51
|
Qin C, Liu S, Zhou S, Xia X, Hu J, Yu Y, Ma D. Tanshinone IIA promotes vascular normalization and boosts Sorafenib's anti-hepatoma activity via modulating the PI3K-AKT pathway. Front Pharmacol 2023; 14:1189532. [PMID: 37324455 PMCID: PMC10267387 DOI: 10.3389/fphar.2023.1189532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Angiogenesis is an essential feature of liver cancer. Tumor hypoxia results from abnormal vessel architecture. Numerous studies have sufficiently demonstrated that Tanshinone IIA (Tan IIA) can increase blood flow and enhance microcirculation. The objectives of this study are to: 1 assess the impact of Tan IIA on tumor angiogenesis and architecture, 2 determine the impact of Tan IIA on tumor hypoxia and susceptibility to Sorafenib, and 3 clarify the relevant mechanisms. Methods: CCK8 and flow cytometry measured cell proliferation and apoptosis, respectively. Tube creation assay was used to investigate medication effects on angiogenesis and structure. Drug effects on tumor development, metastasis, and hypoxic tumor microenvironment are assessed in an orthotopic xenograft model of liver tumors. Protein expression was measured by Western blotting and immunohistochemistry. Results: Our results demonstrated that Tan IIA could not reduce tumor proliferation or enhance Sorafenib's anti-tumor effect in vitro. Nevertheless, it can prevent Sorafenib from demolishing the typical vascular structure and aid sorafenib in blocking the recruitment of vascular endothelial cells by liver cancer cells. Although Tan IIA cannot inhibit tumor growth in vivo, it can significantly boost Sorafenib's inhibitory effect on liver cancer, alleviate tumor microenvironment hypoxia, and minimize lung metastasis. This effect may be achieved by reducing HIF-1α and HIF-2α expression via the PI3K-AKT signal pathway. Discussion: Our results reveal the mechanism of Tan IIA in normalizing tumor blood vessels, provide innovative concepts and approaches to overcome chemotherapy resistance, and provide a theoretical basis for the clinical transformation and usage of Tan IIA.
Collapse
Affiliation(s)
- Chengdong Qin
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Siyuan Liu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shiqi Zhou
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xianghou Xia
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiejie Hu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yang Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dening Ma
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| |
Collapse
|
52
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
53
|
Jiang TT, Ji CL, Yu LJ, Song MK, Li Y, Liao Q, Wei T, Olatunji OJ, Zuo J, Han J. Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α. Inflamm Res 2023; 72:1021-1035. [PMID: 37016140 DOI: 10.1007/s00011-023-01728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. METHODS HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. RESULTS Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. CONCLUSION Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, 241000, China
| | - Li-Jun Yu
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Meng-Ke Song
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qiang Liao
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Tuo Wei
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | | | - Jian Zuo
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, China.
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
54
|
He C, Zhang H, Guo Z, Mo Z. A cuproptosis-related signature for predicting the prognosis of gastric cancer. J Gastrointest Oncol 2023; 14:146-164. [PMID: 36915443 PMCID: PMC10007928 DOI: 10.21037/jgo-23-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignancies. Cuproptosis is a newly discovered type of cell death caused by protein toxicity stress, with copper having considerable importance in GC development. Methods First, differentially expressed (DE) cuproptosis-related genes (CRGs) were screened in GC. The tumor mutation burden (TMB) of CRGs was analyzed. We then performed enrichment analyses of DE-CRGs. Next, we constructed a GC cuproptosis-related (CR) signature (CRs) using Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. The predictive efficacy was assessed using receiver operating characteristic (ROC) curves. Furthermore, we performed gene set enrichment analysis (GSEA). Different methods were used to assess tumor immunity of the CRs, and the Wilcoxon test was used to examine the expressions of m6A-, m7G-, and ferroptosis-related genes. The "pRRophetic" R package (The R Foundation for Statistical Computing) was used to predict the half maximal inhibitory concentration IC50 of common chemotherapeutic agents. Finally, the expression of CRGs in different clusters was analyzed using single-cell RNA sequencing (scRNA-seq). Results We identified 8 DE-CRGs in GC. There were 9 CRGs with TMB values >1%. We constructed gene expression networks and CRs for GC. The DE-CRGs were involved in important mitochondrial metabolic pathways, and the CRs was a valuable independent prognosis factor. The GSEA revealed that angiogenesis and metabolic-related pathways were enriched in the high-risk group, whereas the low-risk group showed enrichment in DNA replication mismatch and repair pathways. The expressions of immunological checkpoints, ferroptosis-, m6A-, and m7G-related genes, type II interferon (INF) response, major histocompatibility complex (MHC class-I), and the IC50 of the copper-based carrier drug elesclomol were significantly different between the 2 groups of the CRs. Furthermore, the scRNA-seq analysis showed that most CRGs were mainly upregulated in endothelial cells. Conclusions The novel CRs could predict the prognosis of GC.
