51
|
Eidson LN, Murphy AZ. Persistent peripheral inflammation attenuates morphine-induced periaqueductal gray glial cell activation and analgesic tolerance in the male rat. THE JOURNAL OF PAIN 2013; 14:393-404. [PMID: 23395474 PMCID: PMC3991566 DOI: 10.1016/j.jpain.2012.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/15/2022]
Abstract
UNLABELLED Morphine is among the most prevalent analgesics prescribed for chronic pain. However, prolonged morphine treatment results in the development of analgesic tolerance. An abundance of evidence has accumulated indicating that central nervous system glial cell activity facilitates pain transmission and opposes morphine analgesia. While the midbrain ventrolateral periaqueductal gray (vlPAG) is an important neural substrate mediating pain modulation and the development of morphine tolerance, no studies have directly assessed the role of PAG glia. Here we test the hypothesis that morphine-induced increases in vlPAG glial cell activity contribute to the development of morphine tolerance. As morphine is primarily consumed for the alleviation of severe pain, the influence of persistent inflammatory pain was also assessed. Administration of morphine, in the absence of persistent inflammatory pain, resulted in the rapid development of morphine tolerance and was accompanied by a significant increase in vlPAG glial activation. In contrast, persistent inflammatory hyperalgesia, induced by intraplantar administration of complete Freund's adjuvant (CFA), significantly attenuated the development of morphine tolerance. No significant differences were noted in vlPAG glial cell activation for CFA-treated animals versus controls. These results indicate that vlPAG glia are modulated by a persistent pain state, and implicate vlPAG glial cells as possible regulators of morphine tolerance. PERSPECTIVE The development of morphine tolerance represents a significant impediment to its use in the management of chronic pain. We report that morphine tolerance is accompanied by increased glial cell activation within the vlPAG, and that the presence of a persistent pain state prevented vlPAG glial activation and attenuated morphine tolerance.
Collapse
Affiliation(s)
- Lori N Eidson
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | | |
Collapse
|
52
|
Victoria NC, Inoue K, Young LJ, Murphy AZ. A Single Neonatal Injury Induces Life-Long Deficits in Response to Stress. Dev Neurosci 2013; 35:326-37. [DOI: 10.1159/000351121] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
|
53
|
Stolp HB. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Mol Cell Neurosci 2012; 53:63-8. [PMID: 22926235 DOI: 10.1016/j.mcn.2012.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/17/2022] Open
Abstract
Inflammation has been implicated in a wide variety of neurological disorders and there is increasing evidence for long-term consequences of inflammation during early brain development. A number of immune mediators, termed neuropoietic cytokines, have a role in normal brain development. Neuropoietic cytokines contribute to proliferation of neural precursors; fate determination and differentiation; migration of neurons and glia; as well as cell survival and activity dependent alteration of synaptic function. Inflammation during development, therefore, may cause widespread injury to the brain by interfering with the normal balance of cytokine signalling and therefore developmental processes. This review will examine the normal role of neuropoietic cytokines and the potential contribution of inflammatory insults to a number of neurodevelopmental disorders. It will also discuss the potential for developmental inflammation to sensitise the brain to later insult, possibly contributing to neurodegenerative disorders later in life. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- H B Stolp
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
54
|
Abstract
The prairie vole is a socially monogamous species in which breeder pairs typically show strong and selective pair bonds. The establishment of a pair bond is associated with a behavioral transition from general affiliation to aggressive rejection of novel conspecifics. This "selective aggression" is indicative of mate guarding that is necessary to maintain the initial pair bond. In the laboratory, the neurobiology of this behavior is studied using resident-intruder testing. Although it is well established that social behaviors in other species are mediated by endogenous opioid systems, opiate regulation of pair bond maintenance has never been studied. Here, we used resident-intruder testing to determine whether endogenous opioids within brain motivational circuitry mediate selective aggression in prairie voles. We first show that peripheral blockade of κ-opioid receptors with the antagonist norbinaltorphimine (nor-BNI; 100 mg/kg), but not with the preferential μ-opioid receptor antagonist naloxone (1, 10, or 30 mg/kg), decreased selective aggression in males. We then provide the first comprehensive characterization of κ- and μ-opioid receptors in the prairie vole brain. Finally, we demonstrate that blockade of κ-opioid receptors (500 ng nor-BNI) within the nucleus accumbens (NAc) shell abolishes selective aggression in both sexes, but blockade of these receptors within the NAc core enhances this behavior specifically in females. Blockade of κ-opioid receptors within the ventral pallidum or μ-opioid receptors with the specific μ-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-PenThr-NH2 (1 ng CTAP) within the NAc shell had no effect in either sex. Thus, κ-opioid receptors within the NAc shell mediate aversive social motivation that is critical for pair bond maintenance.
