production, P mineralization (sodium phytate) and Ca-P, Fe-P (tricalcium phosphate and iron phosphate, respectively) solubilization. In hydroponics, co-inoculation with A1626 x A2142, B2084 x A2142, B2084 x A1626 resulted in higher root total length, total surface area, and surface area of roots with diameter between 0 and 1 mm than other treatments with single inoculant, except B2084. In a greenhouse experiment, maize inoculated with the two Azospirillum strains exhibited enhanced shoot dry weight, shoot P and K content, root dry weight, root N and K content and acid and alkaline phosphatase activities than the other treatments. There was a significant correlation between soil P and P shoot, alkaline phosphatase and P shoot and between acid phosphatase and root dry weight. It may be concluded that co-inoculations are most effective than single inoculants strains, mainly between two selected Azospirillum strains. Thus, they could have synergistic interactions during maize growth, and be useful in the formulation of new inoculants to improve the tropical cropping systems sustainability.
Collapse
Affiliation(s)
| | | | - Sylvia Morais de Sousa
- Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
- Centro Universitário De Sete Lagoas, Sete Lagoas, MG, Brazil
| | - Ubiraci Gomes de Paula Lana
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
- Centro Universitário De Sete Lagoas, Sete Lagoas, MG, Brazil
| | | | - Ivanildo Evódio Marriel
- Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil.
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil.
- Centro Universitário De Sete Lagoas, Sete Lagoas, MG, Brazil.
| | | |
Collapse
|
59
|
Gruet C, Muller D, Moënne-Loccoz Y. Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Front Microbiol 2022; 12:782135. [PMID: 35058901 PMCID: PMC8764353 DOI: 10.3389/fmicb.2021.782135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.
Collapse
Affiliation(s)
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
60
|
Development, Production, and Storage of Trichoderma Formulations for Agricultural Applications. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
dos Santos LBPR, Oliveira-Santos N, Fernandes JV, Jaimes-Martinez JC, De Souza JT, Cruz-Magalhães V, Loguercio LL. Tolerance to and Alleviation of Abiotic Stresses in Plants Mediated by Trichoderma spp. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
62
|
Wen A, Havens KL, Bloch SE, Shah N, Higgins DA, Davis-Richardson AG, Sharon J, Rezaei F, Mohiti-Asli M, Johnson A, Abud G, Ane JM, Maeda J, Infante V, Gottlieb SS, Lorigan JG, Williams L, Horton A, McKellar M, Soriano D, Caron Z, Elzinga H, Graham A, Clark R, Mak SM, Stupin L, Robinson A, Hubbard N, Broglie R, Tamsir A, Temme K. Enabling Biological Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS Synth Biol 2021; 10:3264-3277. [PMID: 34851109 DOI: 10.1021/acssynbio.1c00049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.
Collapse
Affiliation(s)
- Amy Wen
- Pivot Bio, Berkeley, California 94710, United States
| | | | - Sarah E. Bloch
- Morrison & Foerster LLP, San Francisco, California 94105, United States
| | - Neal Shah
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | - Judee Sharon
- University of Minnesota─Twin Cities, Minneapolis, Minnesota 55401, United States
| | | | | | | | - Gabriel Abud
- Tempo Automation, San Francisco, California 94103, United States
| | - Jean-Michel Ane
- University of Minnesota─Twin Cities, Minneapolis, Minnesota 55401, United States
| | - Junko Maeda
- University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Valentina Infante
- University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | | | | | - Alana Horton
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | - Zoe Caron
- Pivot Bio, Berkeley, California 94710, United States
| | | | - Ashley Graham
- Olema Oncology, San Francisco, California 94107, United States
| | | | - San-Ming Mak
- Pivot Bio, Berkeley, California 94710, United States
| | - Laura Stupin
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | | | - Alvin Tamsir
- Pivot Bio, Berkeley, California 94710, United States
| | - Karsten Temme
- Pivot Bio, Berkeley, California 94710, United States
| |
Collapse
|
63
|
Sullam KE, Musa T. Ecological Dynamics and Microbial Treatments against Oomycete Plant Pathogens. PLANTS 2021; 10:plants10122697. [PMID: 34961168 PMCID: PMC8707103 DOI: 10.3390/plants10122697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In this review, we explore how ecological concepts may help assist with applying microbial biocontrol agents to oomycete pathogens. Oomycetes cause a variety of agricultural diseases, including potato late blight, apple replant diseases, and downy mildew of grapevine, which also can lead to significant economic damage in their respective crops. The use of microbial biocontrol agents is increasingly gaining interest due to pressure from governments and society to reduce chemical plant protection products. The success of a biocontrol agent is dependent on many ecological processes, including the establishment on the host, persistence in the environment, and expression of traits that may be dependent on the microbiome. This review examines recent literature and trends in research that incorporate ecological aspects, especially microbiome, host, and environmental interactions, into biological control development and applications. We explore ecological factors that may influence microbial biocontrol agents’ efficacy and discuss key research avenues forward.
Collapse
|
64
|
Wani SH, Vijayan R, Choudhary M, Kumar A, Zaid A, Singh V, Kumar P, Yasin JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2875-2891. [PMID: 35035142 PMCID: PMC8720126 DOI: 10.1007/s12298-021-01113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
Collapse
Affiliation(s)
- Shabir H. Wani
- Genetics and Plant Breeding, Mountain Research Centre For Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag, J&K 192101 India
| | - Roshni Vijayan
- Regional Agricultural Research Station-Central Zone, Kerala Agricultural University, MelePattambi, Palakkad, Kerala 679306 India
| | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Vishal Singh
- Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 USA
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001 India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
65
|
Mitra D, Mondal R, Khoshru B, Shadangi S, Das Mohapatra PK, Panneerselvam P. Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100071. [PMID: 34841361 PMCID: PMC8610296 DOI: 10.1016/j.crmicr.2021.100071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Advanced technologies are commonly used in modern agriculture to break the yield barriers and increase crop productivity. Seeds treated with plant growth-promoting rhizobacteria (PGPR) are an effective bio-priming method to introduce beneficial microbial inocula into the rhizosphere or soil. Bio-priming is a type of seed treatment that employs biological entities, which involves the hydration of seeds and inoculation with beneficial microorganisms. Mainly, the seed bio-priming technique improves the seed quality, germination, viability, vigor index, growth promotion, production, and subsequent disease resistance by enhancing the uniform speed of germination and production of others growth regulators. In the majority of cases, bacterial inoculants mostly PGPR are used for seed bio-priming, it is an ecologically comprehensive strategy that uses selected PGPR to promote plant growth by producing regulatory substances, enhancing uptake of nutrients, protecting seedlings/plants from seed or soil-borne pathogens. Bio-priming methods using PGPR inoculants are becoming more common in modern agriculture as an alternative to chemical treatments. They are more environmentally sustainable and safer for future agriculture apart from improving plants and soil health.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Smriti Shadangi
- Microbiology, Crop Production Division, ICAR -National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Pradeep K Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India.,PAKB Environment Conservation Centre, Raiganj University, Raiganj, 733 134 Uttar Dinajpur, West Bengal, India
| | - Periyasamy Panneerselvam
- Microbiology, Crop Production Division, ICAR -National Rice Research Institute, Cuttack, Odisha 753 006 India
| |
Collapse
|
66
|
Ganeshan S, Kim SH, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. BIORESOUR BIOPROCESS 2021; 8:63. [PMID: 34760435 PMCID: PMC8570317 DOI: 10.1186/s40643-021-00417-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/09/2021] [Indexed: 11/11/2022] Open
Abstract
The benefit of microorganisms to humans, animals, insects and plants is increasingly recognized, with intensified microbial endophytes research indicative of this realization. In the agriculture industry, the benefits are tremendous to move towards sustainable crop production and minimize or circumvent the use of chemical fertilizers and pesticides. The research leading to the identification of potential plant endophytes is long and arduous and for many researchers the challenge is ultimately in scale-up production. While many of the larger agriculture and food industries have their own scale-up and manufacturing facilities, for many in academia and start-up companies the next steps towards production have been a stumbling block due to lack of information and understanding of the processes involved in scale-up fermentation. This review provides an overview of the fermentation process from shake flask cultures to scale-up and the manufacturing steps involved such as process development optimization (PDO), process hazard analysis (PHA), pre-, in- and post-production (PIP) challenges and finally the preparation of a technology transfer package (TTP) to transition the PDO to manufacturing. The focus is on submerged liquid fermentation (SLF) and plant endophytes production by providing original examples of fungal and bacterial endophytes, plant growth promoting Penicillium sp. and Streptomyces sp. bioinoculants, respectively. We also discuss the concepts, challenges and future perspectives of the scale-up microbial endophyte process technology based on the industrial and biosafety research platform for advancing a massive production of next-generation biologicals in bioreactors.
