51
|
Zhang X, Zhang H, Zhang H, Tang M. Exogenous Melatonin Application Enhances Rhizophagus irregularis Symbiosis and Induces the Antioxidant Response of Medicago truncatula Under Lead Stress. Front Microbiol 2020; 11:516. [PMID: 32351459 PMCID: PMC7174712 DOI: 10.3389/fmicb.2020.00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a new kind of plant growth regulator. The aim of this study was to figure out the effect of melatonin on arbuscular mycorrhizal (AM) symbiosis and heavy metal tolerance. A three-factor experiment was conducted to determine the effect of melatonin application on the growth, AM symbiosis, and stress tolerance of Medicago truncatula. A two-factor (AM inoculation and Pb stress) experiment was conducted to determine the effect of AM fungus on melatonin accumulation under Pb stress. AM plants under Pb stress had a higher melatonin accumulation than non-mycorrhizal (NM) plants under Pb stress. Acetylserotonin methyltransferase (ASMT) is the enzymatic reaction of the last step in melatonin synthesis. The accumulation of melatonin may be related to the expression of MtASMT. Melatonin application increased the relative expression of MtPT4 and AM colonization in AM plants. Melatonin application decreased Pb uptake with and without AM inoculation. Both melatonin application and AM inoculation improved M. truncatula growth and increased antioxidant response with Pb stress. These results indicated that melatonin application has positive effects on AM symbiosis and Pb stress tolerance under Pb stress. AM inoculation improve melatonin synthesis capacity under Pb stress. Melatonin application may improve AM plant growth by enhancing AM symbiosis, stimulating antioxidant response, and inhibiting Pb uptake.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Huijuan Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Haoqiang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
52
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
53
|
Deyett E, Rolshausen PE. Endophytic microbial assemblage in grapevine. FEMS Microbiol Ecol 2020; 96:5810658. [DOI: 10.1093/femsec/fiaa053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The plant vascular system has remained an underexplored niche despite its potential for hosting beneficial microbes. The aim of this work was to determine the origin of the microbial endophytes inhabiting grapevine. We focused on a single commercial vineyard in California over a two-year period and used an amplicon metagenomics approach to profile the bacterial (16S–V4) and fungal (ITS) communities of the microbiome across a continuum of six grapevine compartments: bulk soil, rhizosphere, root, cordon, cane and sap. Our data supported that roots are a bottleneck to microbial richness and that they are mostly colonized with soilborne microbes, including plant growth-promoting bacteria recruited by the host, but also saprophytic and pathogenic fungal invaders. A core group of taxa was identified throughout the vine; however, there was clear partitioning of the microbiome with niche adaptation of distinct taxonomic groups. Above- and belowground plant tissues displayed distinct microbial fingerprints and were intermixed in a limited capacity mostly by way of the plant sap. We discuss how cultural practices and human contact may shape the endosphere microbiome and identify potential channels for transmission of its residents.
Collapse
Affiliation(s)
- E Deyett
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - P E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
54
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
55
|
Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S. Melatonin and Its Protective Role against Biotic Stress Impacts on Plants. Biomolecules 2019. [PMID: 31905696 DOI: 10.3390/niom10010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Biotic stress causes immense damage to agricultural products worldwide and raises the risk of hunger in many areas. Plants themselves tolerate biotic stresses via several pathways, including pathogen-associated molecular patterns (PAMPs), which trigger immunity and plant resistance (R) proteins. On the other hand, humans use several non-ecofriendly methods to control biotic stresses, such as chemical applications. Compared with chemical control, melatonin is an ecofriendly compound that is an economical alternative strategy which can be used to protect animals and plants from attacks via pathogens. In plants, the bactericidal capacity of melatonin was verified against Mycobacterium tuberculosis, as well as multidrug-resistant Gram-negative and -positive bacteria under in vitro conditions. Regarding plant-bacteria interaction, melatonin has presented effective antibacterial activities against phytobacterial pathogens. In plant-fungi interaction models, melatonin was found to play a key role in plant resistance to Botrytis cinerea, to increase fungicide susceptibility, and to reduce the stress tolerance of Phytophthora infestans. In plant-virus interaction models, melatonin not only efficiently eradicated apple stem grooving virus (ASGV) from apple shoots in vitro (making it useful for the production of virus-free plants) but also reduced tobacco mosaic virus (TMV) viral RNA and virus concentration in infected Nicotiana glutinosa and Solanum lycopersicum seedlings. Indeed, melatonin has unique advantages in plant growth regulation and increasing plant resistance effectiveness against different forms of biotic and abiotic stress. Although considerable work has been done regarding the role of melatonin in plant tolerance to abiotic stresses, its role in biotic stress remains unclear and requires clarification. In our review, we summarize the work that has been accomplished so far; highlight melatonin's function in plant tolerance to pathogens such as bacteria, viruses, and fungi; and determine the direction required for future studies on this topic.