Collapse
|
55
|
Knaepen L, Patijn J, Tibboel D, Joosten E. Sex differences in inflammatory mechanical hypersensitivity in later life of rats exposed to repetitive needle pricking as neonates. Neurosci Lett 2012; 516:285-9. [DOI: 10.1016/j.neulet.2012.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
56
|
Low LA, Fitzgerald M. Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS One 2012; 7:e34316. [PMID: 22470556 PMCID: PMC3314622 DOI: 10.1371/journal.pone.0034316] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/28/2012] [Indexed: 11/18/2022] Open
Abstract
Background The importance of neonatal experience upon behaviour in later life is increasingly recognised. The overlap between pain and reward pathways led us to hypothesise that neonatal pain experience influences reward-related pathways and behaviours in adulthood. Methodology/Principal Findings Rat pups received repeat plantar skin incisions (neonatal IN) or control procedures (neonatal anesthesia only, AN) at postnatal days (P)3, 10 and 17. When adult, rats with neonatal ‘pain history’ showed greater sensory sensitivity than control rats following acute plantar skin incision. Motivational behaviour in the two groups of rats was tested in a novelty-induced hypophagia (NIH) paradigm. The sensitivity of this paradigm to pain-induced changes in motivational behaviour was shown by significant increases in the time spent in the central zone of the arena (43.7±5.9% vs. 22.5±6.7%, p<0.05), close to centrally placed food treats, and decreased number of rears (9.5±1.4 vs. 19.2±2.3, p<0.001) in rats with acute plantar skin incision compared to naive, uninjured animals. Rats with a neonatal ‘pain history’ showed the same pain-induced behaviour in the novelty-induced hypophagia paradigm as controls. However, differences were observed in reward-related neural activity between the two groups. Two hours after behavioural testing, brains were harvested and neuronal activity mapped using c-Fos expression in lateral hypothalamic orexin neurons, part of a specific reward seeking pathway. Pain-induced activity in orexin neurons of control rats (18.4±2.8%) was the same as in uninjured naive animals (15.5±2.6%), but in those rats with a ‘pain history’, orexinergic activity was significantly increased (27.2±4.1%, p<0.01). Furthermore the extent of orexin neuron activation in individual rats with a ‘pain history’ was highly correlated with their motivational behaviour (r = −0.86, p = 0.01). Conclusions/Significance These results show that acute pain alters motivational behaviour and that neonatal pain experience causes long-term changes in brain motivational orexinergic pathways, known to modulate mesolimbic dopaminergic reward circuitry.
Collapse
Affiliation(s)
- Lucie A Low
- Division of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
| | | |
Collapse
|
57
|
Morris BJ, Waskett JH, Banerjee J, Wamai RG, Tobian AAR, Gray RH, Bailis SA, Bailey RC, Klausner JD, Willcourt RJ, Halperin DT, Wiswell TE, Mindel A. A 'snip' in time: what is the best age to circumcise? BMC Pediatr 2012; 12:20. [PMID: 22373281 PMCID: PMC3359221 DOI: 10.1186/1471-2431-12-20] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/28/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Circumcision is a common procedure, but regional and societal attitudes differ on whether there is a need for a male to be circumcised and, if so, at what age. This is an important issue for many parents, but also pediatricians, other doctors, policy makers, public health authorities, medical bodies, and males themselves. DISCUSSION We show here that infancy is an optimal time for clinical circumcision because an infant's low mobility facilitates the use of local anesthesia, sutures are not required, healing is quick, cosmetic outcome is usually excellent, costs are minimal, and complications are uncommon. The benefits of infant circumcision include prevention of urinary tract infections (a cause of renal scarring), reduction in risk of inflammatory foreskin conditions such as balanoposthitis, foreskin injuries, phimosis and paraphimosis. When the boy later becomes sexually active he has substantial protection against risk of HIV and other viral sexually transmitted infections such as genital herpes and oncogenic human papillomavirus, as well as penile cancer. The risk of cervical cancer in his female partner(s) is also reduced. Circumcision in adolescence or adulthood may evoke a fear of pain, penile damage or reduced sexual pleasure, even though unfounded. Time off work or school will be needed, cost is much greater, as are risks of complications, healing is slower, and stitches or tissue glue must be used. SUMMARY Infant circumcision is safe, simple, convenient and cost-effective. The available evidence strongly supports infancy as the optimal time for circumcision.
