51
|
Cai Q, He B, Wang S, Fletcher S, Niu D, Mitter N, Birch PRJ, Jin H. Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:497-524. [PMID: 34143650 PMCID: PMC8369896 DOI: 10.1146/annurev-arplant-081720-010616] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Communication between plant cells and interacting microorganisms requires the secretion and uptake of functional molecules to and from the extracellular environment and is essential for the survival of both plants and their pathogens. Extracellular vesicles (EVs) are lipid bilayer-enclosed spheres that deliver RNA, protein, and metabolite cargos from donor to recipient cells and participate in many cellular processes. Emerging evidencehas shown that both plant and microbial EVs play important roles in cross-kingdom molecular exchange between hosts and interacting microbes to modulate host immunity and pathogen virulence. Recent studies revealed that plant EVs function as a defense system by encasing and delivering small RNAs (sRNAs) into pathogens, thereby mediating cross-species and cross-kingdom RNA interference to silence virulence-related genes. This review focuses on the latest advances in our understanding of plant and microbial EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens. EV biogenesis and secretion are also discussed, as EV function relies on these important processes.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Baoye He
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Shumei Wang
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Stephen Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| |
Collapse
|
52
|
Delivering the goods: Fungal secretion modulates virulence during host–pathogen interactions. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Rigotto Caruso G, Tonani L, Marcato PD, von Zeska Kress MR. Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy. Antibiotics (Basel) 2021; 10:569. [PMID: 34066032 PMCID: PMC8150796 DOI: 10.3390/antibiotics10050569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (APDT) and silver nanoparticles (AgNPs) are known as promising alternatives for the control of microorganisms. This study aims to evaluate the antifungal activity of APDT, particularly by using the association of low concentrations of phenothiazinium photosensitizers (PS) methylene blue (MB), new methylene blue N (NMBN), and new methylene blue N Zinc (NMBN-Zn) in association with biosynthesized AgNPs. The AgNPs were characterized by UV-Vis spectrophotometry, transmission electron microscopy, and the dynamic light scattering method. The minimum inhibitory concentration of compounds in APDT against Candida albicans and Fusarium keratoplasticum was obtained and the Fractional Inhibitory Concentration Index determined the antifungal effect. The toxicity of compounds and associations in APDT were evaluated in Galleria mellonella. The AgNPs presented a surface plasmon band peak at 420 nm, hydrodynamic diameter of 86.72 nm, and zeta potential of -28.6 mV. AgNPs-PS showed a wider and displaced plasmon band peak due to PS ligands on the surface and decreased zeta potential. AgNPs-NMBN and AgNPs-NMBN-Zn associations presented synergistic effect in APDT with 15 J cm-2 against both fungi and did not show toxicity to G. mellonella. Hence, the enhancement of antifungal activity with low concentrations of compounds and absence of toxicity makes APDT with AgNPs-PS a promising therapeutic alternative for fungal infections.
Collapse
Affiliation(s)
- Glaucia Rigotto Caruso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 15040-903, SP, Brazil; (G.R.C.); (L.T.)
| | - Ludmilla Tonani
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 15040-903, SP, Brazil; (G.R.C.); (L.T.)
| | - Priscyla Daniely Marcato
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 15040-903, SP, Brazil;
| | - Marcia Regina von Zeska Kress
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 15040-903, SP, Brazil; (G.R.C.); (L.T.)
| |
Collapse
|
54
|
Zamith-Miranda D, Peres da Silva R, Couvillion SP, Bredeweg EL, Burnet MC, Coelho C, Camacho E, Nimrichter L, Puccia R, Almeida IC, Casadevall A, Rodrigues ML, Alves LR, Nosanchuk JD, Nakayasu ES. Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Front Genet 2021; 12:648524. [PMID: 34012462 PMCID: PMC8126698 DOI: 10.3389/fgene.2021.648524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.