Collapse
Affiliation(s)
- Mohamed Moustafa-Farag
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
| | - Abdulwareth Almoneafy
- Department of Biology sciences, College of Education and Science at Rada'a, Albaydaa University, Rada'a, Yemen
| | - Ahmed Mahmoud
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Marino B Arnao
- Department of Plant Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| |
Collapse
|
56
|
Melatonin and Its Protective Role against Biotic Stress Impacts on Plants. Biomolecules 2019; 10:biom10010054. [PMID: 31905696 PMCID: PMC7022677 DOI: 10.3390/biom10010054] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 01/22/2023] Open
Abstract
Biotic stress causes immense damage to agricultural products worldwide and raises the risk of hunger in many areas. Plants themselves tolerate biotic stresses via several pathways, including pathogen-associated molecular patterns (PAMPs), which trigger immunity and plant resistance (R) proteins. On the other hand, humans use several non-ecofriendly methods to control biotic stresses, such as chemical applications. Compared with chemical control, melatonin is an ecofriendly compound that is an economical alternative strategy which can be used to protect animals and plants from attacks via pathogens. In plants, the bactericidal capacity of melatonin was verified against Mycobacterium tuberculosis, as well as multidrug-resistant Gram-negative and -positive bacteria under in vitro conditions. Regarding plant–bacteria interaction, melatonin has presented effective antibacterial activities against phytobacterial pathogens. In plant–fungi interaction models, melatonin was found to play a key role in plant resistance to Botrytis cinerea, to increase fungicide susceptibility, and to reduce the stress tolerance of Phytophthora infestans. In plant–virus interaction models, melatonin not only efficiently eradicated apple stem grooving virus (ASGV) from apple shoots in vitro (making it useful for the production of virus-free plants) but also reduced tobacco mosaic virus (TMV) viral RNA and virus concentration in infected Nicotiana glutinosa and Solanum lycopersicum seedlings. Indeed, melatonin has unique advantages in plant growth regulation and increasing plant resistance effectiveness against different forms of biotic and abiotic stress. Although considerable work has been done regarding the role of melatonin in plant tolerance to abiotic stresses, its role in biotic stress remains unclear and requires clarification. In our review, we summarize the work that has been accomplished so far; highlight melatonin’s function in plant tolerance to pathogens such as bacteria, viruses, and fungi; and determine the direction required for future studies on this topic.
Collapse
|
57
|
Abstract
Phytoremediation is a green technology that aims to take up pollutants from soil or water. Metals are one of the targets of these techniques due to their high toxicity in biological systems, including plants and animals. Their elimination or, at least, decrease will help keep them from being incorporated in the trophic chain and thus reaching animal and human food. The metal removal efficiency of plants is closely related to their growth rate, tolerance, and their adaptability to different environments. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals, plants, fungi, and bacteria. In plants, it plays an important role related to antioxidant activity, but also as an important redox network regulator. Thus, melatonin has been defined as a biostimulator of plant growth, especially under environmental stress conditions, whether abiotic (water deficit and waterlogging, extreme temperature, UV radiation, salinity, alkalinity, specific mineral deficit/excess, metals and other toxic compounds, etc.) or biotic (bacteria, fungi, and viruses). Exogenous melatonin treated plants have been seen to have a high tolerance to stressors, minimizing possible harmful effects through the control of reactive oxygen species (ROS) levels and activating antioxidative responses. Furthermore, important gene expression changes in stress specific transcription factors have been demonstrated. Melatonin is capable of mobilizing toxic metals, through phytochelatins, transporting this, while sequestration adds to the biostimulator effect of melatonin on plants, improving plant tolerance against toxic pollutants. Furthermore, melatonin improves the uptake of nitrogen (N), phosphorus (P), and sulfur (S) in stress situations, enhancing cell metabolism. In light of the above, the application of melatonin seems to be a useful option for clearing toxic pollutants from the environment by improving phytoremediation. Interestingly, a variety of stressors induce melatonin biosynthesis in plants, and the study of this endogenous response in hyperaccumulator plants may be even more interesting as a natural response of the phytoremediation of diverse plants.