Collapse
Affiliation(s)
- Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hathway GJ, Vega-Avelaira D, Fitzgerald M. A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain 2012; 153:775-783. [PMID: 22325744 PMCID: PMC3657184 DOI: 10.1016/j.pain.2011.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/19/2011] [Accepted: 11/07/2011] [Indexed: 01/14/2023]
Abstract
We have previously shown that the balance of electrically evoked descending brainstem control of spinal nociceptive reflexes undergoes a switch from excitation to inhibition in preadolescent rats. Here we show that the same developmental switch occurs when μ-opioid receptor agonists are microinjected into the rostroventral medulla (RVM). Microinjections of the μ-opioid receptor agonist [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) into the RVM of lightly anaesthetised adult rats produced a dose-dependent decrease in mechanical nociceptive hindlimb reflex electromyographic activity. However, in preadolescent (postnatal day 21 [P21]) rats, the same doses of DAMGO produced reflex facilitation. RVM microinjection of δ-opioid receptor or GABA(A) receptor agonists, on the other hand, caused reflex depression at both ages. The μ-opioid receptor-mediated descending facilitation is tonically active in naive preadolescent rats, as microinjection of the μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP) into the RVM at this age decreases spinal nociceptive reflexes while having no effect in adults. To test whether tonic opioid central activity is required for the preadolescent switch in RVM descending control, naloxone hydrochloride was delivered continuously from subcutaneous osmotic mini-pumps for 7-day periods, at various postnatal stages. Blockade of tonic opioidergic activity from P21 to P28, but not at earlier or later ages, prevented the normal development of descending RVM inhibitory control of spinal nociceptive reflexes. Enhancing opioidergic activity with chronic morphine over P7 to P14 accelerated this development. These results show that descending facilitation of spinal nociception in young animals is mediated by μ-opioid receptor pathways in the RVM. Furthermore, the developmental transition from RVM descending facilitation to inhibition of pain is determined by activity in central opioid networks at a critical period of periadolescence.
Collapse
Affiliation(s)
- Gareth J Hathway
- UCL Neuroscience, Physiology and Pharmacology, University College London, London, UK School of Biomedical Sciences, The University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
59
|
Wollgarten-Hadamekl I, Hohmeisterl J, Zohsell K, Florl H, Hermannl C. Do school-aged children with burn injuries during infancy show stress-induced activation of pain inhibitory mechanisms? Eur J Pain 2012; 15:423.e1-10. [DOI: 10.1016/j.ejpain.2010.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/30/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
|
60
|
Morris BJ, Wodak AD, Mindel A, Schrieber L, Duggan KA, Dilley A, Willcourt RJ, Lowy M, Cooper DA, Lumbers ER, Russell CT, Leeder SR. Infant male circumcision: An evidence-based policy statement. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpm.2012.21012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
61
|
Early life adversity as a risk factor for fibromyalgia in later life. PAIN RESEARCH AND TREATMENT 2011; 2012:140832. [PMID: 22110940 PMCID: PMC3196867 DOI: 10.1155/2012/140832] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/25/2011] [Indexed: 12/03/2022]
Abstract
The impact of early life events is increasingly becoming apparent, as studies investigate how early childhood can shape long-term physiology and behaviour. Fibromyalgia (FM), which is characterised by increased pain sensitivity and a number of affective co-morbidities, has an unclear etiology. This paper discusses risk factors from early life that may increase the occurrence or severity of FM in later life: pain experience during neonatal life causes long-lasting changes in nociceptive circuitry and increases pain sensitivity in the older organism; premature birth and related stressor exposure cause lasting changes in stress responsivity; maternal deprivation affects anxiety-like behaviours that may be partially mediated by epigenetic modulation of the genome—all these adult phenotypes are strikingly similar to symptoms displayed by FM sufferers. In addition, childhood trauma and exposure to substances of abuse may cause lasting changes in developing neurotransmitter and endocrine circuits that are linked to anxiety and stress responses.