Collapse
Affiliation(s)
- Chunmei He
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Hao Zhang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Zehao Guo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Zhijing Mo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| |
Collapse
|
55
|
The Characteristics of Tumor Microenvironment Predict Survival and Response to Immunotherapy in Adrenocortical Carcinomas. Cells 2023; 12:cells12050755. [PMID: 36899891 PMCID: PMC10000893 DOI: 10.3390/cells12050755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.
Collapse
|
56
|
Li Y, Zhou Y, Qiao W, Shi J, Qiu X, Dong N. Application of decellularized vascular matrix in small-diameter vascular grafts. Front Bioeng Biotechnol 2023; 10:1081233. [PMID: 36686240 PMCID: PMC9852870 DOI: 10.3389/fbioe.2022.1081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Coronary artery bypass grafting (CABG) remains the most common procedure used in cardiovascular surgery for the treatment of severe coronary atherosclerotic heart disease. In coronary artery bypass grafting, small-diameter vascular grafts can potentially replace the vessels of the patient. The complete retention of the extracellular matrix, superior biocompatibility, and non-immunogenicity of the decellularized vascular matrix are unique advantages of small-diameter tissue-engineered vascular grafts. However, after vascular implantation, the decellularized vascular matrix is also subject to thrombosis and neoplastic endothelial hyperplasia, the two major problems that hinder its clinical application. The keys to improving the long-term patency of the decellularized matrix as vascular grafts include facilitating early endothelialization and avoiding intravascular thrombosis. This review article sequentially introduces six aspects of the decellularized vascular matrix as follows: design criteria of vascular grafts, components of the decellularized vascular matrix, the changing sources of the decellularized vascular matrix, the advantages and shortcomings of decellularization technologies, modification methods and the commercialization progress as well as the application prospects in small-diameter vascular grafts.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Qiu
- *Correspondence: Xuefeng Qiu, ; Nianguo Dong,
| | | |
Collapse
|
57
|
Qu Z, Wu KJ, Feng JW, Shi DS, Chen YX, Sun DL, Duan YF, Chen J, He XZ. Treatment of hepatic venous system hemorrhage and carbon dioxide gas embolization during laparoscopic hepatectomy via hepatic vein approach. Front Oncol 2023; 12:1060823. [PMID: 36686784 PMCID: PMC9850092 DOI: 10.3389/fonc.2022.1060823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
With the improvement of laparoscopic surgery, the feasibility and safety of laparoscopic hepatectomy have been affirmed, but intraoperative hepatic venous system hemorrhage and carbon dioxide gas embolism are the difficulties in laparoscopic hepatectomy. The incidence of preoperative hemorrhage and carbon dioxide gas embolism could be reduced through preoperative imaging evaluation, reasonable liver blood flow blocking method, appropriate liver-breaking device, controlled low-center venous pressure technology, and fine-precision precision operation. In the case of blood vessel rupture bleeding in the liver vein system, after controlling and reducing bleeding, confirm the type and severity of vascular damage in the liver and venous system, take appropriate measures to stop the bleeding quickly and effectively, and, if necessary, transfer the abdominal treatment in time. In addition, to strengthen the understanding, prevention and emergency treatment of severe CO2 gas embolism in laparoscopic hepatectomy is also the key to the success of surgery. This study aims to investigate the methods to deal with hepatic venous system hemorrhage and carbon dioxide gas embolization based on author's institutional experience and relevant literature. We retrospectively analyzed the data of 60 patients who received laparoscopic anatomical hepatectomy of hepatic vein approach for HCC. For patients with intraoperative complications, corresponding treatments were given to cope with different complications. After the operation, combined with clinical experience and literature, we summarized and discussed the good treatment methods in the face of such situations so that minimize the harm to patients as much as possible.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun-Fei Duan
