51
|
Meki IK, Kariithi HM, Ahmadi M, Parker AG, Vreysen MJB, Vlak JM, van Oers MM, Abd-Alla AM. Hytrosavirus genetic diversity and eco-regional spread in Glossina species. BMC Microbiol 2018; 18:143. [PMID: 30470191 PMCID: PMC6251127 DOI: 10.1186/s12866-018-1297-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The management of the tsetse species Glossina pallidipes (Diptera; Glossinidae) in Africa by the sterile insect technique (SIT) has been hindered by infections of G. pallidipes production colonies with Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae family). This virus can significantly decrease productivity of the G. pallidipes colonies. Here, we used three highly diverged genes and two variable number tandem repeat regions (VNTRs) of the GpSGHV genome to identify the viral haplotypes in seven Glossina species obtained from 29 African locations and determine their phylogenetic relatedness. RESULTS GpSGHV was detected in all analysed Glossina species using PCR. The highest GpSGHV prevalence was found in G. pallidipes colonized at FAO/IAEA Insect Pest Control Laboratory (IPCL) that originated from Uganda (100%) and Tanzania (88%), and a lower prevalence in G. morsitans morsitans from Tanzania (58%) and Zimbabwe (20%). Whereas GpSGHV was detected in 25-40% of G. fuscipes fuscipes in eastern Uganda, the virus was not detected in specimens of neighboring western Kenya. Most of the identified 15 haplotypes were restricted to specific Glossina species in distinct locations. Seven haplotypes were found exclusively in G. pallidipes. The reference haplotype H1 (GpSGHV-Uga; Ugandan strain) was the most widely distributed, but was not found in G. swynnertoni GpSGHV. The 15 haplotypes clustered into three distinct phylogenetic clades, the largest contained seven haplotypes, which were detected in six Glossina species. The G. pallidipes-infecting haplotypes H10, H11 and H12 (from Kenya) clustered with H7 (from Ethiopia), which presumably corresponds to the recently sequenced GpSGHV-Eth (Ethiopian) strain. These four haplotypes diverged the most from the reference H1 (GpSGHV-Uga). Haplotypes H1, H5 and H14 formed three main genealogy hubs, potentially representing the ancestors of the 15 haplotypes. CONCLUSION These data identify G. pallidipes as a significant driver for the generation and diversity of GpSGHV variants. This information may provide control guidance when new tsetse colonies are established and hence, for improved management of the virus in tsetse rearing facilities that maintain multiple Glossina species.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Mehrdad Ahmadi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Insect Genetics Unit, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| |
Collapse
|
52
|
Cassin-Sackett L, Callicrate TE, Fleischer RC. Parallel evolution of gene classes, but not genes: Evidence from Hawai'ian honeycreeper populations exposed to avian malaria. Mol Ecol 2018; 28:568-583. [PMID: 30298567 DOI: 10.1111/mec.14891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i 'amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High-elevation, unexposed populations of 'amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low-elevation 'amakihi, we genotyped 125 'amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference 'amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low- and high-elevation population pairs and identified loci with signatures of selection within low-elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta-defensin, glycoproteins and interleukin-related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.
Collapse
Affiliation(s)
- Loren Cassin-Sackett
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Taylor E Callicrate
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Species Conservation Toolkit Initiative, Department of Conservation Science, Chicago Zoological Society, Brookfield, Illinois
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| |
Collapse
|
53
|
Ganesamoorthy D, Cao MD, Duarte T, Chen W, Coin L. GtTR: Bayesian estimation of absolute tandem repeat copy number using sequence capture and high throughput sequencing. BMC Bioinformatics 2018; 19:267. [PMID: 30012093 PMCID: PMC6048696 DOI: 10.1186/s12859-018-2282-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/09/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Tandem repeats comprise significant proportion of the human genome including coding and regulatory regions. They are highly prone to repeat number variation and nucleotide mutation due to their repetitive and unstable nature, making them a major source of genomic variation between individuals. Despite recent advances in high throughput sequencing, analysis of tandem repeats in the context of complex diseases is still hindered by technical limitations. We report a novel targeted sequencing approach, which allows simultaneous analysis of hundreds of repeats. We developed a Bayesian algorithm, namely - GtTR - which combines information from a reference long-read dataset with a short read counting approach to genotype tandem repeats at population scale. PCR sizing analysis was used for validation. RESULTS We used a PacBio long-read sequenced sample to generate a reference tandem repeat genotype dataset with on average 13% absolute deviation from PCR sizing results. Using this reference dataset GtTR generated estimates of VNTR copy number with accuracy within 95% high posterior density (HPD) intervals of 68 and 83% for capture sequence data and 200X WGS data respectively, improving to 87 and 94% with use of a PCR reference. We show that the genotype resolution increases as a function of depth, such that the median 95% HPD interval lies within 25, 14, 12 and 8% of the its midpoint copy number value for 30X, 200X WGS, 395X and 800X capture sequence data respectively. We validated nine targets by PCR sizing analysis and genotype estimates from sequencing results correlated well with PCR results. CONCLUSIONS The novel genotyping approach described here presents a new cost-effective method to explore previously unrecognized class of repeat variation in GWAS studies of complex diseases at the population level. Further improvements in accuracy can be obtained by improving accuracy of the reference dataset.