Collapse
Affiliation(s)
- Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erin L. Bredeweg
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carolina Coelho
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Marcio L. Rodrigues
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
55
|
Hu S, Yin Y, Chen B, Lin Q, Tian Y, Song X, Peng J, Zheng H, Rao S, Wu G, Mo X, Yan F, Chen J, Lu Y. Identification of viral particles in the apoplast of Nicotiana benthamiana leaves infected by potato virus X. MOLECULAR PLANT PATHOLOGY 2021; 22:456-464. [PMID: 33629491 PMCID: PMC7938632 DOI: 10.1111/mpp.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 05/21/2023]
Abstract
The apoplast is the extracellular space for signalling, nutrient transport, and plant-microbe interactions, but little is known about how plant viruses use the foliar apoplast. Proteomic analysis of the apoplasts isolated from potato virus X (PVX)-infected Nicotiana benthamiana plants showed that the coat protein (CP) is the dominant viral component. The presence of the CP in the apoplast was confirmed by western blot, viral nucleic acid was detected by reverse transcription-PCR and northern blot, and viral particles were observed by transmission electron microscopy (TEM). The apoplast from infected leaves was infectious if rubbed onto healthy leaves but not when infiltrated into them. The exosomes were separated from the apoplast fluid by high-speed centrifugation and TEM showed that PVX particles were not associated with the exosomes. These results suggest that PVX virions are released to the N. benthamiana apoplast in a one-way manner and do not share the bidirectional transport of exosomes.
Collapse
Affiliation(s)
- Shuzhen Hu
- College of Plant ProtectionNanjing Agriculture UniversityNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Yueyan Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Buyang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Qi Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Yanzhen Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Xijiao Song
- Central Laboratory of Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Xiaohan Mo
- Yunnan Academy of Tobacco Agricultural SciencesKunmingChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- College of Plant ProtectionNanjing Agriculture UniversityNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
56
|
Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, Božič D, Morsbach S, Raccosta S, Stanly C, Paganini C, Gai M, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Randazzo L, Parkes R, Capasso Palmiero U, Rao E, Paterna A, Santonicola P, Iglič A, Corcuera L, Kisslinger A, Di Schiavi E, Liguori GL, Landfester K, Kralj-Iglič V, Arosio P, Pocsfalvi G, Touzet N, Manno M, Bongiovanni A. Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. J Extracell Vesicles 2021; 10:e12081. [PMID: 33936568 PMCID: PMC8077145 DOI: 10.1002/jev2.12081] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular, inter-organismal and cross kingdom communication via extracellular vesicles (EVs) is intensively studied in basic science with high expectation for a large variety of bio-technological applications. EVs intrinsically possess many attributes of a drug delivery vehicle. Beyond the implications for basic cell biology, academic and industrial interests in EVs have increased in the last few years. Microalgae constitute sustainable and renewable sources of bioactive compounds with a range of sectoral applications, including the formulation of health supplements, cosmetic products and food ingredients. Here we describe a newly discovered subtype of EVs derived from microalgae, which we named nanoalgosomes. We isolated these extracellular nano-objects from cultures of microalgal strains, including the marine photosynthetic chlorophyte Tetraselmis chuii, using differential ultracentrifugation or tangential flow fractionation and focusing on the nanosized small EVs (sEVs). We explore different biochemical and physical properties and we show that nanoalgosomes are efficiently taken up by mammalian cell lines, confirming the cross kingdom communication potential of EVs. This is the first detailed description of such membranous nanovesicles from microalgae. With respect to EVs isolated from other organisms, nanoalgosomes present several advantages in that microalgae are a renewable and sustainable natural source, which could easily be scalable in terms of nanoalgosome production.
Collapse
Affiliation(s)
- Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - David Fierli
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Daniele P Romancino
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Maria E Barone
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Anita Aranyos
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Darja Božič
- University of Ljubljana (UL) Ljubljana Slovene
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Samuele Raccosta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Christopher Stanly
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Meiyu Gai
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Antonella Cusimano
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Vincenzo Martorana
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rosina Noto
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rita Carrotta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Fabio Librizzi
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Loredana Randazzo
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rachel Parkes
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | | | - Estella Rao
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Angela Paterna
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Ales Iglič
- University of Ljubljana (UL) Ljubljana Slovene
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS) - National Research Council of Italy (CNR) Naples Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) - National Research Council of Italy (CNR) Naples Italy
| | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Mauro Manno
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| |
Collapse
|
57
|
Garcia-Ceron D, Dawson CS, Faou P, Bleackley MR, Anderson MA. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Proteomics 2021; 21:e2000240. [PMID: 33609009 DOI: 10.1002/pmic.202000240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized compartments involved in cell communication and macromolecule transport that are well characterized in mammalian organisms. Fungal EVs transport virulence-related cargo and modulate the host immune response, but most work has been focused on human yeast pathogens. Additionally, the study of EVs from filamentous fungi has been hindered by the lack of protein markers and efficient isolation methods. In this study we performed the isolation and proteomic characterization of EVs from the filamentous cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). EVs were recovered from two different growth media, Czapek Dox and Saboraud's dextrose broth, and purified by size-exclusion chromatography. Our results show that the EV proteome changes depending on the growth medium but EV production remains constant. EVs contained proteins involved in polyketide synthesis, cell wall modifications, proteases and potential effectors. These results support a role in modulation of host-pathogen interactions for Fov EVs.