- *Correspondence: Yun-Fei Duan, ; Jing Chen, ; Xiao-zhou He,
| | - Jing Chen
- *Correspondence: Yun-Fei Duan, ; Jing Chen, ; Xiao-zhou He,
| | - Xiao-zhou He
- *Correspondence: Yun-Fei Duan, ; Jing Chen, ; Xiao-zhou He,
| |
Collapse
|
58
|
Abstract
The angiogenesis process was described in its basic concepts in the works of the Scottish surgeon John Hunter and terminologically assessed in the early twentieth century. An aberrant angiogenesis is a prerequisite for cancer cells in solid tumors to grow and metastasize. The sprouting of new blood vessels is one of the major characteristics of cancer and represents a gateway for tumor cells to enter both the blood and lymphatic circulation systems. In vivo, ex vivo, and in vitro models of angiogenesis have provided essential tools for cancer research and antiangiogenic drug screening. Several in vivo studies have been performed to investigate the various steps of tumor angiogenesis and in vitro experiments contributed to dissecting the molecular bases of this phenomenon. Moreover, coculture of cancer and endothelial cells in 2D and 3D matrices have contributed to improve the recapitulation of the complex process of tumor angiogenesis, including the peculiar conditions of tumor microenvironment.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Pisa, Italy
- Museum of Human Anatomy "Filippo Civinini", School of Medicine, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
59
|
Macionis V. Negative Pressure Wound Therapy: Supra-Physiological or Just Physical Effects of Positive Pressure? INT J LOW EXTR WOUND 2022:15347346221144145. [PMID: 36476187 DOI: 10.1177/15347346221144145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
This communication provides a new insight into the unexplained physiology of beneficial effects of negative pressure wound therapy (NPWT). Possible mechanisms of beneficial effects of NPWT in failing replantation and free tissue transfer are discussed. Positive pressure generated by NPWT as well as its draining action creates exudate-free tight tissue-to-tissue interface, which may enhance neovascularization.
Collapse
|
60
|
Long non-coding RNAs as biomarkers and therapeutic targets for ischemic stroke. Noncoding RNA Res 2022; 7:226-232. [PMID: 36187570 PMCID: PMC9508273 DOI: 10.1016/j.ncrna.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background The problem of ischemic stroke (IS) has become increasingly important in recent years, as it ranks first in the structure of disability and mortality, crowding out other vascular diseases. In this regard, the study of this pathology and the search for new therapeutic and diagnostic tools remains an urgent problem of modern medical science and practice. Long non-coding RNAs (lncRNAs)-based therapeutics and diagnostic tools offer a very attractive area of study. Therefore, this systematic review aims at summarizing current knowledge on promising lncRNAs as biomarkers and therapeutic targets for IS exploring original articles and literature reviews on in vivo, in vitro and ex vivo experiments. Methods The current systematic review was performed according to PRISMA guidelines. PubMed, MEDLINE and Google Scholar databases were comprehensively explored to perform the article search. Results 34 eligible studies were included and analyzed: 25 focused on lncRNAs-based therapeutics and 9 on lncRNAs-based diagnosis. We found 31 different lncRNAs tested as potential therapeutic and diagnostic molecules in cells and animal model experiments. Among all founded lncRNA-based therapeutics and non-invasive diagnostic tools, nuclear enriched abundant transcript 1 (NEAT1) emerged to be the most investigated and proposed as a potential molecule for IS diagnosis and treatment. Conclusions Our analysis provides a snapshot of the current scenario regarding the lncRNAs as therapeutic molecules and biomarkers in IS. Different lncRNAs are differently expressed in IS, and some of them can be further evaluated as therapeutic targets and biomarkers for early diagnosis and prognosis or treatment response. However, despite many efforts, none of the selected studies go beyond preclinical studies, and their translation into clinical practice seems to be very premature.