Collapse
Affiliation(s)
- Devika Ganesamoorthy
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Minh Duc Cao
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Tania Duarte
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Wenhan Chen
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Lachlan Coin
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
54
|
Horianopoulos LC, Boone CK, Samarasekera GDNG, Kandola GK, Murray BW. Selection of the sex-linked inhibitor of apoptosis in mountain pine beetle ( Dendroctonus ponderosae) driven by enhanced expression during early overwintering. Ecol Evol 2018; 8:6253-6264. [PMID: 29988446 PMCID: PMC6024124 DOI: 10.1002/ece3.4164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/08/2022] Open
Abstract
The mountain pine beetle (Dendroctonus ponderosae) is an insect native to western North America; however, its geographical range has recently expanded north in BC and east into Alberta. To understand the population structure in the areas of expansion, 16 gene-linked microsatellites were screened and compared to neutral microsatellites using outlier analyses of Fst and Fct values. One sex-linked gene, inhibitor of apoptosis (IAP), showed a strong signature of positive selection for neo-X alleles and was analyzed for evidence of adaptive variation. Alleles of IAP were sequenced, and differences between the neo-X and neo-Y alleles were consistent with neutral evolution suggesting that the neo-Y allele may not be under functional constraints. Neo-Y alleles were amplified from gDNA, but not effectively from cDNA, suggesting that there was little IAP expression from neo-Y alleles. There were no differences in overall IAP expression between males and females with the common northern neo-X allele suggesting that the neo-X allele in males compensates for the reduced expression of neo-Y alleles. However, males lacking the most common northern neo-X allele thought to be selected for in northern populations had reduced overall IAP expression in early October-at a time when beetles are preparing for overwintering. This suggests that the most common allele may have more rapid upregulation. The reduced function of neo-Y alleles of IAP suggested by both sequence differences and lower levels of expression may foster a highly selective environment for neo-X alleles such as the common northern allele with more efficient upregulation.
Collapse
Affiliation(s)
- Linda C Horianopoulos
- Natural Resources and Environmental Studies Institute University of Northern British Columbia Prince George BC Canada
| | - Celia K Boone
- Natural Resources and Environmental Studies Institute University of Northern British Columbia Prince George BC Canada
| | - G D N Gayathri Samarasekera
- Natural Resources and Environmental Studies Institute University of Northern British Columbia Prince George BC Canada
| | - Gurkirat K Kandola
- Natural Resources and Environmental Studies Institute University of Northern British Columbia Prince George BC Canada
| | - Brent W Murray
- Natural Resources and Environmental Studies Institute University of Northern British Columbia Prince George BC Canada
| |
Collapse
|
55
|
Biological Roles of Protein-Coding Tandem Repeats in the Yeast Candida Albicans. J Fungi (Basel) 2018; 4:jof4030078. [PMID: 29966250 PMCID: PMC6162428 DOI: 10.3390/jof4030078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023] Open
Abstract
Tandem repeat (TR) DNA mutates faster than other DNA by insertion and deletion of repeats. Large parts of eukaryotic proteomes are encoded by ORFs containing protein-coding TRs (TR-ORFs, pcTRs) with largely unknown biological consequences. We explored these in the yeast Candida albicans, an opportunistic human pathogen. We found that almost half of C. albicans’ proteins are encoded by TR-ORFs. pcTR frequency differed only moderately between different gene (GO) categories. Bioinformatic predictions of genome-wide mutation rates and clade-specific differences in pcTR allele frequencies indicated that pcTRs (i) significantly increase the genome-wide mutation rate; (ii) significantly impact on fitness and (iii) allow the evolution of selectively advantageous clade-specific protein variants. Synonymous mutations reduced the repetitiveness of many amino acid repeat-encoding pcTRs. A survey, in 58 strains, revealed that in some pcTR regions in which repetitiveness was not significantly diminished by synonymous mutations the habitat predicted which alleles were present, suggesting roles of pcTR mutation in short-term adaptation and pathogenesis. In C. albicans pcTR mutation apparently is an important mechanism for mutational advance and possibly also rapid adaptation, with synonymous mutations providing a mechanism for adjusting mutation rates of individual pcTRs. Analyses of Arabidopsis and human pcTRs showed that the latter also occurs in other eukaryotes.