Collapse
Affiliation(s)
- Seedhabadee Ganeshan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
67
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
68
|
Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Brien CJ, Jewell N, Berger B, Cavagnaro TR. Evaluation of commercial composts and potting mixes and their ability to support arbuscular mycorrhizal fungi with maize (Zea mays) as host plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:187-196. [PMID: 34438193 DOI: 10.1016/j.wasman.2021.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The use of composts and potting mixes in food production systems is a promising way to counteract the effects of soil degradation and allows crop growth in soilless culture systems. Arbuscular mycorrhizal fungi (AMF) are a well-studied group of beneficial plant symbionts that have been shown to provide important ecosystem services. This study analysed the properties of nine commercial Australian potting mixes and composts and investigated whether they support colonization of maize plants with AMF in a plant growth bioassay. Physicochemical analyses showed highly variable properties between the substrates, with some extreme values that limited plant growth. DNA-based analysis revealed the presence of various plant pathogens, which was linked to inhibited plant growth in one substrate. Some substrates did not meet national quality standards, due to the concentrations of plant nutrients, heavy metals, or substrate maturity. Plant growth was mostly limited due to nitrogen immobilization, which required weekly fertilizer applications. Solid state 13C nuclear magnetic resonance spectroscopy gave insight into the decomposition state of the substrates. Plant roots in most substrates were well colonized with AMF (>60% root length), regardless of most substrate properties. Root colonization was negatively affected in only one substrate, likely due to ammonium toxicity. Results of this study show that not all commercial substrates adhered to national quality standards. Potting mixes and composts can support high mycorrhizal root colonization when plant growth is otherwise not limited.
Collapse
Affiliation(s)
- M J Salomon
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia.
| | - S J Watts-Williams
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - M J McLaughlin
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - C J Brien
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia; Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - N Jewell
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia; Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - B Berger
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia; Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - T R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| |
Collapse
|
69
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
70
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
71
|
Sinno M, Ranesi M, Di Lelio I, Iacomino G, Becchimanzi A, Barra E, Molisso D, Pennacchio F, Digilio MC, Vitale S, Turrà D, Harizanova V, Lorito M, Woo SL. Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens 2021; 10:pathogens10101242. [PMID: 34684191 PMCID: PMC8540488 DOI: 10.3390/pathogens10101242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
Endophytic fungi (EF) can enhance both plant growth and defense barriers against pests and pathogens, contributing to the reduction of chemical pesticides and fertilizers use in agriculture. Beauveria bassiana is an entomopathogenic fungus showing endophytism in several crops, often associated with a good capacity to limit the development of pests and disease agents. However, the diversity of the protective efficacy and plant response to different strains can be remarkable and needs to be carefully assessed for the successful and predictable use of these beneficial microorganisms. This study aims to select B. bassiana strains able to colonize tomato plants as endophytes as well as to control two important disease agents, Botrytis cinerea and Alternaria alternata, and the pest aphid, Macrosiphum euphorbiae. Nine wild-type isolates and one commercial strain were screened for endophytism, then further characterized for plant-growth promotion plus inhibition of disease development and pest infestation. Four isolates proved to have a good control activity against the biotic stressors tested, but only Bb716 was also able to promote plant growth. This work provides a simple workflow for the selection of beneficial EF, paving the way towards more effective use of B. bassiana in Integrate Pest Management (IPM) of tomato.
Collapse
Affiliation(s)
- Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
- Correspondence: ; Tel.: +39-340-9284138
| | - Marta Ranesi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Giuseppina Iacomino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Eleonora Barra
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy;
| | - Maria Cristina Digilio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy;
| | - Stefania Vitale
- National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy;
| | - David Turrà
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy;
| | - Vili Harizanova
- Department of Entomology, Agricultural University-Plovdiv, 12, 4000 Plovdiv, Bulgaria;
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.R.); (I.D.L.); (G.I.); (A.B.); (E.B.); (D.M.); (F.P.); (M.C.D.); (D.T.); (M.L.)
| | - Sheridan Lois Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy;
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
72
|
Can Bacterial Endophytes Be Used as a Promising Bio-Inoculant for the Mitigation of Salinity Stress in Crop Plants?-A Global Meta-Analysis of the Last Decade (2011-2020). Microorganisms 2021; 9:microorganisms9091861. [PMID: 34576756 PMCID: PMC8467090 DOI: 10.3390/microorganisms9091861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Soil salinity is a major problem affecting crop production worldwide. Lately, there have been great research efforts in increasing the salt tolerance of plants through the inoculation of plant growth-promoting endophytic bacteria. However, their ability to promote plant growth under no-stress and salinity-stress conditions remains largely uncertain. Here, we carried out a global meta-analysis to quantify the plant growth-promoting effects (improvement of morphological attributes, photosynthetic capacity, antioxidative ability, and ion homeostasis) of endophytic bacteria in plants under no-stress and salinity-stress conditions. In addition, we elucidated the underlying mechanisms of growth promotion in salt-sensitive (SS) and salt-tolerant (ST) plants derived from the interaction with endophytic bacteria under no-stress and salinity-stress conditions. Specifically, this work encompassed 42 peer-reviewed articles, a total of 77 experiments, and 24 different bacterial genera. On average, endophytic bacterial inoculation increased morphological parameters. Moreover, the effect of endophytic bacteria on the total dry biomass, number of leaves, root length, shoot length, and germination rate was generally greater under salinity-stress conditions than no-stress conditions. On a physiological level, the relative better performance of the bacterial inoculants under the salinity-stress condition was associated with the increase in total chlorophyll and chlorophyll-b, as well as with the decrease of 1-aminocylopropane-1-carboxylate concentration. Moreover, under the salinity-stress condition, bacterial inoculation conferred a significantly higher increase in root K+ concentration and decrease in leaf Na+ concentration than under the no-stress condition. In SS plants, bacterial inoculation induced a higher increase in chlorophyll-b and superoxide dismutase activity, as well as a higher decrease in abscisic acid content, than in ST plants. Under salinity-stress, endophytic bacterial inoculation increased root K+ concentration in both SS and ST plants but decreased root Na+ concentration only in ST plants. Overall, this meta-analysis suggests that endophytic bacterial inoculation is beneficial under both no salinity-stress and salinity-stress conditions, but the magnitude of benefit is definitely higher under salinity-stress conditions and varies with the salt tolerance level of plants.