Collapse
|
58
|
Madigan AP, Egidi E, Bedon F, Franks AE, Plummer KM. Bacterial and Fungal Communities Are Differentially Modified by Melatonin in Agricultural Soils Under Abiotic Stress. Front Microbiol 2019; 10:2616. [PMID: 31849848 PMCID: PMC6901394 DOI: 10.3389/fmicb.2019.02616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022] Open
Abstract
An extensive body of evidence from the last decade has indicated that melatonin enhances plant resistance to a range of biotic and abiotic stressors. This has led to an interest in the application of melatonin in agriculture to reduce negative physiological effects from environmental stresses that affect yield and crop quality. However, there are no reports regarding the effects of melatonin on soil microbial communities under abiotic stress, despite the importance of microbes for plant root health and function. Three agricultural soils associated with different land usage histories (pasture, canola or wheat) were placed under abiotic stress by cadmium (100 or 280 mg kg-1 soil) or salt (4 or 7 g kg-1 soil) and treated with melatonin (0.2 and 4 mg kg-1 soil). Automated Ribosomal Intergenic Spacer Analysis (ARISA) was used to generate Operational Taxonomic Units (OTU) for microbial community analysis in each soil. Significant differences in richness (α diversity) and community structures (β diversity) were observed between bacterial and fungal assemblages across all three soils, demonstrating the effect of melatonin on soil microbial communities under abiotic stress. The analysis also indicated that the microbial response to melatonin is governed by the type of soil and history. The effects of melatonin on soil microbes need to be regarded in potential future agricultural applications.
Collapse
Affiliation(s)
- Andrew P. Madigan
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Centre for Future Landscapes, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
59
|
Pacifico D, Squartini A, Crucitti D, Barizza E, Lo Schiavo F, Muresu R, Carimi F, Zottini M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. FRONTIERS IN PLANT SCIENCE 2019; 10:1256. [PMID: 31649712 PMCID: PMC6794716 DOI: 10.3389/fpls.2019.01256] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/09/2019] [Indexed: 05/25/2023]
Abstract
Endophytism within Vitis represents a topic of critical relevance due to the multiple standpoints from which it can be approached and considered. From the biological and botanical perspectives, the interaction between microorganisms and perennial woody plants falls within the category of stable relationships from which the plants can benefit in multiple ways. The life cycle of the host ensures persistence in all seasons, repeated chances of contact, and consequent microbiota accumulation over time, leading to potentially high diversity compared with that of herbaceous short-lived plants. Furthermore, grapevines are agriculturally exploited, highly selected germplasms where a profound man-driven footprint has indirectly and unconsciously shaped the inner microbiota through centuries of cultivation and breeding. Moreover, since endophyte metabolism can contribute to that of the plant host and its fruits' biochemical composition, the nature of grapevine endophytic taxa identities, ecological attitudes, potential toxicity, and clinical relevance are aspects worthy of a thorough investigation. Can endophytic taxa efficiently defend grapevines by acting against pests or confer enough fitness to the plants to endure attacks? What are the underlying mechanisms that translate into this or other advantages in the hosting plant? Can endophytes partially redirect plant metabolism, and to what extent do they act by releasing active products? Is the inner microbial colonization necessary priming for a cascade of actions? Are there defined environmental conditions that can trigger the unleashing of key microbial phenotypes? What is the environmental role in providing the ground biodiversity by which the plant can recruit microsymbionts? How much and by what practices and strategies can these symbioses be managed, applied, and directed to achieve the goal of a better sustainable viticulture? By thoroughly reviewing the available literature in the field and critically examining the data and perspectives, the above issues are discussed.
