51
|
Determination of Uric Acid in Artificial Saliva with Compact AMP3291 Reader and Au Nanoparticles Modified Electrode. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Uric acid (UA) is a residual product of purines in the body and has been proposed as a valuable biomarker for Diabetes Mellitus, renal disorder, hypertension and preeclampsia. This work presents a sensing platform for nonenzymatic UA detection using a screen-printed electrode modified with gold nanoparticles (SPE-AuNps) operated with the compact and low-cost amperometric reader AMP3291. This laboratory-made instrument was designed using the analog front end LMP91000 and the microcontroller ESP32; the operational parameters like working potential, acquisition time and dynamic measuring range were configured for UA detection. The whole sensing system (AMP3291+ SPE-AuNps) was evaluated for nonenzymatic sensing of UA, showing a fast response time of 3.5 s, a sensitivity of 0.022 μA·μM−1, a linear range from 20 to 200 μM (R2 = 0.993) and a limit of detection of 11.91 μM. Throughout, a piece of commercial equipment was used for validation and noticeably the measurements with the AMP3291-based platform showed improved performance, indicating the feasibility of the developed instrument for UA monitoring and potentially for in situ decentralized applications. Finally, artificial saliva was used as model medium exhibiting interesting analytical parameters, encouraging to consider the reported system as a potentially valuable tool for monitoring UA for clinical applications in resource-limited settings.
Collapse
|
52
|
Fonseca WT, Castro KR, Oliveira TR, Faria RC. Disposable and Flexible Electrochemical Paper‐based Analytical Devices Using Low‐cost Conductive Ink. ELECTROANAL 2021. [DOI: 10.1002/elan.202060564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wilson Tiago Fonseca
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Karla Ribeiro Castro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Tássia Regina Oliveira
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| |
Collapse
|
53
|
Uncovering the behavior of screen-printed carbon electrodes modified with polymers molecularly imprinted with lipopolysaccharide. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
54
|
Yu H, Chen Z, Liu Y, Alkhamis O, Song Z, Xiao Y. Fabrication of Aptamer-Modified Paper Electrochemical Devices for On-Site Biosensing. Angew Chem Int Ed Engl 2021; 60:2993-3000. [PMID: 33152145 PMCID: PMC7902431 DOI: 10.1002/anie.202008231] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer a powerful and general means for analyte detection in complex samples for various applications. Paper-based E-AB sensors could enable portable, low-cost, and rapid detection of a broad range of targets, but it has proven challenging to fabricate suitable three-electrode systems on paper. Here, we demonstrate a simple, economic, and environmentally friendly strategy for fabricating aptamer-modified paper electrochemical devices (PEDs) via ambient vacuum filtration. The material, shape, size, and thickness of the three-electrode PED system can be fully customized. We developed aptamer-modified PEDs that enable sensitive and specific detection of small molecules in minimally processed biosamples. The sensitivity and stability of the PEDs are comparable to E-AB sensors based on commercial gold electrodes. We believe our strategy can lead to the development of high performance PEDs for the on-site detection of a variety of analytes.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | | | | | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Zhiping Song
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| |
Collapse
|
55
|
González-Hernández J, Alvarado-Gámez AL, Arroyo-Mora LE, Barquero-Quirós M. Electrochemical determination of novel psychoactive substances by differential pulse voltammetry using a microcell for boron-doped diamond electrode and screen-printed electrodes based on carbon and platinum. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