Collapse
|
73
|
de França Bettencourt GM, Degenhardt J, Dos Santos GD, Vicente VA, Soccol CR. Metagenomic analyses, isolation and characterization of endophytic bacteria associated with Eucalyptus urophylla BRS07-01 in vitro plants. World J Microbiol Biotechnol 2021; 37:164. [PMID: 34458956 DOI: 10.1007/s11274-021-03127-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
Eucalyptus is the main species for the forestry industry in Brazil. Biotechnology and, more recently, gene editing offer significant opportunities for rapid improvements in Eucalyptus breeding programs. However, the recalcitrance of Eucalyptus species to in vitro culture is also a major limitation for commercial deployment of biotechnology techniques in Eucalyptus improvement. We evaluated various clones of Eucalyptus urophylla for their in vitro regeneration potential identified a clone, BRS07-01, with considerably higher regeneration rate (85%) in organogenesis, and significantly higher than most works described in literature. Endophytic bacteria are widely reported to improve in vitro plant growth and development. Hence, we believe that inclusion of endophytic plant growth promoting bacteria enhanced was responsible for the improved plantlets growth and development of this clone under in vitro culture. Metagenomic analysis was performed to isolate and characterize the prominent endophytic bacteria on BRS07-01 leaf tissue in vitro micro-cultures, and evaluate their impact on plant growth promotion. The analysis revealed the presence of the phyla Firmicutes (35%), Proteobacteria (30%) and much smaller quantities of Actinobacteria, Bacteroidetes, Gemmatimonadetes, Crenarchaeota, Euryarchaeota and Acidobacteria. Of the thirty endophytic bacterial strains isolated, eleven produced indole-3-acetic acid. Two of the isolates were identified as Enterobacter sp. and Paenibacillus polymyxa, which are nitrogen-fixing and capable of phosphate and produce ammonium. These isolates also showed similar positive effects on the germination of common beans (Phaseolus spp.). The isolates will now be tested as a growth promoter in Eucalyptus in vitro cultures. Graphical abstract for the methodology using cultivation independent and dependent methodologies to investigate the endophytic bacteria community from in vitro Eucalyptus urophylla BRS07-01.
Collapse
Affiliation(s)
- Gisela Manuela de França Bettencourt
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil.
| | | | - Germana Davila Dos Santos
- Department of Patology, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil
| | - Vânia Aparecida Vicente
- Department of Patology, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil
| |
Collapse
|
74
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
75
|
Kaze M, Brooks L, Sistrom M. Antimicrobial resistance in Bacillus-based biopesticide products. MICROBIOLOGY-SGM 2021; 167. [PMID: 34351257 DOI: 10.1099/mic.0.001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crisis of antimicrobial resistant bacterial infections is one of the most pressing public health issues. Common agricultural practices have been implicated in the generation of antimicrobial resistant bacteria. Biopesticides, live bacteria used for pest control, are non-pathogenic and considered safe for consumption. Application of bacteria-based pesticides to crops in high concentrations raises the possibility of unintentional contributions to the movement and generation of antimicrobial resistance genes in the environment. However, the presence of clinically relevant antimicrobial resistance genes and their resistance phenotypes are currently unknown. Here we use a combination of multiple bioinformatic and microbiological techniques to define resistomes of widely used biopesticides and determine how the presence of suspected antimicrobial resistance genes translates to observable resistance phenotypes in several biopesticide products. Our results demonstrate that biopesticide products are reservoirs of clinically relevant antimicrobial resistance genes and bear resistance to multiple drug classes.
Collapse
Affiliation(s)
- Mo Kaze
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| | - Lauren Brooks
- Department of Biology, Utah Valley University, Orem, USA
| | - Mark Sistrom
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| |
Collapse
|
76
|
Anh HTH, Shahsavari E, Bott NJ, Ball AS. The application of Marinobacter hydrocarbonoclasticus as a bioaugmentation agent for the enhanced treatment of non-sterile fish wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112658. [PMID: 33934020 DOI: 10.1016/j.jenvman.2021.112658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Wastewaters generated by fish processing are characterised by salt concentrations similar to or greater than that of seawater together with high nutrient concentrations (e.g. organic carbon and total nitrogen) due to the presence of blood, oil, and fish tissues. Fish processing wastewater entering rivers and oceans have become a key factor leading to the pollution of receiving waters; the adequate treatment of this wastewater is, therefore, crucial to a sustainable fish industry. The present study aimed to determine whether augmentation of fish wastewater with either Marinirhabdus sp., Marinobacter hydrocarbonoclasticus or a consortium of the two halobacteria, could successfully enhance the removal of both chemical oxygen demand (COD) and total nitrogen (TN) from fish wastewater. Following 9 days of incubation, the bioaugmentation treatment resulted in a significant reduction in COD, 88%, 91%, and 92% in fish wastewater augmented with either Marinirhabdus sp., Marinobacter hydrocarbonoclasticus respectively, or a consortium of the two halobacteria compared with the control (non-bioaugmented) treatment (77% removal). In tall bioaugmentation treatments (79-88%) TN removal was also significantly greater than the control treatment (57%). After 9 days of incubation, the COD and TN in bioaugmentation reached the European Union's (EU) wastewater discharge standard (Level B, COD < 120 mg L-1, TN < 70 mg L-1). The addition of monoculture was effective in enhancing the removal of COD, while co-culture significantly improved TN removal. Results of 16S rDNA sequence analysis investigating the survival of these introduced bacteria showed that only Marinobacter hydrocarbonoclasticus was detected at the end of the treatment, constituting 36% of the total bacterial population when added alone to the wastewater. This study confirms the effectiveness of bioaugmentation in removing COD and TN in saline fish wastewater. The ability of Marinobacter hydrocarbonclasticus to enhance the treatment and dominate the bacterial community suggests the commercial potential of this organism for bioaugmentation of aquaculture wastewater without the need for further bioaugmentation.
