51
|
Mariotti R, Fornasiero A, Mousavi S, Cultrera NG, Brizioli F, Pandolfi S, Passeri V, Rossi M, Magris G, Scalabrin S, Scaglione D, Di Gaspero G, Saumitou-Laprade P, Vernet P, Alagna F, Morgante M, Baldoni L. Genetic Mapping of the Incompatibility Locus in Olive and Development of a Linked Sequence-Tagged Site Marker. FRONTIERS IN PLANT SCIENCE 2019; 10:1760. [PMID: 32117338 PMCID: PMC7025539 DOI: 10.3389/fpls.2019.01760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Alice Fornasiero
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Soraya Mousavi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | | | - Federico Brizioli
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Saverio Pandolfi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Valentina Passeri
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Martina Rossi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Gabriele Magris
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | | | | | | | - Philippe Vernet
- University of Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | | | - Michele Morgante
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Luciana Baldoni
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
- *Correspondence: Luciana Baldoni,
| |
Collapse
|
52
|
Larsen B, Gardner K, Pedersen C, Ørgaard M, Migicovsky Z, Myles S, Toldam-Andersen TB. Population structure, relatedness and ploidy levels in an apple gene bank revealed through genotyping-by-sequencing. PLoS One 2018; 13:e0201889. [PMID: 30110387 PMCID: PMC6093671 DOI: 10.1371/journal.pone.0201889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, new genome-wide marker systems have provided highly informative alternatives to low density marker systems for evaluating plant populations. To date, most apple germplasm collections have been genotyped using low-density markers such as simple sequence repeats (SSRs), whereas only a few have been explored using high-density genome-wide marker information. We explored the genetic diversity of the Pometum gene bank collection (University of Copenhagen, Denmark) of 349 apple accessions using over 15,000 genome-wide single nucleotide polymorphisms (SNPs) and 15 SSR markers, in order to compare the strength of the two approaches for describing population structure. We found that 119 accessions shared a putative clonal relationship with at least one other accession in the collection, resulting in the identification of 272 (78%) unique accessions. Of these unique accessions, over half (52%) share a first-degree relationship with at least one other accession. There is therefore a high degree of clonal and family relatedness in the Danish apple gene bank. We find significant genetic differentiation between Malus domestica and its supposed primary wild ancestor, M. sieversii, as well as between accessions of Danish origin and all others. Using the GBS approach allowed us to estimate ploidy levels, which were in accordance with flow cytometry results. Overall, we found strong concordance between analyses based on the genome-wide SNPs and the 15 SSR loci. However, we argue that GBS is superior to traditional SSR approaches because it allows detection of a much more detailed population structure and can be further exploited in genome-wide association studies (GWAS). Finally, we compare GBS with SSR for the purpose of identifying clones and pedigree relations in a diverse apple gene bank and discuss the advantages and constraints of the two approaches.
Collapse
Affiliation(s)
- Bjarne Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Kyle Gardner
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Faculty of Agriculture, Agricultural Campus, Truro, NS, Canada
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Faculty of Agriculture, Agricultural Campus, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Faculty of Agriculture, Agricultural Campus, Truro, NS, Canada
| | | |
Collapse
|
53
|
Wild and domesticated Moringa oleifera differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. Sci Rep 2018; 8:7995. [PMID: 29789671 PMCID: PMC5964143 DOI: 10.1038/s41598-018-26059-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Taste drives consumption of foods. The tropical tree Moringa oleifera is grown worldwide as a protein-rich leafy vegetable and for the medicinal value of its phytochemicals, in particular its glucosinolates, which can lead to a pronounced harsh taste. All studies to date have examined only cultivated, domestic variants, meaning that potentially useful variation in wild type plants has been overlooked. We examine whether domesticated and wild type M. oleifera differ in myrosinase or glucosinolate levels, and whether these different levels impact taste in ways that could affect consumption. We assessed taste and measured levels of protein, glucosinolate, myrosinase content, and direct antioxidant activity of the leaves of 36 M. oleifera accessions grown in a common garden. Taste tests readily highlighted differences between wild type and domesticated M. oleifera. There were differences in direct antioxidant potential, but not in myrosinase activity or protein quantity. However, these two populations were readily separated based solely upon their proportions of the two predominant glucosinolates (glucomoringin and glucosoonjnain). This study demonstrates substantial variation in glucosinolate composition within M. oleifera. The domestication of M. oleifera appears to have involved increases in levels of glucomoringin and substantial reduction of glucosoonjnain, with marked changes in taste.