Kava AA, Henry CS. Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. Talanta 2021; 221:121553. [PMID: 33076109 PMCID: PMC7575823 DOI: 10.1016/j.talanta.2020.121553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Stencil-printing conductive carbon inks has revolutionized the development of inexpensive, disposable and portable electrochemical sensors. However, stencil-printed carbon electrodes (SPCEs) typically suffer from poor electrochemical properties. While many surface pretreatments and modifications have been tested to improve the electrochemical activity of SPCEs, the bulk composition of the inks used for printing has been largely ignored. Recent studies of other carbon composite electrode materials show significant evidence that the conductive carbon particle component is strongly related to electrochemical performance. However, such a study has not been carried out with SPCEs. In this work, we perform a systematic characterization of SPCEs made with different carbon particle types including graphite particles, glassy carbon microparticles and carbon black. The relationship between carbon particle characteristics including particle size, particle purity, and particle morphology as well as particle mass loading on the fabrication and electrochemical properties of SPCEs is studied. SPCEs were plasma treated for surface activation and the electrochemical properties of both untreated and plasma treated SPCEs are also compared. SPCEs displayed distinct analytical utilities characterized through solvent window and double layer capacitance. Cyclic voltammetry (CV) of several standard redox probes, FcTMA+, ferri/ferrocyanide, and pAP was used to establish the effects of carbon particle type and plasma treatment on electron transfer kinetics of SPCEs. CV of the biologically relevant molecules uric acid, NADH and dopamine was employed to further illustrate the differences in sensing and fouling characteristics of SPCEs fabricated with different carbon particle types. SEM imaging revealed significant differences in the SPCE surface microstructures. This systematic study demonstrates that the electrochemical properties of SPCEs can be tuned and significantly improved through careful selection of carbon particle type and plasma cleaning with a goal toward the development of better performing electrochemical point-of-need sensors.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
57
|
Fabiani L, Saroglia M, Galatà G, De Santis R, Fillo S, Luca V, Faggioni G, D'Amore N, Regalbuto E, Salvatori P, Terova G, Moscone D, Lista F, Arduini F. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron 2021; 171:112686. [PMID: 33086175 PMCID: PMC7833515 DOI: 10.1016/j.bios.2020.112686] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
The diffusion of novel SARS-CoV-2 coronavirus over the world generated COVID-19 pandemic event as reported by World Health Organization on March 2020. The huge issue is the high infectivity and the absence of vaccine and customised drugs allowing for hard management of this outbreak, thus a rapid and on site analysis is a need to contain the spread of COVID-19. Herein, we developed an electrochemical immunoassay for rapid and smart detection of SARS-CoV-2 coronavirus in saliva. The electrochemical assay was conceived for Spike (S) protein or Nucleocapsid (N) protein detection using magnetic beads as support of immunological chain and secondary antibody with alkaline phosphatase as immunological label. The enzymatic by-product 1-naphtol was detected using screen-printed electrodes modified with carbon black nanomaterial. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S and N protein in buffer solution and untreated saliva with a detection limit equal to 19 ng/mL and 8 ng/mL in untreated saliva, respectively for S and N protein. Its effectiveness was assessed using cultured virus in biosafety level 3 and in saliva clinical samples comparing the data using the nasopharyngeal swab specimens tested with Real-Time PCR. The agreement of the data, the low detection limit achieved, the rapid analysis (30 min), the miniaturization, and portability of the instrument combined with the easiness to use and no-invasive sampling, confer to this analytical tool high potentiality for market entry as the first highly sensitive electrochemical immunoassay for SARS-CoV-2 detection in untreated saliva.
Collapse
Affiliation(s)
- Laura Fabiani
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Marco Saroglia
- University of Insubria, Department of Biotechnologies and Life Sciences, Varese, Italy
| | - Giuseppe Galatà
- GTS Consulting S.r.l., Via Consolare Pompea 1, 98168, Messina, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | - Vincenzo Luca
- Scientific Department, Army Medical Center, Rome, Italy
| | | | - Nino D'Amore
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | - Genciana Terova
- University of Insubria, Department of Biotechnologies and Life Sciences, Varese, Italy
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | - Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
58
|
Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. SENSORS 2020; 21:s21010189. [PMID: 33396710 PMCID: PMC7795835 DOI: 10.3390/s21010189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.