Collapse
Affiliation(s)
- Hoang Thi Hong Anh
- School of Science, RMIT University, Bundoora, Melbourne, Vic, 3083, Australia.
| | - Esmaeil Shahsavari
- School of Science, RMIT University, Bundoora, Melbourne, Vic, 3083, Australia
| | - Nathan J Bott
- School of Science, RMIT University, Bundoora, Melbourne, Vic, 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Melbourne, Vic, 3083, Australia
| |
Collapse
|
77
|
COLMENA: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. DIVERSITY 2021. [DOI: 10.3390/d13080337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COLMENA is a microbial culture collection dedicated to the characterization, classification, preservation, and transferal of native microorganisms isolated from various agro-systems and other ecosystems in Mexico. This collection aims to protect microbial diversity, reducing soil degradation, but also exploiting its agro-biotechnological potential. So far, COLMENA has isolated and cryopreserved soil microorganisms from different crops in two major agricultural regions in Mexico, the Yaqui Valley, Sonora, and the Fuerte Valley, Sinaloa. COLMENA has specialized in the identification and characterization of microbial strains with metabolic capacities related to the promotion of plant growth and the biocontrol of phytopathogens. Thus, COLMENA has identified several promising plant growth-promoting microbial (PGPM) strains due to their metabolic and genetic potentials and their beneficial effects in vivo and field trials. These findings demonstrate the biotechnological potential of these strains for their future use in profitable agricultural alternatives focused on enhancing global food security. To share the knowledge and results of the COLMENA team’s scientific research, a virtual platform was created, where the database of the studied and preserved microorganisms is available to professionals, researchers, agricultural workers, and anyone who is interested.
Collapse
|
78
|
Park HS, Nah HJ, Kang SH, Choi SS, Kim ES. Screening and Isolation of a Novel Polyene-Producing Streptomyces Strain Inhibiting Phytopathogenic Fungi in the Soil Environment. Front Bioeng Biotechnol 2021; 9:692340. [PMID: 34322478 PMCID: PMC8312574 DOI: 10.3389/fbioe.2021.692340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial-based eco-friendly biological substances are needed to protect crops from phytopathogenic fungi and replace toxic chemical fungicides that cause serious environmental issues. This study screened for soil antifungal Streptomyces strains, which produce rich, diverse, and valuable bioactive metabolites in the soil environment. Bioassay-based antifungal screening of approximately 2,400 Streptomyces strains led to the isolation of 149 strains as tentative antifungal producers. One Streptomyces strain showing the most potent antifungal activities against Candida albicans and Fusarium oxysporum was identified as a putative anti-phytopathogenic soil isolate that is highly homologous to Streptomyces rubrisoli (named S. rubrisoli Inha 501). An in vitro antifungal assay, pot-test, and field-test against various phytopathogenic fungi confirmed that S. rubrisoli Inha 501 is a potential novel phytopathogenic fungicide producer to protect various crops in the soil environment. Whole-genome sequencing of S. rubrisoli Inha 501 and an anti-SMASH genome mining approach revealed an approximately 150-kb polyene biosynthetic gene cluster (BGC) in the chromosome. The target compound isolation and its BGC analysis confirmed that the giant linear polyene compound exhibiting the anti-phytopathogenic activity in S. rubrisoli Inha 501 was highly homologous to the previously reported compound, neotetrafibricin A. These results suggest that a bioassay-based screening of a novel antifungal Streptomyces strain followed by its genome mining for target compound BGC characterization would be an efficient approach to isolating a novel candidate phytopathogenic fungicide that can protect crops in the soil environment.
Collapse
Affiliation(s)
- Heung-Soon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hee-Ju Nah
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea.,Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
79
|
Welmillage SU, Zhang Q, Sreevidya VS, Sadowsky MJ, Gyaneshwar P. Inoculation of Mimosa Pudica with Paraburkholderia phymatum Results in Changes to the Rhizoplane Microbial Community Structure. Microbes Environ 2021; 36. [PMID: 33716243 PMCID: PMC7966945 DOI: 10.1264/jsme2.me20153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrogen fixing symbiosis between rhizobia and legumes contributes significant amounts of N to agricultural and natural environments. In natural soils, rhizobia compete with indigenous bacterial communities to colonize legume roots, which leads to symbiotic interactions. However, limited information is currently available on the effects of the rhizobial symbiont on the resident microbial community in the legume rhizosphere, rhizoplane, and endosphere, which is partly due to the presence of native nodulating rhizobial strains. In the present study, we used a symbiotic system comprised of Paraburkholderia phymatum and Mimosa pudica to examine the interaction of an inoculant strain with indigenous soil bacteria. The effects of a symbiont inoculation on the native bacterial community was investigated using high throughput sequencing and an analysis of 16S rRNA gene amplicons. The results obtained revealed that the inoculation induced significant alterations in the microbial community present in the rhizoplane+endosphere of the roots, with 13 different taxa showing significant changes in abundance. No significant changes were observed in the rhizospheric soil. The relative abundance of P. phymatum significantly increased in the rhizoplane+endosphere of the root, but significant decreased in the rhizospheric soil. While the rhizosphere, rhizoplane, and root endosphere contained a wide diversity of bacteria, the nodules were predominantly colonized by P. phymatum. A network analysis revealed that the operational taxonomic units of Streptomyces and Phycicoccus were positively associated with P. phymatum as potential keystone taxa. Collectively, these results suggest that the success of an inoculated symbiont depends on its ability to colonize the roots in the face of competition by other soil bacteria. A more detailed understanding of the mechanisms by which an inoculated strain colonizes its plant host is crucial for realizing the full potential of microbial inoculants in sustainable agriculture.
Collapse
Affiliation(s)
| | - Qian Zhang
- Department of Soil and Water and Climate, University of Minnesota
| | | | | | | |
Collapse
|
80
|
Sundh I, Del Giudice T, Cembalo L. Reaping the Benefits of Microorganisms in Cropping Systems: Is the Regulatory Policy Adequate? Microorganisms 2021; 9:microorganisms9071437. [PMID: 34361873 PMCID: PMC8303151 DOI: 10.3390/microorganisms9071437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Within food plant cropping systems, microorganisms provide vital functions and ecosystem services, such as biological pest and disease control, promotion of plant growth and crop quality, and biodegradation of organic matter and pollutants. The beneficial effects of microorganisms can be achieved and/or enhanced by agricultural management measures that target the resident microbial biodiversity or by augmentation with domesticated and propagated microbial strains. This study presents a critical review of the current legislation and regulatory policies pertaining to the utilization of plant-beneficial microorganisms in the European Union (EU). For augmentative approaches, the nature of the intended effect and the product claim determine how a microbiological product is categorized and regulated, and pre-market authorization may be mandatory. Typically, microbial products have been incorporated into frameworks that were designed for evaluating non-living substances, and are therefore not well suited to the specific properties of live microorganisms. We suggest that regulatory harmonization across the sector could stimulate technical development and facilitate implementation of crop management methods employing microorganisms. Possible scenarios for regulatory reform in the longer term are discussed, but more investigation into their feasibility is needed. The findings of this study should serve as a catalyst for more efficient future use of plant-beneficial microorganisms, to the benefit of agriculture as well as the environment.