Collapse
|
62
|
Page GG, Hayat MJ, Kozachik SL. Sex Differences in Pain Responses at Maturity Following Neonatal Repeated Minor Pain Exposure in Rats. Biol Res Nurs 2011; 15:96-104. [DOI: 10.1177/1099800411419493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is mounting evidence of long-lasting changes in pain sensitivity in school-age children who were cared for in a neonatal intensive care unit. Such care involves multiple pain exposures, 70% of which are accounted for by heel lance to monitor physiological well-being. The authors sought to model the repeated brief pain resulting from heel lance by administering repeated paw needle stick to neonatal rat pups. Repeated needle stick during the first 8 days of life was sex-specific in altering responses to mechanical and inflammatory stimuli, but not to a thermal stimulus, at maturity. Specifically, neonatal paw needle stick males exhibited significantly greater mechanical sensitivity in response to von Frey hair testing, whereas neonatal paw needle stick females exhibited significantly greater pain behavior scores following hindpaw formalin injection. This is the first study to show such sex-dependent changes in pain responsiveness at maturity in animals having experienced repeated neonatal needle stick pain. These findings support existing evidence that there are long-term sensory sequelae following neonatal pain experiences in rats and further suggest that there are sex-linked differences in the nature of the consequences. If these relationships hold in humans, these findings suggest that even mild painful insults early in life are not without sensory consequences.
Collapse
Affiliation(s)
- Gayle G. Page
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
63
|
Sandercock DA, Gibson IF, Rutherford KMD, Donald RD, Lawrence AB, Brash HM, Scott EM, Nolan AM. The impact of prenatal stress on basal nociception and evoked responses to tail-docking and inflammatory challenge in juvenile pigs. Physiol Behav 2011; 104:728-37. [PMID: 21803065 DOI: 10.1016/j.physbeh.2011.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
The consequences of tail-docking (at 2-4 days) and prenatal stress (maternal social stress during the 2nd third of pregnancy) on baseline nociceptive thresholds and responses to acute inflammatory challenge were investigated in juvenile pigs in two studies. Nociceptive thresholds were assessed on the tail root and on the hind foot using noxious mechanical and cold stimulation before and after acute inflammatory challenge by intradermal injection of 30 μg capsaicin (study 1) or 3% carrageenan (study 2) into the tail root. Four groups of 8 (study 1, n=14-16 pigs/treatment) or 5 (study 2, n=6 pigs/treatment/sex) week-old pigs were exposed to the main factors: maternal stress and treatment (docked vs. intact tails). In study 1, tail docking did not significantly alter thresholds to noxious mechanical stimulation, whilst prenatally stressed pigs had significantly higher baseline thresholds to noxious mechanical stimulation on the tail root and on the hind foot than unstressed pigs, whether tail-docked or intact. Capsaicin injection induced localised mechanical allodynia around the tail root in all treatment groups, but had no effect on noxious plantar mechanical responses; however prenatally stressed offspring exhibited significantly attenuated response thresholds to capsaicin compared to controls. In study 2 tail docking did not alter thresholds to either mechanical or noxious cold stimulation. Baseline response durations to noxious cold stimulation of the tail root were significantly shorter in both sexes of prenatally stressed pigs, whilst male but not female prenatally stressed pigs exhibited significantly higher baseline thresholds to mechanical stimulation than controls, although results in female pigs tended towards significance. Carrageenan injection into the tail root induced localised mechanical and cold allodynia in all treatment groups, effects that were attenuated in prenatally stressed pigs. Collectively, these findings indicate that prenatal stress can induce long-term alterations in nociceptive responses, manifest as a reduced sensitivity to noxious mechanical and cold stimulation and evoked inflammatory allodynia. Neonatal tail-docking does not lead to long-term alterations in nociception in pigs.