Collapse
|
59
|
Yu H, Chen Z, Liu Y, Alkhamis O, Song Z, Xiao Y. Fabrication of Aptamer‐Modified Paper Electrochemical Devices for On‐Site Biosensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St Miami FL 33199 USA
| | - Zhimin Chen
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St Miami FL 33199 USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St Miami FL 33199 USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St Miami FL 33199 USA
| | - Zhiping Song
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St Miami FL 33199 USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th St Miami FL 33199 USA
| |
Collapse
|
60
|
Printing-Based Assay and Therapy of Antioxidants. Antioxidants (Basel) 2020; 9:antiox9111052. [PMID: 33126547 PMCID: PMC7692755 DOI: 10.3390/antiox9111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Antioxidants are essential in regulating various physiological functions and oxidative deterioration. Over the past decades, many researchers have paid attention to antioxidants and studied the screening of antioxidants from natural products and their utilization for treatments in diverse pathological conditions. Nowadays, as printing technology progresses, its influence in the field of biomedicine is growing significantly. The printing technology has many advantages. Especially, the capability of designing sophisticated platforms is useful to detect antioxidants in various samples. The high flexibility of 3D printing technology is advantageous to create geometries for customized patient treatment. Recently, there has been increasing use of antioxidant materials for this purpose. This review provides a comprehensive overview of recent advances in printing technology-based assays to detect antioxidants and 3D printing-based antioxidant therapy in the field of tissue engineering. This review is divided into two sections. The first section highlights colorimetric assays using the inkjet-printing methods and electrochemical assays using screen-printing techniques for the determination of antioxidants. Alternative screen-printing techniques, such as xurography, roller-pen writing, stamp contact printing, and laser-scribing, are described. The second section summarizes the recent literature that reports antioxidant-based therapy using 3D printing in skin therapeutics, tissue mimetic 3D cultures, and bone tissue engineering.
Collapse
|
61
|
Torre R, Costa-Rama E, Nouws HPA, Delerue-Matos C. Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. BIOSENSORS 2020; 10:E139. [PMID: 33008005 PMCID: PMC7600659 DOI: 10.3390/bios10100139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Food spoilage is caused by the development of microorganisms, biogenic amines, and other harmful substances, which, when consumed, can lead to different health problems. Foodborne diseases can be avoided by assessing the safety and freshness of food along the production and supply chains. The routine methods for food analysis usually involve long analysis times and complex instrumentation and are performed in centralized laboratories. In this context, sensors based on screen-printed electrodes (SPEs) have gained increasing importance because of their advantageous characteristics, such as ease of use and portability, which allow fast analysis in point-of-need scenarios. This review provides a comprehensive overview of SPE-based sensors for the evaluation of food safety and freshness, focusing on the determination of bacteria and biogenic amines. After discussing the characteristics of SPEs as transducers, the main bacteria, and biogenic amines responsible for important and common foodborne diseases are described. Then, SPE-based sensors for the analysis of these bacteria and biogenic amines in food samples are discussed, comparing several parameters, such as limit of detection, analysis time, and sample type.
Collapse
Affiliation(s)
- Ricarda Torre
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| |
Collapse
|
62
|
Electrochemical Hybrid Methods and Sensors for Antioxidant/Oxidant Activity Monitoring and Their Use as a Diagnostic Tool of Oxidative Stress: Future Perspectives and Challenges. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The terminology used in electrochemical methods which are used to generate the measured signal in antioxidant/oxidant activity (AOA/OA) sensors is briefly considered. The review presents a hybrid version of electrochemical methods for the determination of AOA/OA. Invasive electrochemical methods/sensors for AOA/OA of blood/serum/plasma, and non-invasive ones for semen, sweat, saliva and skin determination are described. AOA/OA sensors application in health estimation, cosmetology, food and nutrients is presented. Attention is paid to widely described approaches and technologies used in chemical/biochemical sensors. It will be considered as base/prototypes for developing sensors of the kind for AOA/OA determination. Prospects for the development of wearable, written sensors and biosensors are considered. Miniature and wireless sensors will allow for the monitoring of the patient’s state, both at the bedside and far beyond the hospital. The development of wearable self-powered written and printed sensors is an important step towards personalized medicine.
Collapse
|
63
|
Martínez-Periñán E, Gutiérrez-Sánchez C, García-Mendiola T, Lorenzo E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. BIOSENSORS-BASEL 2020; 10:bios10090118. [PMID: 32916838 PMCID: PMC7559215 DOI: 10.3390/bios10090118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-4488
| |
Collapse
|