Collapse
Affiliation(s)
- Ingvar Sundh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
- Correspondence:
| | - Teresa Del Giudice
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (T.D.G.); (L.C.)
| | - Luigi Cembalo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (T.D.G.); (L.C.)
| |
Collapse
|
81
|
O'Sullivan CA, Roper MM, Myers CA, Thatcher LF. Developing Actinobacterial Endophytes as Biocontrol Products for Fusarium pseudograminearum in Wheat. Front Bioeng Biotechnol 2021; 9:691770. [PMID: 34268299 PMCID: PMC8276002 DOI: 10.3389/fbioe.2021.691770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
Crown rot of wheat, caused by Fusarium pseudograminearum, results in millions of dollars of yield losses globally each year. Management strategies to control crown rot are limited and there are concerns about development of fungicide resistance so novel treatment strategies are desirable. A collection of endophytic Actinobacteria was screened for their ability to suppress the growth of F. pseudograminearum and the development of crown rot symptoms in wheat with the aim of identifying candidates that can be developed into biocontrol products. The ability of the Actinobacteria isolates to suppress the growth of three different F. pseudograminearum strains in vitro was assessed using agar-plate competition assays. Soil-free seedling assays were used to screen for suppression of development of early disease symptoms in the susceptible wheat (Triticum aestivum) cv. Tamaroi. Four of the isolates were tested in a glasshouse pot experiment to assess their ability to decrease disease symptoms and prevent yield losses in wheat cv. Tamaroi grown to maturity in an unsterilized soil. The screening of 53 isolates identified two Streptomyces isolates, MH71 and MH243, with very strong antifungal activity against F. pseudograminearum strains in agar-plate competition and seedling assays. In the glasshouse pot trial, plants treated with seed coatings of either MH71 or MH243 had > 24% lower disease severity than control plants infected with F. pseudograminearum. These two cultures show potential for development as biocontrol products because they are easy to culture, grow on relatively inexpensive media, produce highly durable spores and can be delivered to plants as a seed coat.
Collapse
Affiliation(s)
- Cathryn A O'Sullivan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Floreat, WA, Australia
| | - Margaret M Roper
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Floreat, WA, Australia
| | - Cindy A Myers
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Floreat, WA, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Floreat, WA, Australia
| |
Collapse
|
82
|
Hawkes CV, Kjøller R, Raaijmakers JM, Riber L, Christensen S, Rasmussen S, Christensen JH, Dahl AB, Westergaard JC, Nielsen M, Brown-Guedira G, Hestbjerg Hansen L. Extension of Plant Phenotypes by the Foliar Microbiome. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:823-846. [PMID: 34143648 DOI: 10.1146/annurev-arplant-080620-114342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The foliar microbiome can extend the host plant phenotype by expanding its genomic and metabolic capabilities. Despite increasing recognition of the importance of the foliar microbiome for plant fitness, stress physiology, and yield, the diversity, function, and contribution of foliar microbiomes to plant phenotypic traits remain largely elusive. The recent adoption of high-throughput technologies is helping to unravel the diversityand spatiotemporal dynamics of foliar microbiomes, but we have yet to resolve their functional importance for plant growth, development, and ecology. Here, we focus on the processes that govern the assembly of the foliar microbiome and the potential mechanisms involved in extended plant phenotypes. We highlight knowledge gaps and provide suggestions for new research directions that can propel the field forward. These efforts will be instrumental in maximizing the functional potential of the foliar microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Svend Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Gina Brown-Guedira
- Plant Science Research Unit, USDA Agricultural Research Service and Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| |
Collapse
|
83
|
Trivedi P, Mattupalli C, Eversole K, Leach JE. Enabling sustainable agriculture through understanding and enhancement of microbiomes. THE NEW PHYTOLOGIST 2021; 230:2129-2147. [PMID: 33657660 DOI: 10.1111/nph.17319] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 05/18/2023]
Abstract
Harnessing plant-associated microbiomes offers an invaluable strategy to help agricultural production become more sustainable while also meeting growing demands for food, feed and fiber. A plethora of interconnected interactions among the host, environment and microbes, occurring both above and below ground, drive recognition, recruitment and colonization of plant-associated microbes, resulting in activation of downstream host responses and functionality. Dissecting these complex interactions by integrating multiomic approaches, high-throughput culturing, and computational and synthetic biology advances is providing deeper understanding of the structure and function of native microbial communities. Such insights are paving the way towards development of microbial products as well as microbiomes engineered with synthetic microbial communities capable of delivering agronomic solutions. While there is a growing market for microbial-based solutions to improve crop productivity, challenges with commercialization of these products remain. The continued translation of plant-associated microbiome knowledge into real-world scenarios will require concerted transdisciplinary research, cross-training of a next generation of scientists, and targeted educational efforts to prime growers and the general public for successful adoption of these innovative technologies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| | - Chakradhar Mattupalli
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, 16650 State Route 536, Mount Vernon, WA, 98273, USA
| | - Kellye Eversole
- Eversole Associates, 5207 Wyoming Road, Bethesda, MD, 20816, USA
- International Alliance for Phytobiomes Research, 2841 NE Marywood Ct, Lee's Summit, MO, 64086, USA
| | - Jan E Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| |
Collapse
|
84
|
Sharma M, Saini I, Kaushik P, Aldawsari MM, Balawi TA, Alam P. Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode ( Meloidogyne javanica) infestation in eggplant. Saudi J Biol Sci 2021; 28:3685-3691. [PMID: 34220219 PMCID: PMC8241595 DOI: 10.1016/j.sjbs.2021.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 10/26/2022] Open
Abstract
Eggplant cultivation is subjected to attacks by numbers of pests and diseases from the nursery stage until harvest. Root-knot nematode (M. javanica) is one of the most significant restrictions in the successful cultivation of eggplant as it damages the crop year-round. One of the most essential classes of plant symbionts is arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB), which significantly impact plant development, feeding, disease tolerance, and resistance to M. javanica. Eggplant seedlings were inoculated with two mycorrhizal fungi, Glomus mosseae (Gm) and Gigaspora gigantea (Gg), together with the phosphate-solubilizing bacteria (PSB) Pseudomonas fluorescens (Pf; ATCC-17400) under the presence of nematodes inoculation of Meloidogyne javanica as 1000 eggs of M. javanica in each pot. Observations were recorded for 9 morphological traits, 6 fruit morphometric traits using Tomato Analyzer (version 4) software program, and 4 fruit biochemical traits. Along with the data recorded for mycorrhization (%), number of galls and reaction to RKN. Plants inoculated with the consortium (Pf + Gm + Gg) performed substantially better for most traits. Furthermore, the eggplant plants treated with consortium developed the highest levels of fruit biochemical content along with the highest level of mycorrhization (68.20%). Except for certain fruit morphometric traits, the treatment containing Pf + Gg outperformed the treatment containing Pf + Gm. Overall, this research showed that AM fungi could be a sustainable solution to the eggplant RKN problem.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Department of Botany, Kurukshetra University, Kurukshetra 136118, Haryana, India