Collapse
Affiliation(s)
- Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charlotte S Dawson
- Cambridge Centre for Proteomics, Department of Biochemistry, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
58
|
Phytotoxic Tryptoquialanines Produced In Vivo by Penicillium digitatum Are Exported in Extracellular Vesicles. mBio 2021; 12:mBio.03393-20. [PMID: 33563828 PMCID: PMC7885104 DOI: 10.1128/mbio.03393-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the postharvest period, citrus fruits can be affected by phytopathogens such as Penicillium digitatum, which causes green mold disease and is responsible for up to 90% of total citrus losses. Chemical fungicides are widely used to prevent green mold disease, leading to concerns about environmental and health risks. Penicillium digitatum is the most aggressive pathogen of citrus fruits. Tryptoquialanines are major indole alkaloids produced by P. digitatum. It is unknown if tryptoquialanines are involved in the damage of citrus fruits caused by P. digitatum. To investigate the pathogenic roles of tryptoquialanines, we initially asked if tryptoquialanines could affect the germination of Citrus sinensis seeds. Exposure of the citrus seeds to tryptoquialanine A resulted in a complete inhibition of germination and an altered metabolic response. Since this phytotoxic effect requires the extracellular export of tryptoquialanine A, we investigated the mechanisms of extracellular delivery of this alkaloid in P. digitatum. We detected extracellular vesicles (EVs) released by P. digitatum both in culture and during infection of citrus fruits. Compositional analysis of EVs produced during infection revealed the presence of a complex cargo, which included tryptoquialanines and the mycotoxin fungisporin. The EVs also presented phytotoxicity activity in vitro and caused damage to the tissues of citrus seeds. Through molecular networking, it was observed that the metabolites present in the P. digitatum EVs are produced in all of its possible hosts. Our results reveal a novel phytopathogenic role of P. digitatum EVs and tryptoquialanine A, implying that this alkaloid is exported in EVs during plant infection.
Collapse
|
59
|
Askenase PW. Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. Int J Mol Sci 2021; 22:1429. [PMID: 33572657 PMCID: PMC7866973 DOI: 10.3390/ijms22031429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are newly recognized fundamental, universally produced natural nanoparticles of life that are seemingly involved in all biologic processes and clinical diseases. Due to their universal involvements, understanding the nature and also the potential therapeutic uses of these nanovesicles requires innovative experimental approaches in virtually every field. Of the EV group, exosome nanovesicles and larger companion micro vesicles can mediate completely new biologic and clinical processes dependent on the intercellular transfer of proteins and most importantly selected RNAs, particularly miRNAs between donor and targeted cells to elicit epigenetic alterations inducing functional cellular changes. These recipient acceptor cells are nearby (paracrine transfers) or far away after distribution via the circulation (endocrine transfers). The major properties of such vesicles seem to have been conserved over eons, suggesting that they may have ancient evolutionary origins arising perhaps even before cells in the primordial soup from which life evolved. Their potential ancient evolutionary attributes may be responsible for the ability of some modern-day exosomes to withstand unusually harsh conditions, perhaps due to unique membrane lipid compositions. This is exemplified by ability of the maternal milk exosomes to survive passing the neonatal acid/enzyme rich stomach. It is postulated that this resistance also applies to their durable presence in phagolysosomes, thus suggesting a unique intracellular release of their contained miRNAs. A major discussed issue is the generally poorly realized superiority of these naturally evolved nanovesicles for therapies when compared to human-engineered artificial nanoparticles, e.g., for the treatment of diseases like cancers.
Collapse
Affiliation(s)
- Phillip W Askenase
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
60
|
Picciotto S, Barone ME, Fierli D, Aranyos A, Adamo G, Božič D, Romancino DP, Stanly C, Parkes R, Morsbach S, Raccosta S, Paganini C, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Capasso Palmiero U, Santonicola P, Iglič A, Gai M, Corcuera L, Kisslinger A, Di Schiavi E, Landfester K, Liguori GL, Kralj-Iglič V, Arosio P, Pocsfalvi G, Manno M, Touzet N, Bongiovanni A. Isolation of extracellular vesicles from microalgae: towards the production of sustainable and natural nanocarriers of bioactive compounds. Biomater Sci 2021; 9:2917-2930. [DOI: 10.1039/d0bm01696a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biophysical and biochemical characterisation of microalgae-derived extracellular vesicles.