Collapse
Affiliation(s)
- Davide Pacifico
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Dalila Crucitti
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | | | | | - Rosella Muresu
- Institute for the Animal Production System in Mediterranean Environment (ISPAAM), National Research Council (CNR), Sassari, Italy
| | - Francesco Carimi
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | | |
Collapse
|
60
|
Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA, Ihsan M, Laiq M, Ullah S, Fahad S, Khan A, Khan AH, Akbar A, Yang X. Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 2019; 103:7385-7397. [PMID: 31375881 DOI: 10.1007/s00253-019-10045-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Climate change is a crucial issue among the serious emerging problems which got a global attention in the last few decades. With the climate change, worldwide crop production has been seriously affected by drought stress. In this regard, various technologies including traditional breeding and genetic engineering are used to cope with drought stress. However, the interactions between plants and endophytic bacteria emerged as an interesting era of knowledge that can be used for novel agriculture practices. Endophytic bacteria which survive within plant tissues are among the most appropriate technologies improving plant growth and yield under drought conditions. These endophytic bacteria live within plant tissues and release various phytochemicals that assist plant to withstand in harsh environmental conditions, i.e., drought stress. Their plant growth-promoting characteristics include nitrogen fixation, phosphate solubilization, mineral uptake, and the production of siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and various phytohormones. These plant growth promoting characteristics of endophytic bacteria improve root length and density, which lead to the enhance drought tolerance. In addition, plant-endophytic bacteria assist plant to withstand against drought stress by producing drought-tolerant substances, for instance, abscisic acid, indole-3-acetic acid, ACC deaminase, and various volatile compounds. Indirectly, endophytic bacteria also improve osmotic adjustment, relative water content, and antioxidant activity of inoculated plants. Altogether, these bacterial-mediated drought tolerance and plant growth-promoting processes continue even under severe drought conditions which lead to enhanced plant growth promotion and yield. The present review highlights a natural and environment-friendly strategy in the form of drought-tolerant and plant growth-promoting endophytic bacteria to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan. .,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Hazrat Ali
- Department of Zoology, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Kashif Hayat
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ayaz Ali Keerio
- Department of Plant Breeding and Genetics, Faculty of Crop Production, Sindh Agriculture University, Tando Jam, Hyderabad, Sindh, Pakistan
| | - Muhammad Ihsan
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Muhammad Laiq
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Sana Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Shah Fahad
- Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Aziz Khan
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guanxi University, Nanning, 530005, Guanxi, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Adnan Akbar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| |
Collapse
|
61
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
62
|
Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, Li Y. Melatonin and Its Effects on Plant Systems. Molecules 2018; 23:E2352. [PMID: 30223442 PMCID: PMC6225270 DOI: 10.3390/molecules23092352] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a nontoxic biological molecule produced in a pineal gland of animals and different tissues of plants. It is an important secondary messenger molecule, playing a vital role in coping with various abiotic and biotic stresses. Melatonin serves as an antioxidant in postharvest technology and enhances the postharvest life of fruits and vegetables. The application of exogenous melatonin alleviated reactive oxygen species and cell damage induced by abiotic and biotic stresses by means of repairing mitochondria. Additionally, the regulation of stress-specific genes and the activation of pathogenesis-related protein and antioxidant enzymes genes under biotic and abiotic stress makes it a more versatile molecule. Besides that, the crosstalk with other phytohormones makes inroads to utilize melatonin against non-testified stress conditions, such as viruses and nematodes. Furthermore, different strategies have been discussed to induce endogenous melatonin activity in order to sustain a plant system. Our review highlighted the diverse roles of melatonin in a plant system, which could be useful in enhancing the environmental friendly crop production and ensure food safety.
Collapse
Affiliation(s)
- Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Qasid Ali
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey.
