51
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an Anti-Inflammatory Drug and Immunomodulator: New Aspects in Hormonal Regulation of the Inflammation. Biomolecules 2022; 12:biom12091299. [PMID: 36139138 PMCID: PMC9496164 DOI: 10.3390/biom12091299] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The specific regulation of inflammatory processes by steroid hormones has been actively studied in recent years, especially by progesterone (P4) and progestins. The mechanisms of the anti-inflammatory and immunomodulatory P4 action are not fully clear. The anti-inflammatory effects of P4 can be defined as nonspecific, associated with the inhibition of NF-κB and COX, as well as the inhibition of prostaglandin synthesis, or as specific, associated with the regulation of T-cell activation, the regulation of the production of pro- and anti-inflammatory cytokines, and the phenomenon of immune tolerance. The specific anti-inflammatory effects of P4 and its derivatives (progestins) can also include the inhibition of proliferative signaling pathways and the antagonistic action against estrogen receptor beta-mediated signaling as a proinflammatory and mitogenic factor. The anti-inflammatory action of P4 is accomplished through the participation of progesterone receptor (PR) chaperones HSP90, as well as immunophilins FKBP51 and FKBP52, which are the validated targets of clinically approved immunosuppressive drugs. The immunomodulatory and anti-inflammatory effects of HSP90 inhibitors, tacrolimus and cyclosporine, are manifested, among other factors, due to their participation in the formation of an active ligand–receptor complex of P4 and their interaction with its constituent immunophilins. Pharmacological agents such as HSP90 inhibitors can restore the lost anti-inflammatory effect of glucocorticoids and P4 in chronic inflammatory and autoimmune diseases. By regulating the activity of FKBP51 and FKBP52, it is possible to increase or decrease hormonal signaling, as well as restore it during the development of hormone resistance. The combined action of immunophilin suppressors with steroid hormones may be a promising strategy in the treatment of chronic inflammatory and autoimmune diseases, including endometriosis, stress-related disorders, rheumatoid arthritis, and miscarriages. Presumably, the hormone receptor- and immunophilin-targeted drugs may act synergistically, allowing for a lower dose of each.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
- Correspondence: ; Tel.: +7-9169353196
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino 142290, Russia
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| |
Collapse
|
52
|
A glucocorticoid-receptor agonist ameliorates bleomycin-induced alveolar simplification in newborn rats. Pediatr Res 2022; 93:1551-1558. [PMID: 36068343 DOI: 10.1038/s41390-022-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucocorticoids (GCs) are highly effective yet problematic agents against bronchopulmonary dysplasia (BPD). The dimeric trans-activation of GCs induces unfavorable effects, while monomeric trans-repression suppresses inflammation-related genes. Recently, non-steroidal-selective glucocorticoid-receptor agonists and modulators (SEGRAMs) with only the trans-repressive action have been designed. METHODS Using a bleomycin (Bleo)-induced alveolar simplification newborn rat model (recapitulating arrested alveolarization during BPD), we evaluated the therapeutic effects of compound-A (CpdA), a SEGRAM. Sprague-Dawley rats were administered Bleo from postnatal day (PD) 0 to 10 and treated with dexamethasone (Dex) or CpdA from PD 0 to 13. The morphological changes and mRNA expression of inflammatory mediators, including interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-C motif chemokine 2 (CCL2) were investigated. RESULTS Similar to the effects of Dex, CpdA exerted protective effects on morphological derangements and inhibited macrophage infiltration and production of pro-inflammatory mediators in Bleo-treated animals. The effects of CpdA were probably mediated by GC receptor (GR)-dependent trans-repression, because unlike the Dex-treated group, anti-inflammatory genes specifically induced by GR-dependent trans-activation (such as "glucocorticoid-induced leucine zipper, GILZ") were not upregulated. CONCLUSIONS CpdA improved lung inflammation, inhibited the arrest of alveolar maturation, and restored histological and biochemical changes in a Bleo-induced alveolar simplification model. IMPACT SEGRAMs have attracted widespread attention because they are expected to not exhibit unfavorable effects of GCs. Compound A, one of the SEGRAMs, improved lung morphometric changes and decreased lung inflammation in a bleomycin-induced arrested alveolarization, a newborn rat model representing one of the main features of BPD pathology. Compound A did not elicit bleomycin-induced poor weight gain, in contrast to dexamethasone treatment. SEGRAMs, including compound A, may be promising candidates for the therapy of BPD with less adverse effects compared with GCs.