Collapse
|
61
|
Zheng W, Qian C, Tang Y, Yang C, Zhou Y, Shen P, Chen W, Yu S, Wei Z, Wang A, Lu Y, Zhao Y. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade. Front Immunol 2022; 13:1035323. [PMID: 36439137 PMCID: PMC9684196 DOI: 10.3389/fimmu.2022.1035323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Immunotherapy has been recognized as an effective and important therapeutic modality for multiple types of cancer. Nevertheless, it has been increasing recognized that clinical benefits of immunotherapy are less than expected as evidenced by the fact that only a small population of cancer patients respond favorably to immunotherapy. The structurally and functionally abnormal tumor vasculature is a hallmark of most solid tumors and contributes to an immunosuppressive microenvironment, which poses a major challenge to immunotherapy. In turn, multiple immune cell subsets have profound consequences on promoting neovascularization. Vascular normalization, a promising anti-angiogenic strategy, can enhance vascular perfusion and promote the infiltration of immune effector cells into tumors via correcting aberrant tumor blood vessels, resulting in the potentiation of immunotherapy. More interestingly, immunotherapies are prone to boost the efficacy of various anti-angiogenic therapies and/or promote the morphological and functional alterations in tumor vasculature. Therefore, immune reprograming and vascular normalization appear to be reciprocally regulated. In this review, we mainly summarize how tumor vasculature propels an immunosuppressive phenotype and how innate and adaptive immune cells modulate angiogenesis during tumor progression. We further highlight recent advances of anti-angiogenic immunotherapies in preclinical and clinical settings to solidify the concept that targeting both tumor blood vessels and immune suppressive cells provides an efficacious approach for the treatment of cancer.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
62
|
Li M, Zhao YY, Cui JF. Matrix stiffness in regulation of tumor angiogenesis. Shijie Huaren Xiaohua Zazhi 2022; 30:871-878. [DOI: 10.11569/wcjd.v30.i20.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the most common malignant features of solid tumors such as liver cancer, pancreatic cancer, and gastrointestinal tumors, which is the basis of tumor growth, invasion, and metastasis. It is also an important target of anti-tumor therapy. Tumor angiogenesis is usually triggered by biochemical, hypoxic, and biomechanical factors in the microenvironment. The regulation of biochemical signals and hypoxic microenvironment in tumor angiogenesis have been widely documented, but the role of biomechanical signals in tumor angiogenesis has gradually begun to be uncovered in recent years. The vasculature system is naturally sensitive to mechanical stimuli. Recent studies have highlighted the important regulatory effects of biomechanical stimuli, such as matrix stiffness, fluid shear stress, and vascular lumen pressure, on the phenotype and functions of tumor blood vessels. In this paper, we summarize the new progress and internal mechanisms of matrix stiffness-mediated effects on tumor angiogenesis.
Collapse
Affiliation(s)
- Miao Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
63
|
The role of patient characteristics and the effects of angiogenic therapies on the microvasculature of the meniscus: A systematic review. Knee 2022; 38:91-106. [PMID: 35964436 DOI: 10.1016/j.knee.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Considerable interindividual variation in meniscal microvascularization has been reported. The purpose of this review was to identify which patient characteristics affect meniscal microvascularization and provide a structured overview of angiogenic therapies that influence meniscal neovascularization. METHODS A systematic literature search was undertaken using PubMed, Embase, Web of Science, Cochrane library and Emcare from inception to November 2021. Studies reporting on (1) Patient characteristics that affect meniscal microvascularization, or (2) Therapies that induce neovascularization in meniscal tissue were included. Studies were graded in quality using the Anatomical Quality Assessment (AQUA) tool. The study was registered with PROSPERO(ID:CRD42021242479). RESULTS Thirteen studies reported on patient characteristics and eleven on angiogenic therapies. The influence of Age, Degenerative knee, Gender, and Race was reported. Age is the most studied factor. The entire meniscus is vascularized around birth. With increasing age, vascularization decreases from the inner to the peripheral margin. Around 11 years, blood vessels are primarily located in the peripheral third of the menisci. There seems to be a further decrease in vascularization with increasing age in adults, yet conflicting literature exists. Degenerative changes of the knee also seem to influence meniscal vascularization, but evidence is limited. Angiogenic therapies to improve meniscal vascularization have only been studied in preclinical setting. The use of synovial flap transplantation, stem cell therapy, vascular endothelial growth factor, and angiogenin has shown promising results. CONCLUSION To decrease failure rates of meniscal repair, a better understanding of patient-specific vascular anatomy is essential. Translational clinical research is needed to investigate the clinical value of angiogenic therapies.