Collapse
|
56
|
Gu C, Dong B, Xu L, Tembrock LR, Zheng S, Wu Z. The Complete Chloroplast Genome of Heimia myrtifolia and Comparative Analysis within Myrtales. Molecules 2018; 23:E846. [PMID: 29642470 PMCID: PMC6017443 DOI: 10.3390/molecules23040846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
Heimia myrtifolia is an important medicinal plant with several pharmacologically active alkaloids and is also used as an ornamental landscape plant. The purpose of this study is to complete and characterize the chloroplast (cp) genome of H. myrtifolia and compare genomic features to other Myrtales species' cp genomes. The analysis showed that H. myrtifolia has a total length of 159,219 bp with a typical quadripartite structure containing two identical inverted repeats (IRs) of 25,643 bp isolated by one large single copy (LSC) of 88,571 bp and one small single copy (SSC) of 18,822 bp. The H. myrtifolia cp genome contains 129 genes with eight ribosomal RNAs, 30 transfer RNAs, and 78 protein coding genes, in which 17 genes are duplicated in two IR regions. The genome organization including gene type and number and guanine-cytosine (GC) content is analyzed among the 12 cp genomes in this study. Approximately 255 simple sequence repeats (SSRs) and 16 forward, two reverses, and two palindromic repeats were identified in the H. myrtifolia cp genome. By comparing the whole H. myrtifolia cp genome with 11 other Myrtales species, the results showed that the sequence similarity was high between coding regions while sequence divergence was high between intergenic regions. By employing the full cp genomes for phylogenetic analysis, structural and sequence differences were characterized between H. myrtifolia and 11 Myrtales species illustrating what patterns are common in the evolution of cp genomes within the Myrtales. The first entire cp genome in the genus Heimia provides a valuable resource for further studies in these medicinally and ornamentally important taxa.
Collapse
Affiliation(s)
- Cuihua Gu
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Bin Dong
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Liang Xu
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Luke R Tembrock
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Shaoyu Zheng
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 5011, USA.
| |
Collapse
|
57
|
The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species. Int J Mol Sci 2018; 19:ijms19020525. [PMID: 29425128 PMCID: PMC5855747 DOI: 10.3390/ijms19020525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.
Collapse
|
58
|
Franco ME, Bitencourt TA, Marins M, Fachin AL. In silico characterization of tandem repeats in Trichophyton rubrum and related dermatophytes provides new insights into their role in pathogenesis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:3866792. [PMID: 29220431 PMCID: PMC5502367 DOI: 10.1093/database/bax035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/28/2017] [Indexed: 01/01/2023]
Abstract
Trichophyton rubrum is the most common etiological agent of dermatophytoses worldwide, which is able to degrade keratinized tissues. The sequencing of the genome of different dermatophyte species has provided a large amount of data, including tandem repeats that may play a role in genetic variability and in the pathogenesis of these fungi. Tandem repeats are adjacent DNA sequences of 2–200 nucleotides in length, which exert regulatory and adaptive functions. These repetitive DNA sequences are found in different classes of fungal proteins, especially those involved in cell adhesion, a determinant factor for the establishment of fungal infection. The objective of this study was to develop a Dermatophyte Tandem Repeat Database (DTRDB) for the storage and identification of tandem repeats in T. rubrum and six other dermatophyte species. The current version of the database contains 35 577 tandem repeats detected in 16 173 coding sequences. The repeats can be searched using entry parameters such as repeat unit length (nt—nucleotide), repeat number, variability score, and repeat sequence motif. These data were used to study the relative frequency and distribution of repeats in the sequences, as well as their possible functions in dermatophytes. A search of the database revealed that these repeats occur in 22–33% of genes transcribed in dermatophytes where they could be involved in the success of adaptation to the host tissue and establishment of infection. The repeats were detected in transcripts that are mainly related to three biological processes: regulation, adhesion, and metabolism. The database developed enables users to identify and analyse tandem repeat regions in target genes related to pathogenicity and fungal–host interactions in dermatophytes and may contribute to the discovery of new targets for the development of antifungal agents. Database URL:http://comp.mch.ifsuldeminas.edu.br/dtrdb/
Collapse
Affiliation(s)
- Matheus Eloy Franco
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Federal Institute of Education, Science and Technology of South of Minas Gerais - IFSULDEMINAS, 37750-000, Brazil
| | - Tamires Aparecida Bitencourt
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Departamento de Genetica, 049-900, FMRP-USP, SP, Brazil
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Curso de Medicina, Universidade de Ribeirão Preto, SP, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Curso de Medicina, Universidade de Ribeirão Preto, SP, Brazil
| |
Collapse
|
59
|
Chaudhry SR, Lwin N, Phelan D, Escalante AA, Battistuzzi FU. Comparative analysis of low complexity regions in Plasmodia. Sci Rep 2018; 8:335. [PMID: 29321589 PMCID: PMC5762703 DOI: 10.1038/s41598-017-18695-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Low complexity regions (LCRs) are a common feature shared by many genomes, but their evolutionary and functional significance remains mostly unknown. At the core of the uncertainty is a poor understanding of the mechanisms that regulate their retention in genomes, whether driven by natural selection or neutral evolution. Applying a comparative approach of LCRs to multiple strains and species is a powerful approach to identify patterns of conservation in these regions. Using this method, we investigate the evolutionary history of LCRs in the genus Plasmodium based on orthologous protein coding genes shared by 11 species and strains from primate and rodent-infecting pathogens. We find multiple lines of evidence in support of natural selection as a major evolutionary force shaping the composition and conservation of LCRs through time and signatures that their evolutionary paths are species specific. Our findings add a comparative analysis perspective to the debate on the evolution of LCRs and harness the power of sequence comparisons to identify potential functionally important LCR candidates.