Collapse
Affiliation(s)
- Dale A Sandercock
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Larauche M, Mulak A, Taché Y. Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study. J Neurogastroenterol Motil 2011; 17:213-34. [PMID: 21860814 PMCID: PMC3155058 DOI: 10.5056/jnm.2011.17.3.213] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/11/2022] Open
Abstract
Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response.
Collapse
Affiliation(s)
- Muriel Larauche
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Agata Mulak
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
65
|
Mazzuca M, Minlebaev M, Shakirzyanova A, Tyzio R, Taccola G, Janackova S, Gataullina S, Ben-Ari Y, Giniatullin R, Khazipov R. Newborn Analgesia Mediated by Oxytocin during Delivery. Front Cell Neurosci 2011; 5:3. [PMID: 21519396 PMCID: PMC3080614 DOI: 10.3389/fncel.2011.00003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/31/2011] [Indexed: 12/02/2022] Open
Abstract
The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth.
Collapse
Affiliation(s)
- Michel Mazzuca
- INMED/INSERM U901, Université de la Méditerranée Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
67
|
Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla. Brain Res Bull 2010; 83:16-22. [PMID: 20638459 DOI: 10.1016/j.brainresbull.2010.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/22/2010] [Accepted: 07/11/2010] [Indexed: 11/22/2022]
Abstract
Cutaneous tissue inflammation during the first postnatal week is known to alter long-term development of spinal cord nociceptive circuitry and to alter behavioral responses to noxious stimuli in adult animals. The impact of neonatal inflammation on descending projections arising from supraspinal sites that modulate spinal nociceptive processing is unknown. In the present study, we investigated if altered behavioral responses to pain in adult animals after neonatal inflammation are associated with changes in descending modulation of nocifensive responses elicited from the rostroventromedial medulla (RVM) in lightly anesthetized rats. Compared to handled control animals, hindpaw injection of 0.25% carrageenan (CG) at postnatal day 3 produced adult basal hypoalgesia and increased hyperalgesia 24 h after reinflammation with Complete Freund's Adjuvant (CFA) in awake animals. These effects were specific to the neonatally treated hindpaw, partially replicating previous findings, but were absent in lightly anesthetized animals. However, focal electrical stimulation of the RVM in lightly anesthetized CG treated animals produced significantly greater descending inhibition of nocifensive responses to noxious thermal stimuli applied to the hindpaws and the tail. These effects were partially replicated by intra-RVM microinjection of AMPA. No differences in the efficacy of RVM stimulation between CG and control animals were observed 24h after reinflammation with CFA. These findings indicate that neonatal tissue injury and inflammation produces lasting alterations in descending modulatory systems that modify nociceptive processing. Taken together with previous studies, these results indicate that changes in pain sensitivity following neonatal tissue injury involve long-term alterations in spinal and supraspinal circuitry.
Collapse
|
68
|
LaPrairie JL, Murphy AZ. Long-term impact of neonatal injury in male and female rats: Sex differences, mechanisms and clinical implications. Front Neuroendocrinol 2010; 31:193-202. [PMID: 20144647 PMCID: PMC2849925 DOI: 10.1016/j.yfrne.2010.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 02/07/2023]
Abstract
Over the last several decades, the relative contribution of early life events to individual disease susceptibility has been explored extensively. Only fairly recently, however, has it become evident that abnormal or excessive nociceptive activity experienced during the perinatal period may permanently alter the normal development of the CNS and influence future responses to somatosensory input. Given the significant rise in the number of premature infants receiving high-technology intensive care over the last 20 years, ex-preterm neonates may be exceedingly vulnerable to the long-term effects of repeated invasive interventions. The present review summarizes available clinical and laboratory findings on the lasting impact of exposure to noxious stimulation during early development, with a focus on the structural and functional alterations in nociceptive circuits, and its sexually dimorphic impact.
Collapse
Affiliation(s)
- Jamie L LaPrairie
- Neuroscience Institute, Georgia State University, 38 Peachtree Center Ave, 806 GCB, Atlanta, GA 30303, USA
| | | |
Collapse
|