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Azher Nawaz
- Department of Horticulture, University college of Agriculture, University of Sargodha, Sargodha 40100, Pakistan.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
63
|
Li M, Zhang X, Yang H, Li X, Cui Z. Soil sustainable utilization technology: mechanism of flavonols in resistance process of heavy metal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26669-26681. [PMID: 30003485 DOI: 10.1007/s11356-018-2485-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The soil ecosystem is critical for agricultural production, affecting many aspects of human health. Soil has more unknown biodiversity and edaphic parameters than any other ecosystem especially when polluted. Metagenomics and metatranscriptomics were applied to research on toxicological characteristics of Pb and resistance mechanism of flavonols. Rhizosphere microorganisms-plants system, a unified system closely related to soil environment was taken as research object. Results emphasize gene expression changes in different test groups. Gene ontology enrichment and eggNOG showed that Pb has a toxic effect on gene and protein function which concentrated on ATPase and ATP-dependent activity. Differentially expressed genes in the flavonols group indicated that flavonols regulate amino acid transport and other transportation process related to Pb stress. Kegg analysis represents that Pb interferences energy production process via not only the upstream like glycolysis and tricarboxylic acid (TCA) circle but also oxidative phosphorylation process, which can also produce reactive oxygen species and impact the eliminating process. Flavonols have shown the ability in alleviating toxic effect of Pb and improving the resistance of plants. Flavonols can recover the electronic transmission and other process in TCA and oxidative phosphorylation via ascorbic acid-glutathione metabolism. Flavonols activated antioxidative process and non-specific immunity via vitamins B2-B6 metabolism.
Collapse
Affiliation(s)
- Min Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| | - Huanhuan Yang
- School of Life Science, Shandong University, Jinan, 250100, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
64
|
Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018; 23:molecules23081999. [PMID: 30103453 PMCID: PMC6222335 DOI: 10.3390/molecules23081999] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.
Collapse
|
65
|
Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK. Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. J Pineal Res 2018; 64. [PMID: 29149453 DOI: 10.1111/jpi.12452] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well-documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N-acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well-characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N-acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.
Collapse
Affiliation(s)
- Lauren A E Erland
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Mukund R Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Amritpal S Singh
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Praveen K Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
66
|
Arnao MB, Hernández-Ruiz J. Melatonin and its relationship to plant hormones. ANNALS OF BOTANY 2018; 121:195-207. [PMID: 29069281 PMCID: PMC5808790 DOI: 10.1093/aob/mcx114] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. SCOPE This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. CONCLUSIONS Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
Collapse
Affiliation(s)
- M B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - J Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
67
|
Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:115-127. [PMID: 29172132 DOI: 10.1016/j.jplph.2017.11.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 05/18/2023]
Abstract
Vanadium (V) is an important heavy metal with ubiquitous presence in the Earth's crust, but limited information is available as to its effect on plants and management strategies. Melatonin is a widely studied biomolecule; it acts as an antioxidant and a signaling molecule that enhances the abiotic stress tolerance of plants. Melatonin improves copper, zinc, and cadmium tolerance in plants. In this study, we investigated the response of watermelon seedlings to V stress and the potential role of melatonin in enhancing V stress tolerance of watermelon seedlings. The results showed that seedlings pretreated with melatonin (0.1μM) exposed to V (50mg/L) had a higher relative chlorophyll content (SPAD index), photosynthetic assimilation, and plant growth compared with non-melatonin pretreated seedlings. Melatonin pretreatment lowered leaf and stem V concentrations by reducing V transport from root to shoot. Melatonin pretreatment enhanced superoxide dismutase (SOD) and catalase (CAT) activities, and reduced the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content of watermelon seedlings, by regulating melatonin biosynthesis and gene expression for superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase. So far as we know, these results are the first evidence that melatonin improves plant growth of watermelon seedlings under vanadium stress conditions. Considering these observations, melatonin can be utilized to reduce the availability of V to plants, and improve plant growth and V stress tolerance.