Collapse
|
64
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
65
|
Wang Y, Xiao Q, Zhong W, Zhang C, Yin Y, Gao X, Song J. Low-intensity pulsed ultrasound promotes periodontal regeneration in a beagle model of furcation involvement. Front Bioeng Biotechnol 2022; 10:961898. [PMID: 36091440 PMCID: PMC9458930 DOI: 10.3389/fbioe.2022.961898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the regeneration potential of periodontitis tissue treated by low-intensity pulsed ultrasound (LIPUS) combined with the guided tissue regeneration (GTR) technique in a beagle model of furcation involvement (FI).Background: Achieving predictable regeneration remains a clinical challenge for periodontitis tissue due to the compromised regenerative potential caused by chronic inflammation stimulation. LIPUS, an FDA-approved therapy for long bone fracture and non-unions, has been demonstrated effective in the in vitro attenuation of inflammation-induced dysfunction of periodontal ligament stem cells (PDLSCs), the key cells contributing to periodontal regeneration. However, the in vivo effect of LIPUS on periodontitis tissue is rarely reported.Methods: A beagle model of FI was established, and the experimental teeth were randomly assigned into three groups: control group, GTR group, and GTR+LIPUS group. Radiographic examinations were performed, and clinical periodontal parameters were recorded to reflect the periodontal condition of different groups. Histological analyses using H&E and Masson’s staining were conducted to evaluate the periodontal tissue regeneration.Results: LIPUS could enhance new periodontal bone formation and bone matrix maturity in FI after GTR treatment. Moreover, clinical assessment and histomorphometric analyses revealed less inflammatory infiltration and superior vascularization within bone grafts in the LIPUS treatment group, indicating the anti-inflammatory and pro-angiogenic effects of LIPUS in FI.Conclusion: Our investigation on a large animal model demonstrated that LIPUS is a promising adjunctive approach for the regeneration of periodontitis tissue, paving a new avenue for LIPUS application in the field of periodontal regenerative medicine.
Collapse
Affiliation(s)
- Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Xiang Gao, ; Jinlin Song,
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Xiang Gao, ; Jinlin Song,
| |
Collapse
|
66
|
Wei J, Yao J, Yan M, Xie Y, Liu P, Mao Y, Li X. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Acta Biomater 2022; 150:34-47. [DOI: 10.1016/j.actbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
|
67
|
Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15:34. [PMID: 35331296 PMCID: PMC8943941 DOI: 10.1186/s13045-022-01252-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the development of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progression. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM stiffness-induced oncogenic signaling, cancer progression and drug resistance.
Collapse
|
68
|
Cryan LM, Tsang TM, Stiles J, Bazinet L, Lee SL, Garrard S, Madrian E, Roberts C, Payne J, Jensen A, Frankel AE, Ackroyd PC, Christensen KA, Rogers MS. Capillary morphogenesis gene 2 (CMG2) mediates growth factor-induced angiogenesis by regulating endothelial cell chemotaxis. Angiogenesis 2022; 25:397-410. [PMID: 35212873 PMCID: PMC9250616 DOI: 10.1007/s10456-022-09833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
Anthrax protective antigen (PA) is a potent inhibitor of pathological angiogenesis with an unknown mechanism. In anthrax intoxication, PA interacts with capillary morphogenesis gene 2 (CMG2) and tumor endothelial marker 8 (TEM8). Here, we show that CMG2 mediates the antiangiogenic effects of PA and is required for growth-factor-induced chemotaxis. Using specific inhibitors of CMG2 and TEM8 interaction with natural ligand, as well as mice with the CMG2 or TEM8 transmembrane and intracellular domains disrupted, we demonstrate that inhibiting CMG2, but not TEM8 reduces growth-factor-induced angiogenesis in the cornea. Furthermore, the antiangiogenic effect of PA was abolished when the CMG2, but not the TEM8, gene was disrupted. Binding experiments demonstrated a broad ligand specificity for CMG2 among extracellular matrix (ECM) proteins. Ex vivo experiments demonstrated that CMG2 (but not TEM8) is required for PA activity in human dermal microvascular endothelial cell (HMVEC-d) network formation assays. Remarkably, blocking CMG2-ligand binding with PA or CRISPR knockout abolishes endothelial cell chemotaxis but not chemokinesis in microfluidic migration assays. These effects are phenocopied by Rho inhibition. Because CMG2 mediates the chemotactic response of endothelial cells to peptide growth factors in an ECM-dependent fashion, CMG2 is well-placed to integrate growth factor and ECM signals. Thus, CMG2 targeting is a novel way to inhibit angiogenesis.
Collapse
Affiliation(s)
- Lorna M Cryan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Tsz-Ming Tsang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Jessica Stiles
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Lauren Bazinet
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Sai Lun Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Samuel Garrard
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.,Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Erika Madrian
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA
| | - Cody Roberts
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Jessie Payne
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Andrew Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Arthur E Frankel
- Department of Medicine, West Palm Beach VA Medical Center, 7305 N Military Trail, West Palm Beach, FL, 33410, USA
| | - P Christine Ackroyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Kenneth A Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Michael S Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 11.211 Karp Family Research Bldg., 300 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|