| | - Ishan Saini
- Department of Botany, Kurukshetra University, Kurukshetra 136118, Haryana, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mona Mohammed Aldawsari
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
85
|
Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, Garrido C. Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. BIOLOGY 2021; 10:biology10060492. [PMID: 34205845 PMCID: PMC8229056 DOI: 10.3390/biology10060492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Plant–microorganism associations date back more than 400 million years. Plants host microorganisms that establish many different relationships with them, some negative and others very positive for both organisms. A type of this relationship is established with microorganisms that live inside them, known as endophytic microorganisms; they can include bacteria, yeasts, and fungi. In this study, we isolate endophytic bacteria from maize plants, and we characterize them in order to check their potential for being used as biocontrol agents against Botrytis cinerea, one of the most important phytopathogenic fungi in the world. The endophytic bacteria showed this antagonistic effect during in vitro assay and also during in vivo assay in Phaseolus vulgaris. At the same time, they showed the capacity for promoting growth in Zea mays plants. Abstract Plant diseases are one of the main factors responsible for food loss in the world, and 20–40% of such loss is caused by pathogenic infections. Botrytis cinerea is the most widely studied necrotrophic phytopathogenic fungus. It is responsible for incalculable economic losses due to the large number of host plants affected. Today, B. cinerea is controlled mainly by synthetic fungicides whose frequent application increases risk of resistance, thus making them unsustainable in terms of the environment and human health. In the search for new alternatives for the biocontrol of this pathogen, the use of endophytic microorganisms and their metabolites has gained momentum in recent years. In this work, we isolated endophytic bacteria from Zea mays cultivated in Colombia. Several strains of Bacillus subtilis, isolated and characterized in this work, exhibited growth inhibition against B. cinerea of more than 40% in in vitro cultures. These strains were characterized by studying several of their biochemical properties, such as production of lipopeptides, potassium solubilization, proteolytic and amylolytic capacity, production of siderophores, biofilm assays, and so on. We also analyzed: (i) its capacity to promote maize growth (Zea mays) in vivo, and (ii) its capacity to biocontrol B. cinerea during in vivo infection in plants (Phaseolus vulgaris).
Collapse
Affiliation(s)
- Hernando José Bolivar-Anillo
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4 planta, Universidad de Cádiz, 11510 Puerto Real, Spain;
- Programa de Microbiología, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Victoria E. González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (V.E.G.-R.); (J.M.C.); (D.G.-S.)
| | - Jesús M. Cantoral
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (V.E.G.-R.); (J.M.C.); (D.G.-S.)
| | - Darío García-Sánchez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (V.E.G.-R.); (J.M.C.); (D.G.-S.)
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4 planta, Universidad de Cádiz, 11510 Puerto Real, Spain;
- Correspondence: (I.G.C.); (C.G.)
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (V.E.G.-R.); (J.M.C.); (D.G.-S.)
- Correspondence: (I.G.C.); (C.G.)
| |
Collapse
|
86
|
Clouse KM, Wagner MR. Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges. Front Bioeng Biotechnol 2021; 9:567548. [PMID: 34136470 PMCID: PMC8201784 DOI: 10.3389/fbioe.2021.567548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Growing human population size and the ongoing climate crisis create an urgent need for new tools for sustainable agriculture. Because microbiomes have profound effects on host health, interest in methods of manipulating agricultural microbiomes is growing rapidly. Currently, the most common method of microbiome manipulation is inoculation of beneficial organisms or engineered communities; however, these methods have been met with limited success due to the difficulty of establishment in complex farm environments. Here we propose genetic manipulation of the host plant as another avenue through which microbiomes could be manipulated. We discuss how domestication and modern breeding have shaped crop microbiomes, as well as the potential for improving plant-microbiome interactions through conventional breeding or genetic engineering. We summarize the current state of knowledge on host genetic control of plant microbiomes, as well as the key challenges that remain.
Collapse
Affiliation(s)
- Kayla M. Clouse
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - Maggie R. Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
- Kansas Biological Survey, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
87
|
Yoneda Y, Yamamoto K, Makino A, Tanaka Y, Meng XY, Hashimoto J, Shin-ya K, Satoh N, Fujie M, Toyama T, Mori K, Ike M, Morikawa M, Kamagata Y, Tamaki H. Novel Plant-Associated Acidobacteria Promotes Growth of Common Floating Aquatic Plants, Duckweeds. Microorganisms 2021; 9:1133. [PMID: 34074043 PMCID: PMC8225144 DOI: 10.3390/microorganisms9061133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Duckweeds are small, fast growing, and starch- and protein-rich aquatic plants expected to be a next generation energy crop and an excellent biomaterial for phytoremediation. Despite such an importance, very little is known about duckweed-microbe interactions that would be a key biological factor for efficient industrial utilization of duckweeds. Here we first report the duckweed growth promoting ability of bacterial strains belonging to the phylum Acidobacteria, the members of which are known to inhabit soils and terrestrial plants, but their ecological roles and plant-microbe interactions remain largely unclear. Two novel Acidobacteria strains, F-183 and TBR-22, were successfully isolated from wild duckweeds and phylogenetically affiliated with subdivision 3 and 6 of the phylum, respectively, based on 16S rRNA gene sequence analysis. In the co-culture experiments with aseptic host plants, the F-183 and TBR-22 strains visibly enhanced growth (frond number) of six duckweed species (subfamily Lemnoideae) up to 1.8-5.1 times and 1.6-3.9 times, respectively, compared with uninoculated controls. Intriguingly, both strains also increased the chlorophyll content of the duckweed (Lemna aequinoctialis) up to 2.4-2.5 times. Under SEM observation, the F-183 and TBR-22 strains were epiphytic and attached to the surface of duckweed. Taken together, our findings suggest that indigenous plant associated Acidobacteria contribute to a healthy growth of their host aquatic plants.