Collapse
Affiliation(s)
- Muhammad Azher Nawaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Horticulture, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Yanyan Jiao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chen Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fareeha Shireen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zuhua Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
68
|
Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 2017; 7:315. [PMID: 28955612 DOI: 10.1007/s13205-017-0942-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
In recent years, bioactive compounds are in high demand in the pharmaceuticals and naturopathy, due to their health benefits to human and plants. Microorganisms synthesize these compounds and some enzymes either alone or in association with plants. Microbes residing inside the plant tissues, known as endophytes, also produce an array of these compounds. Endophytic actinomycetes act as a promising resource of biotechnologically valuable bioactive compounds and secondary metabolites. Endophytic Streptomyces sp. produced some novel antibiotics which are effective against multi-drug-resistant bacteria Antimicrobial agents produced by endophytes are eco-friendly, toxic to pathogens and do not harm the human. Endophytic inoculation of the plants modulates the synthesis of bioactive compounds with high pharmaceutical properties besides promoting growth of the plants. Hydrolases, the extracellular enzymes, produced by endophytic bacteria, help the plants to establish systemic resistance against pathogens invasion. Phytohormones produced by endophytes play an essential role in plant development and drought resistance management. The high diversity of endophytes and their adaptation to various environmental stresses seem to be an untapped source of new secondary metabolites. The present review summarizes the role of endophytic bacteria in synthesis and modulation of bioactive compounds.
Collapse
|
69
|
Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules. mSystems 2017; 2:mSystems00058-17. [PMID: 28761934 PMCID: PMC5516222 DOI: 10.1128/msystems.00058-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Author Video: An author video summary of this article is available.
Collapse
|
70
|
Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK. Melatonin in Plants and Plant Culture Systems: Variability, Stability and Efficient Quantification. FRONTIERS IN PLANT SCIENCE 2016; 7:1721. [PMID: 27899931 PMCID: PMC5110574 DOI: 10.3389/fpls.2016.01721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/02/2016] [Indexed: 05/04/2023]
Abstract
Despite growing evidence of the importance of melatonin and serotonin in the plant life, there is still much debate over the stability of melatonin, with extraction and analysis methods varying greatly from lab to lab with respect to time, temperature, light levels, extraction solvents, and mechanical disruption. The variability in methodology has created conflicting results that confound the comparison of studies to determine the role of melatonin in plant physiology. We here describe a fully validated method for the quantification of melatonin, serotonin and their biosynthetic precursors: tryptophan, tryptamine and N-acetylserotonin by liquid chromatography single quadrupole mass spectrometry (LC-MS) in diverse plant species and tissues. This method can be performed on a simple and inexpensive platform, and is both rapid and simple to implement. The method has excellent reproducibility and acceptable sensitivity with percent relative standard deviation (%RSD) in all matrices between 1 and 10% and recovery values of 82-113% for all analytes. Instrument detection limits were 24.4 ng/mL, 6.10 ng/mL, 1.52 ng/mL, 6.10 ng/mL, and 95.3 pg/mL, for serotonin, tryptophan, tryptamine, N-acetylserotonin and melatonin respectively. Method detection limits were 1.62 μg/g, 0.407 μg/g, 0.101 μg/g, 0.407 μg/g, and 6.17 ng/g respectively. The optimized method was then utilized to examine the issue of variable stability of melatonin in plant tissue culture systems. Media composition (Murashige and Skoog, Driver and Kuniyuki walnut or Lloyd and McCown's woody plant medium) and light (16 h photoperiod or dark) were found to have no effect on melatonin or serotonin content. A Youden trial suggested temperature as a major factor leading to degradation of melatonin. Both melatonin and serotonin appeared to be stable across the first 10 days in media, melatonin losses reached a mean minimum degradation at 28 days of approximately 90%; serotonin reached a mean minimum value of approximately 60% at 28 days. These results suggest that melatonin and serotonin show considerable stability in plant systems and these indoleamines and related compounds can be used for investigations that span over 3 weeks.
Collapse
Affiliation(s)
| | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Institute for Plant Preservation, University of GuelphGuelph, ON, Canada
| |
Collapse
|
71
|
Ma Y, Jiao J, Fan X, Sun H, Zhang Y, Jiang J, Liu C. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:2068. [PMID: 28119731 PMCID: PMC5223058 DOI: 10.3389/fpls.2016.02068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/27/2016] [Indexed: 05/16/2023]
Abstract
Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape (Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L-tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N-acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N-acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N-acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro. Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant-rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Yaner Ma
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Jian Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
- College of Enology, Northwest A&F UniversityYangling, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Haisheng Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhou, China
- *Correspondence: Chonghuai Liu,
| |
Collapse
|