Collapse
|
53
|
Serra MF, Cotias AC, Pimentel AS, Arantes ACSD, Pires ALA, Lanzetti M, Hickmann JM, Barreto E, Carvalho VF, Silva PMRE, Cordeiro RSB, Martins MA. Gold Nanoparticles Inhibit Steroid-Insensitive Asthma in Mice Preserving Histone Deacetylase 2 and NRF2 Pathways. Antioxidants (Basel) 2022; 11:antiox11091659. [PMID: 36139733 PMCID: PMC9495660 DOI: 10.3390/antiox11091659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gold nanoparticles (AuNPs) can inhibit pivotal pathological changes in experimental asthma, but their effect on steroid-insensitive asthma is unclear. The current study assessed the effectiveness of nebulized AuNPs in a murine model of glucocorticoid (GC)-resistant asthma. Methods: A/J mice were sensitized and subjected to intranasal instillations of ovalbumin (OVA) once a week for nine weeks. Two weeks after starting allergen stimulations, mice were subjected to Budesonide or AuNP nebulization 1 h before stimuli. Analyses were carried out 24 h after the last provocation. Results: We found that mice challenged with OVA had airway hyperreactivity, eosinophil, and neutrophil infiltrates in the lung, concomitantly with peribronchiolar fibrosis, mucus production, and pro-inflammatory cytokine generation compared to sham-challenged mice. These changes were inhibited in mice treated with AuNPs, but not Budesonide. In the GC-resistant asthmatic mice, oxidative stress was established, marked by a reduction in nuclear factor erythroid 2-related factor 2 (NRF2) levels and catalase activity, accompanied by elevated values of thiobarbituric acid reactive substances (TBARS), phosphoinositide 3-kinases δ (PI3Kδ) expression, as well as a reduction in the nuclear expression of histone deacetylase 2 (HDAC2) in the lung tissue, all of which sensitive to AuNPs but not Budesonide treatment. Conclusion: These findings suggest that AuNPs can improve GC-insensitive asthma by preserving HDAC2 and NRF2.
Collapse
Affiliation(s)
- Magda F Serra
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Amanda C Cotias
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Andreza S Pimentel
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Ana Carolina S de Arantes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Ana Lucia A Pires
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Manuella Lanzetti
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Jandir M Hickmann
- Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió 50072-900, AL, Brazil
| | - Vinicius F Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Patrícia M R E Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Renato S B Cordeiro
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
54
|
Rocamora-Reverte L, Villunger A, Wiegers GJ. Cell-Specific Immune Regulation by Glucocorticoids in Murine Models of Infection and Inflammation. Cells 2022; 11:cells11142126. [PMID: 35883569 PMCID: PMC9324070 DOI: 10.3390/cells11142126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - G. Jan Wiegers
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|
55
|
Tena-Garitaonaindia M, Arredondo-Amador M, Mascaraque C, Asensio M, Marin JJG, Martínez-Augustin O, Sánchez de Medina F. MODULATION OF INTESTINAL BARRIER FUNCTION BY GLUCOCORTICOIDS: LESSONS FROM PRECLINICAL MODELS. Pharmacol Res 2022; 177:106056. [PMID: 34995794 DOI: 10.1016/j.phrs.2022.106056] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022]
Abstract
Glucocorticoids (GCs) are widely used drugs for their anti-inflammatory and immunosuppressant effects, but they are associated with multiple adverse effects. Despite their frequent oral administration, relatively little attention has been paid to the effects of GCs on intestinal barrier function. In this review, we present a summary of the published studies on this matter carried out in animal models and cultured cells. In cultured intestinal epithelial cells, GCs have variable effects in basal conditions and generally enhance barrier function in the presence of inflammatory cytokines such as tumor necrosis factor (TNF). In turn, in rodents and other animals, GCs have been shown to weaken barrier function, with increased permeability and lower production of IgA, which may account for some features observed in stress models. When given to animals with experimental colitis, barrier function may be debilitated or strengthened, despite a positive anti-inflammatory activity. In sepsis models, GCs have a barrier-enhancing effect. These effects are probably related to the inhibition of epithelial cell proliferation and wound healing, modulation of the microbiota and mucus production, and interference with the mucosal immune system. The available information on underlying mechanisms is described and discussed.
Collapse
Affiliation(s)
- Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Arredondo-Amador
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Mascaraque
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
56
|
Role of Endothelial Glucocorticoid Receptor in the Pathogenesis of Kidney Diseases. Int J Mol Sci 2021; 22:ijms222413295. [PMID: 34948091 PMCID: PMC8706765 DOI: 10.3390/ijms222413295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids, as multifunctional hormones, are widely used in the treatment of various diseases including nephrological disorders. They are known to affect immunological cells, effectively treating many autoimmune and inflammatory processes. Furthermore, there is a growing body of evidence demonstrating the potent role of glucocorticoids in non-immune cells such as podocytes. Moreover, novel data show additional pathways and processes affected by glucocorticoids, such as the Wnt pathway or autophagy. The endothelium is currently considered as a key organ in the regulation of numerous kidney functions such as glomerular filtration, vascular tone and the regulation of inflammation and coagulation. In this review, we analyse the literature concerning the effects of endothelial glucocorticoid receptor signalling on kidney function in health and disease, with special focus on hypertension, diabetic kidney disease, glomerulopathies and chronic kidney disease. Recent studies demonstrate the potential role of endothelial GR in the prevention of fibrosis of kidney tissue and cell metabolism through Wnt pathways, which could have a protective effect against disease progression. Another important aspect covered in this review is blood pressure regulation though GR and eNOS. We also briefly cover potential therapies that might affect the endothelial glucocorticoid receptor and its possible clinical implications, with special interest in selective or local GR stimulation and potential mitigation of GC treatment side effects.
Collapse
|
57
|
Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells 2021; 10:cells10123441. [PMID: 34943949 PMCID: PMC8699886 DOI: 10.3390/cells10123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.
Collapse
|