Collapse
Affiliation(s)
- Yasuko Yoneda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
- Bioproduction Research Institute, AIST, Sapporo 062-8517, Hokkaido, Japan
| | - Ayaka Makino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Yasuhiro Tanaka
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBiC), Koto-ku, Tokyo 135-0064, Japan;
| | - Kazuo Shin-ya
- Cellular and Molecular Biotechnology Research Institute, AIST, Koto-ku, Tokyo 135-0064, Japan;
| | - Noriyuki Satoh
- Okinawa Institute of Science, Technology Graduate University (OIST), Kunigami-gun 904-0495, Okinawa, Japan; (N.S.); (M.F.)
| | - Manabu Fujie
- Okinawa Institute of Science, Technology Graduate University (OIST), Kunigami-gun 904-0495, Okinawa, Japan; (N.S.); (M.F.)
| | - Tadashi Toyama
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Kazuhiro Mori
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan;
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
88
|
Sundh I, Eilenberg J. Why has the authorization of microbial biological control agents been slower in the EU than in comparable jurisdictions? PEST MANAGEMENT SCIENCE 2021; 77:2170-2178. [PMID: 33201551 PMCID: PMC8048978 DOI: 10.1002/ps.6177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to identify reasons why the authorization of microbial pest control agents is lengthier under regulatory frameworks of the European Union (EU) than in comparable jurisdictions. A main conclusion is that although the EU's regulatory processes have strong scientific foundations, the most appropriate scientific concepts, knowledge and expertise have not been applied in the safety assessment of microorganisms and biological control. Tradition and conceptual legacies from assessments of conventional chemical pesticides have likely contributed to this by steering the evaluations of microorganisms in less appropriate directions. According to our investigation, the current framework for microbial plant protection products complies poorly with the principles that legislation should have legal predictability, proportionality, and that it should be non-discriminative, for instance in comparison to corresponding regulations in comparable jurisdictions. We also found that existing possibilities to take non-safety and ethical considerations into account can probably be used more. To rationalize the EU's authorization of microbial control products, both the basic legislation and the evaluations of agents and products need stronger rooting in fundamental microbiological science. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ingvar Sundh
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jørgen Eilenberg
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
89
|
A Symbiotic Approach to Generating Stress Tolerant Crops. Microorganisms 2021; 9:microorganisms9050920. [PMID: 33922997 PMCID: PMC8145319 DOI: 10.3390/microorganisms9050920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Studies were undertaken to determine if fungal endophytes from plants in stressful habitats could be commercialized to generate climate resilient crop plants. Fungal endophytes were isolated from weedy rice plants and grasses from South Korea and the USA, respectively. Endophytes (Curvularia brachyspora and Fusarium asiaticum) from weedy rice plants from high salt or drought stressed habitats in South Korea conferred salt and drought stress tolerance to weedy rice and commercial varieties reflective of the habitats from which they were isolated. Fungal endophytes isolated from grasses in arid habitats of the USA were identified as Trichoderma harzianum and conferred drought and heat stress tolerance to monocots and eudicots. Two T. harzianum isolates were exposed to UV mutagenesis to derive strains resistant to fungicides in seed treatment plant protection packages. Three strains that collectively had resistance to commonly used fungicides were used for field testing. The three-strain mixture (ThSM3a) increased crop yields proportionally to the level of stress plants experienced with average yields up to 52% under high and 3–5% in low stress conditions. This study demonstrates fungal endophytes can be developed as viable commercial tools for rapidly generating climate resilient crops to enhance agricultural sustainability.
Collapse
|
90
|
Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd Allah EF, Singh BK. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions. Microbiol Res 2021; 248:126763. [PMID: 33892241 DOI: 10.1016/j.micres.2021.126763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Ensuring food security in an environmentally sustainable way is a global challenge. To achieve this agriculture productivity requires increasing by 70 % under increasingly harsh climatic conditions without further damaging the environmental quality (e.g. reduced use of agrochemicals). Most governmental and inter-governmental agencies have highlighted the need for alternative approaches that harness natural resource to address this. Use of beneficial phytomicrobiome, (i.e. microbes intimately associated with plant tissues) is considered as one of the viable solutions to meet the twin challenges of food security and environmental sustainability. A diverse number of important microbes are found in various parts of the plant, i.e. root, shoot, leaf, seed, and flower, which play significant roles in plant health, development and productivity, and could contribute directly to improving the quality and quantity of food production. The phytomicrobiome can also increase productivity via increased resource use efficiency and resilience to biotic and abiotic stresses. In this article, we explore the role of phytomicrobiome in plant health and how functional properties of microbiome can be harnessed to increase agricultural productivity in environmental-friendly approaches. However, significant technical and translation challenges remain such as inconsistency in efficacy of microbial products in field conditions and a lack of tools to manipulate microbiome in situ. We propose pathways that require a system-based approach to realize the potential to phytomicrobiome in contributing towards food security. We suggest if these technical and translation constraints could be systematically addressed, phytomicrobiome can significantly contribute towards the sustainable increase in agriculture productivity and food security.
Collapse
Affiliation(s)
- Gowardhan Kumar Chouhan
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| |
Collapse
|
91
|
Lyu D, Zajonc J, Pagé A, Tanney CAS, Shah A, Monjezi N, Msimbira LA, Antar M, Nazari M, Backer R, Smith DL. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success. Microorganisms 2021; 9:675. [PMID: 33805166 PMCID: PMC8064057 DOI: 10.3390/microorganisms9040675] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Under natural conditions, plants are always associated with a well-orchestrated community of microbes-the phytomicrobiome. The nature and degree of microbial effect on the plant host can be positive, neutral, or negative, and depends largely on the environment. The phytomicrobiome is integral for plant growth and function; microbes play a key role in plant nutrient acquisition, biotic and abiotic stress management, physiology regulation through microbe-to-plant signals, and growth regulation via the production of phytohormones. Relationships between the plant and phytomicrobiome members vary in intimacy, ranging from casual associations between roots and the rhizosphere microbial community, to endophytes that live between plant cells, to the endosymbiosis of microbes by the plant cell resulting in mitochondria and chloroplasts. If we consider these key organelles to also be members of the phytomicrobiome, how do we distinguish between the two? If we accept the mitochondria and chloroplasts as both members of the phytomicrobiome and the plant (entrained microbes), the influence of microbes on the evolution of plants becomes so profound that without microbes, the concept of the "plant" is not viable. This paper argues that the holobiont concept should take greater precedence in the plant sciences when referring to a host and its associated microbial community. The inclusivity of this concept accounts for the ambiguous nature of the entrained microbes and the wide range of functions played by the phytomicrobiome in plant holobiont homeostasis.
Collapse
Affiliation(s)
- Dongmei Lyu
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Jonathan Zajonc
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Antoine Pagé
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
- National Research Council Canada, Aquatic and Crop Resource Development (ACRD), Montréal, QC H4P 2R2, Canada
| | - Cailun A. S. Tanney
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Ateeq Shah
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Nadia Monjezi
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Levini A. Msimbira
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Mohammed Antar
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Mahtab Nazari
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Rachel Backer
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Donald L. Smith
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| |
Collapse
|
92
|
Raimi A, Roopnarain A, Adeleke R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
93
|
Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606815] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global population growth poses a threat to food security in an era of increased ecosystem degradation, climate change, soil erosion, and biodiversity loss. In this context, harnessing naturally-occurring processes such as those provided by soil and plant-associated microorganisms presents a promising strategy to reduce dependency on agrochemicals. Biofertilizers are living microbes that enhance plant nutrition by either by mobilizing or increasing nutrient availability in soils. Various microbial taxa including beneficial bacteria and fungi are currently used as biofertilizers, as they successfully colonize the rhizosphere, rhizoplane or root interior. Despite their great potential to improve soil fertility, biofertilizers have yet to replace conventional chemical fertilizers in commercial agriculture. In the last 10 years, multi-omics studies have made a significant step forward in understanding the drivers, roles, processes, and mechanisms in the plant microbiome. However, translating this knowledge on microbiome functions in order to capitalize on plant nutrition in agroecosystems still remains a challenge. Here, we address the key factors limiting successful field applications of biofertilizers and suggest potential solutions based on emerging strategies for product development. Finally, we discuss the importance of biosafety guidelines and propose new avenues of research for biofertilizer development.