Collapse
|
61
|
Filamentous Fungi Extracellular Vesicles. Curr Top Microbiol Immunol 2021; 432:45-55. [DOI: 10.1007/978-3-030-83391-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
62
|
Fungal Extracellular Vesicles in Interkingdom Communication. Curr Top Microbiol Immunol 2021; 432:81-88. [DOI: 10.1007/978-3-030-83391-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
63
|
Garcia-Ceron D, Bleackley MR, Anderson MA. Fungal Extracellular Vesicles in Pathophysiology. Subcell Biochem 2021; 97:151-177. [PMID: 33779917 DOI: 10.1007/978-3-030-67171-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.
Collapse
|
64
|
Biogenesis of Fungal Extracellular Vesicles: What Do We Know? Curr Top Microbiol Immunol 2021; 432:1-11. [DOI: 10.1007/978-3-030-83391-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Ma Z, Chen Z, Wang W, Wang K, Zhu T. Exocyst subunit BcSec3 regulates growth, development and pathogenicity in Botrytis cinerea. J Biosci 2020. [DOI: 10.1007/s12038-020-00097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
66
|
Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol Biotechnol 2020; 7:13. [PMID: 32968488 PMCID: PMC7501697 DOI: 10.1186/s40694-020-00103-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)-secreted, membrane-bound nanoparticles containing molecular cargo-being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. RESULTS Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC-MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. CONCLUSION We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.
Collapse
Affiliation(s)
- Erin H. Hill
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
67
|
de Oliveira HC, Castelli RF, Reis FCG, Rizzo J, Rodrigues ML. Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles. Pathogens 2020; 9:pathogens9090754. [PMID: 32948010 PMCID: PMC7557404 DOI: 10.3390/pathogens9090754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In fungi, these structures were first described in Cryptococcus neoformans and, since then, they were characterized in several pathogenic and non-pathogenic fungal species. Cryptococcal EVs participate in the export of virulence factors that directly impact the Cryptococcus-host interaction. Our knowledge of the biogenesis and pathogenic roles of Cryptococcus EVs is still limited, but recent methodological and scientific advances have improved our understanding of how cryptococcal EVs participate in both physiological and pathogenic events. In this review, we will discuss the importance of cryptococcal EVs, including early historical studies suggesting their existence in Cryptococcus, their putative mechanisms of biogenesis, methods of isolation, and possible roles in the interaction with host cells.
Collapse
Affiliation(s)
- Haroldo C. de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
| | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4.365, Pavilhão Arthur Neiva–Manguinhos, Rio de Janeiro 21040-360, Brasil
| | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036–Prédio Da Expansão–8˚ Andar–Sala 814, Rio De Janeiro 21040-361, Brasil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France;
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brasil
- Correspondence:
| |
Collapse
|
68
|
Abstract
Fungal cells use extracellular vesicles (EVs) to export biologically active molecules to the extracellular space. In this study, we used protoplasts of Aspergillus fumigatus, a major fungal pathogen, as a model to evaluate the role of EV production in cell wall biogenesis. Our results demonstrated that wall-less A. fumigatus exports plasma membrane-derived EVs containing a complex combination of proteins and glycans. Our report is the first to characterize fungal EVs in the absence of a cell wall. Our results suggest that protoplasts represent a promising model for functional studies of fungal vesicles. Extracellular vesicles (EVs) are membranous compartments produced by yeast and mycelial forms of several fungal species. One of the difficulties in perceiving the role of EVs during the fungal life, and particularly in cell wall biogenesis, is caused by the presence of a thick cell wall. One alternative to have better access to these vesicles is to use protoplasts. This approach has been investigated here with Aspergillus fumigatus, one of the most common opportunistic fungal pathogens worldwide. Analysis of regenerating protoplasts by scanning electron microscopy and fluorescence microscopy indicated the occurrence of outer membrane projections in association with surface components and the release of particles with properties resembling those of fungal EVs. EVs in culture supernatants were characterized by transmission electron microscopy and nanoparticle tracking analysis. Proteomic and glycome analysis of EVs revealed the presence of a complex array of enzymes related to lipid/sugar metabolism, pathogenic processes, and cell wall biosynthesis. Our data indicate that (i) EV production is a common feature of different morphological stages of this major fungal pathogen and (ii) protoplastic EVs are promising tools for undertaking studies of vesicle functions in fungal cells. IMPORTANCE Fungal cells use extracellular vesicles (EVs) to export biologically active molecules to the extracellular space. In this study, we used protoplasts of Aspergillus fumigatus, a major fungal pathogen, as a model to evaluate the role of EV production in cell wall biogenesis. Our results demonstrated that wall-less A. fumigatus exports plasma membrane-derived EVs containing a complex combination of proteins and glycans. Our report is the first to characterize fungal EVs in the absence of a cell wall. Our results suggest that protoplasts represent a promising model for functional studies of fungal vesicles.