Collapse
|
54
|
Besnard G, Terral JF, Cornille A. On the origins and domestication of the olive: a review and perspectives. ANNALS OF BOTANY 2018; 121:385-403. [PMID: 29293871 PMCID: PMC5838823 DOI: 10.1093/aob/mcx145] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Background Unravelling domestication processes is crucial for understanding how species respond to anthropogenic pressures, forecasting crop responses to future global changes and improving breeding programmes. Domestication processes for clonally propagated perennials differ markedly from those for seed-propagated annual crops, mostly due to long generation times, clonal propagation and recurrent admixture with local forms, leading to a limited number of generations of selection from wild ancestors. However, additional case studies are required to document this process more fully. Scope The olive is an iconic species in Mediterranean cultural history. Its multiple uses and omnipresence in traditional agrosystems have made this species an economic pillar and cornerstone of Mediterranean agriculture. However, major questions about the domestication history of the olive remain unanswered. New paleobotanical, archeological, historical and molecular data have recently accumulated for olive, making it timely to carry out a critical re-evaluation of the biogeography of wild olives and the history of their cultivation. We review here the chronological history of wild olives and discuss the questions that remain unanswered, or even unasked, about their domestication history in the Mediterranean Basin. We argue that more detailed ecological genomics studies of wild and cultivated olives are crucial to improve our understanding of olive domestication. Multidisciplinary research integrating genomics, metagenomics and community ecology will make it possible to decipher the evolutionary ecology of one of the most iconic domesticated fruit trees worldwide. Conclusion The olive is a relevant model for improving our knowledge of domestication processes in clonally propagated perennial crops, particularly those of the Mediterranean Basin. Future studies on the ecological and genomic shifts linked to domestication in olive and its associated community will provide insight into the phenotypic and molecular bases of crop adaptation to human uses.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENSFEA-IRD, EDB, UMR 5174, Université Paul Sabatier, Toulouse Cedex , France
| | - Jean-Frédéric Terral
- ISEM, UMR 5554, CNRS-Université de Montpellier-IRD-EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Montpellier Cedex, France
- International Associated Laboratory (LIA, CNRS) EVOLea, Zürich, Switzerland
| | - Amandine Cornille
- Center for Adaptation to a Changing Environment, ETH Zürich, Zürich, Switzerland
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
55
|
Klein LL, Miller AJ, Ciotir C, Hyma K, Uribe-Convers S, Londo J. High-throughput sequencing data clarify evolutionary relationships among North American Vitis species and improve identification in USDA Vitis germplasm collections. AMERICAN JOURNAL OF BOTANY 2018; 105:215-226. [PMID: 29578297 DOI: 10.1002/ajb2.1033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Grapes are one of the most economically important berry crops worldwide, with the vast majority of production derived from the domesticated Eurasian species Vitis vinifera. Expansion of production into new areas, development of new cultivars, and concerns about adapting grapevines for changing climates necessitate the use of wild grapevine species in breeding programs. Diversity within Vitis has long been a topic of study; however, questions remain regarding relationships between species. Furthermore, the identity of some living accessions is unclear. METHODS This study generated 11,020 single nucleotide polymorphism (SNP) markers for more than 300 accessions in the USDA-ARS grape germplasm repository using genotyping-by-sequencing. Resulting data sets were used to reconstruct evolutionary relationships among several North American and Eurasian Vitis species, and to suggest taxonomic labels for previously unidentified and misidentified germplasm accessions based on genetic distance. KEY RESULTS Maximum likelihood analyses of SNP data support the monophyly of Vitis, subg. Vitis, a Eurasian subg. Vitis clade, and a North American subg. Vitis clade. Data delineate species groups within North America. In addition, analysis of genetic distance suggested taxonomic identities for 20 previously unidentified Vitis accessions and for 28 putatively misidentified accessions. CONCLUSIONS This work advances understanding of Vitis evolutionary relationships and provides the foundation for ongoing germplasm enhancement. It supports conservation and breeding efforts by contributing to a growing genetic framework for identifying novel genetic variation and for incorporating new, unsampled populations into the germplasm repository system.