Collapse
|
94
|
Plant growth-promoting microbes — an industry view. Emerg Top Life Sci 2021; 5:317-324. [DOI: 10.1042/etls20200313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting microbes can affect the plant microbiome, improving different properties of the plant such as yield and health. Many companies are commercializing these microbes as products called biologicals. Defining the product concept is one of the first and most important steps in making a biological product. Companies can use phenotyping and genotyping approaches to identify the microbe to make into a live bacterial product. Screening usually begins in the laboratory and often moves from high-throughput methods to more time and resource-intensive methods culminating in large scale field testing. Once the microbe is chosen, the fermentation process grows the bacteria to the necessary amounts, while the formulation process ensures a stable product in the desired form such as a liquid or powder. The products must show yield increases in the field over several seasons and conditions, but also must be easy to use and cost-effective to be adopted by farmers and other customers. Tying all these data together from the selection process to test results gives a customer a ‘reason to believe’ for the marketing and launch of a successful product.
Collapse
|
95
|
Kavamura VN, Mendes R, Bargaz A, Mauchline TH. Defining the wheat microbiome: Towards microbiome-facilitated crop production. Comput Struct Biotechnol J 2021; 19:1200-1213. [PMID: 33680361 PMCID: PMC7902804 DOI: 10.1016/j.csbj.2021.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Wheat is one of the world's most important crops, but its production relies heavily on agrochemical inputs which can be harmful to the environment when used excessively. It is well known that a multitude of microbes interact with eukaryotic organisms, including plants, and the sum of microbes and their functions associated with a given host is termed the microbiome. Plant-microbe interactions can be beneficial, neutral or harmful to the host plant. Over the last decade, with the development of next generation DNA sequencing technology, our understanding of the plant microbiome structure has dramatically increased. Considering that defining the wheat microbiome is key to leverage crop production in a sustainable way, here we describe how different factors drive microbiome assembly in wheat, including crop management, edaphic-environmental conditions and host selection. In addition, we highlight the benefits to take a multidisciplinary approach to define and explore the wheat core microbiome to generate solutions based on microbial (synthetic) communities or single inoculants. Advances in plant microbiome research will facilitate the development of microbial strategies to guarantee a sustainable intensification of crop production.
Collapse
Affiliation(s)
- Vanessa N. Kavamura
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna, SP, Brazil
| | - Adnane Bargaz
- Agrobiosciences, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Tim H. Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
96
|
Szymańska S, Sikora M, Hrynkiewicz K, Tyburski J, Tretyn A, Gołębiewski M. Choosing source of microorganisms and processing technology for next generation beet bioinoculant. Sci Rep 2021; 11:2829. [PMID: 33531601 PMCID: PMC7854725 DOI: 10.1038/s41598-021-82436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
The increase of human population and associated increasing demand for agricultural products lead to soil over-exploitation. Biofertilizers based on lyophilized plant material containing living plant growth-promoting microorganisms (PGPM) could be an alternative to conventional fertilizers that fits into sustainable agricultural technologies ideas. We aimed to: (1) assess the diversity of endophytic bacteria in sugar and sea beet roots and (2) determine the influence of osmoprotectants (trehalose and ectoine) addition during lyophilization on bacterial density, viability and salt tolerance. Microbiome diversity was assessed based on 16S rRNA amplicons sequencing, bacterial density and salt tolerance was evaluated in cultures, while bacterial viability was calculated by using fluorescence microscopy and flow cytometry. Here we show that plant genotype shapes its endophytic microbiome diversity and determines rhizosphere soil properties. Sea beet endophytic microbiome, consisting of genera characteristic for extreme environments, is more diverse and salt resistant than its crop relative. Supplementing osmoprotectants during root tissue lyophilization exerts a positive effect on bacterial community salt stress tolerance, viability and density. Trehalose improves the above-mentioned parameters more effectively than ectoine, moreover its use is economically advantageous, thus it may be used to formulate improved biofertilizers.
Collapse
Affiliation(s)
- Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland
| | - Marcin Sikora
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland.
| | - Jarosław Tyburski
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland.,Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland
| | - Andrzej Tretyn
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland.,Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland
| | - Marcin Gołębiewski
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland. .,Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|
97
|
Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. SUSTAINABILITY 2021. [DOI: 10.3390/su13031140] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The quest for enhancing agricultural yields due to increased pressure on food production has inevitably led to the indiscriminate use of chemical fertilizers and other agrochemicals. Biofertilizers are emerging as a suitable alternative to counteract the adverse environmental impacts exerted by synthetic agrochemicals. Biofertilizers facilitate the overall growth and yield of crops in an eco-friendly manner. They contain living or dormant microbes, which are applied to the soil or used for treating crop seeds. One of the foremost candidates in this respect is rhizobacteria. Plant growth promoting rhizobacteria (PGPR) are an important cluster of beneficial, root-colonizing bacteria thriving in the plant rhizosphere and bulk soil. They exhibit synergistic and antagonistic interactions with the soil microbiota and engage in an array of activities of ecological significance. They promote plant growth by facilitating biotic and abiotic stress tolerance and support the nutrition of host plants. Due to their active growth endorsing activities, PGPRs are considered an eco-friendly alternative to hazardous chemical fertilizers. The use of PGPRs as biofertilizers is a biological approach toward the sustainable intensification of agriculture. However, their application for increasing agricultural yields has several pros and cons. Application of potential biofertilizers that perform well in the laboratory and greenhouse conditions often fails to deliver the expected effects on plant development in field settings. Here we review the different types of PGPR-based biofertilizers, discuss the challenges faced in the widespread adoption of biofertilizers, and deliberate the prospects of using biofertilizers to promote sustainable agriculture.
Collapse
|
98
|
Metagenomics and Culture Dependent Insights into the Distribution of Firmicutes across Two Different Sample Types Located in the Black Hills Region of South Dakota, USA. Microorganisms 2021; 9:microorganisms9010113. [PMID: 33418927 PMCID: PMC7825136 DOI: 10.3390/microorganisms9010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples—South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates.
Collapse
|
99
|
Qin L, Tian P, Cui Q, Hu S, Jian W, Xie C, Yang X, Shen H. Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:644597. [PMID: 33936131 PMCID: PMC8079787 DOI: 10.3389/fpls.2021.644597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.
Collapse
Affiliation(s)
- Lijun Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Peidong Tian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qunyao Cui
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuping Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wei Jian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xingyong Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Xingyong Yang,
| | - Hong Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- College of Resources and Environment Science, Southwest University, Chongqing, China
- Hong Shen,
| |
Collapse
|
100
|
Desiccation-tolerant fungal blastospores: From production to application. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|