Collapse
|
69
|
Leonard M, Kühn A, Harting R, Maurus I, Nagel A, Starke J, Kusch H, Valerius O, Feussner K, Feussner I, Kaever A, Landesfeind M, Morgenstern B, Becher D, Hecker M, Braus-Stromeyer SA, Kronstad JW, Braus GH. Verticillium longisporum Elicits Media-Dependent Secretome Responses With Capacity to Distinguish Between Plant-Related Environments. Front Microbiol 2020; 11:1876. [PMID: 32849460 PMCID: PMC7423881 DOI: 10.3389/fmicb.2020.01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillia cause a vascular wilt disease affecting a broad range of economically valuable crops. The fungus enters its host plants through the roots and colonizes the vascular system. It requires extracellular proteins for a successful plant colonization. The exoproteomes of the allodiploid Verticillium longisporum upon cultivation in different media or xylem sap extracted from its host plant Brassica napus were compared. Secreted fungal proteins were identified by label free liquid chromatography-tandem mass spectrometry screening. V. longisporum induced two main secretion patterns. One response pattern was elicited in various non-plant related environments. The second pattern includes the exoprotein responses to the plant-related media, pectin-rich simulated xylem medium and pure xylem sap, which exhibited similar but additional distinct features. These exoproteomes include a shared core set of 221 secreted and similarly enriched fungal proteins. The pectin-rich medium significantly induced the secretion of 143 proteins including a number of pectin degrading enzymes, whereas xylem sap triggered a smaller but unique fungal exoproteome pattern with 32 enriched proteins. The latter pattern included proteins with domains of known pathogenicity factors, metallopeptidases and carbohydrate-active enzymes. The most abundant proteins of these different groups are the necrosis and ethylene inducing-like proteins Nlp2 and Nlp3, the cerato-platanin proteins Cp1 and Cp2, the metallopeptidases Mep1 and Mep2 and the carbohydrate-active enzymes Gla1, Amy1 and Cbd1. Their pathogenicity contribution was analyzed in the haploid parental strain V. dahliae. Deletion of the majority of the corresponding genes caused no phenotypic changes during ex planta growth or invasion and colonization of tomato plants. However, we discovered that the MEP1, NLP2, and NLP3 deletion strains were compromised in plant infections. Overall, our exoproteome approach revealed that the fungus induces specific secretion responses in different environments. The fungus has a general response to non-plant related media whereas it is able to fine-tune its exoproteome in the presence of plant material. Importantly, the xylem sap-specific exoproteome pinpointed Nlp2 and Nlp3 as single effectors required for successful V. dahliae colonization.
Collapse
Affiliation(s)
- Miriam Leonard
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Dörte Becher
- Department Microbial Proteomics, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
70
|
Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Front Cell Infect Microbiol 2020; 10:346. [PMID: 32760680 PMCID: PMC7373726 DOI: 10.3389/fcimb.2020.00346] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered much interest in the cell biology and biomedical research fields. Many studies have reported the existence of EVs in all types of living cells, including in fifteen different fungal genera. EVs play diverse biological roles, from the regulation of physiological events and response to specific environmental conditions to the mediation of highly complex interkingdom communications. This review will provide a historical perspective on EVs produced by fungi and an overview of the recent discoveries in the field. We will also review the current knowledge about EV biogenesis and cargo, their role in cell-to-cell interactions, and methods of EV analysis. Finally, we will discuss the perspectives of EVs as vehicles for the delivery of biologically active molecules.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| |
Collapse
|