Collapse
Affiliation(s)
- Laura L Klein
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Claudia Ciotir
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Katie Hyma
- Cornell University, Institute for Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Simon Uribe-Convers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Londo
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14425, USA
| |
Collapse
|
56
|
Money D, Migicovsky Z, Gardner K, Myles S. LinkImputeR: user-guided genotype calling and imputation for non-model organisms. BMC Genomics 2017; 18:523. [PMID: 28693460 PMCID: PMC5504746 DOI: 10.1186/s12864-017-3873-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background Genomic studies such as genome-wide association and genomic selection require genome-wide genotype data. All existing technologies used to create these data result in missing genotypes, which are often then inferred using genotype imputation software. However, existing imputation methods most often make use only of genotypes that are successfully inferred after having passed a certain read depth threshold. Because of this, any read information for genotypes that did not pass the threshold, and were thus set to missing, is ignored. Most genomic studies also choose read depth thresholds and quality filters without investigating their effects on the size and quality of the resulting genotype data. Moreover, almost all genotype imputation methods require ordered markers and are therefore of limited utility in non-model organisms. Results Here we introduce LinkImputeR, a software program that exploits the read count information that is normally ignored, and makes use of all available DNA sequence information for the purposes of genotype calling and imputation. It is specifically designed for non-model organisms since it requires neither ordered markers nor a reference panel of genotypes. Using next-generation DNA sequence (NGS) data from apple, cannabis and grape, we quantify the effect of varying read count and missingness thresholds on the quantity and quality of genotypes generated from LinkImputeR. We demonstrate that LinkImputeR can increase the number of genotype calls by more than an order of magnitude, can improve genotyping accuracy by several percent and can thus improve the power of downstream analyses. Moreover, we show that the effects of quality and read depth filters can differ substantially between data sets and should therefore be investigated on a per-study basis. Conclusions By exploiting DNA sequence data that is normally ignored during genotype calling and imputation, LinkImputeR can significantly improve both the quantity and quality of genotype data generated from NGS technologies. It enables the user to quickly and easily examine the effects of varying thresholds and filters on the number and quality of the resulting genotype calls. In this manner, users can decide on thresholds that are most suitable for their purposes. We show that LinkImputeR can significantly augment the value and utility of NGS data sets, especially in non-model organisms with poor genomic resources. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3873-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Money
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.
| | - Zoë Migicovsky
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Kyle Gardner
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Sean Myles
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
57
|
Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH, Schwaninger HR, Bustamante CD, Buckler ES, Zhong GY, Brown PJ, Myles S. Patterns of genomic and phenomic diversity in wine and table grapes. HORTICULTURE RESEARCH 2017; 4:17035. [PMID: 28791127 PMCID: PMC5539807 DOI: 10.1038/hortres.2017.35] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world's largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic diversity in grapes.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
| | - Jason Sawler
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
- Anandia Labs, Vancouver,
BC
V6T 1Z4, Canada
| | - Kyle M Gardner
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
- Agriculture and Agri-Food Canada, Fredericton
Research and Development Centre, Fredericton, NB,
Canada
E3B 4Z7
| | - Mallikarjuna K Aradhya
- National Clonal Germplasm Repository, United
States Department of Agriculture-Agricultural Research Service, University of
California, Davis, CA
95616, USA
| | - Bernard H Prins
- National Clonal Germplasm Repository, United
States Department of Agriculture-Agricultural Research Service, University of
California, Davis, CA
95616, USA
| | - Heidi R Schwaninger
- United States Department of Agriculture,
Agricultural Research Service, Grape Genetics Research Unit, New York State Agricultural
Experiment Station, Cornell University, Geneva, NY
14456, USA
| | | | - Edward S Buckler
- Department of Plant Breeding and Genetics,
Cornell University, Ithaca, NY
14853, USA
| | - Gan-Yuan Zhong
- United States Department of Agriculture,
Agricultural Research Service, Grape Genetics Research Unit, New York State Agricultural
Experiment Station, Cornell University, Geneva, NY
14456, USA
- United States Department of Agriculture,
Agricultural Research Service, Plant Genetic Resources Unit, New York State Agricultural
Experiment Station, Cornell University, Geneva, NY
14456, USA
| | - Patrick J Brown
- Department of Crop Science, University of
Illinois, Urbana, IL
61801, USA
| | - Sean Myles
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
| |
Collapse
|