Collapse
Affiliation(s)
- S R Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - N Lwin
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - D Phelan
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - A A Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - F U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA. .,Center for Data Science and Big Data Analytics, Oakland University, Rochester, MI, USA.
| |
Collapse
|
60
|
Dhatterwal P, Mehrotra S, Mehrotra R. Optimization of PCR conditions for amplifying an AT-rich amino acid transporter promoter sequence with high number of tandem repeats from Arabidopsis thaliana. BMC Res Notes 2017; 10:638. [PMID: 29183338 PMCID: PMC5706289 DOI: 10.1186/s13104-017-2982-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The aim of the present study is to optimize the PCR conditions required to amplify the promoter sequence of an amino acid transporter having an AT-rich base composition with a high number of tandem repeats. RESULT Results show that successful amplification can be achieved by performing a 2-step PCR at a lower extension temperature of 65 °C for an increased extension period of 1.5 min/kb, with MgCl2 concentration ranging from 2.5 to 3.0 mM. The results also suggest that the DNA concentration of about 25-30 ng/µl was essential to achieve this amplification.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan, 333031, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan, 333031, India.
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
61
|
Distinct patterns of simple sequence repeats and GC distribution in intragenic and intergenic regions of primate genomes. Aging (Albany NY) 2017; 8:2635-2654. [PMID: 27644032 PMCID: PMC5191860 DOI: 10.18632/aging.101025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2016] [Indexed: 01/23/2023]
Abstract
As the first systematic examination of simple sequence repeats (SSRs) and guanine-cytosine (GC) distribution in intragenic and intergenic regions of ten primates, our study showed that SSRs and GC displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation. Our results suggest that the majority of SSRs are distributed in non-coding regions, such as the introns, TEs, and intergenic regions. In these primates, trinucleotide perfect (P) SSRs were the most abundant repeats type in the 5'UTRs and CDSs, whereas, mononucleotide P-SSRs were the most in the intron, 3'UTRs, TEs, and intergenic regions. The GC-contents varied greatly among different intragenic and intergenic regions: 5'UTRs > CDSs > 3'UTRs > TEs > introns > intergenic regions, and high GC-content was frequently distributed in exon-rich regions. Our results also showed that in the same intragenic and intergenic regions, the distribution of GC-contents were great similarity in the different primates. Tri- and hexanucleotide P-SSRs had the most GC-contents in the 5'UTRs and CDSs, whereas mononucleotide P-SSRs had the least GC-contents in the six genomic regions of these primates. The most frequent motifs for different length varied obviously with the different genomic regions.
Collapse
|
62
|
Prentice MB, Bowman J, Lalor JL, McKay MM, Thomson LA, Watt CM, McAdam AG, Murray DL, Wilson PJ. Signatures of selection in mammalian clock genes with coding trinucleotide repeats: Implications for studying the genomics of high-pace adaptation. Ecol Evol 2017; 7:7254-7276. [PMID: 28944015 PMCID: PMC5606889 DOI: 10.1002/ece3.3223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Climate change is predicted to affect the reproductive ecology of wildlife; however, we have yet to understand if and how species can adapt to the rapid pace of change. Clock genes are functional genes likely critical for adaptation to shifting seasonal conditions through shifts in timing cues. Many of these genes contain coding trinucleotide repeats, which offer the potential for higher rates of change than single nucleotide polymorphisms (SNPs) at coding sites, and, thus, may translate to faster rates of adaptation in changing environments. We characterized repeats in 22 clock genes across all annotated mammal species and evaluated the potential for selection on repeat motifs in three clock genes (NR1D1,CLOCK, and PER1) in three congeneric species pairs with different latitudinal range limits: Canada lynx and bobcat (Lynx canadensis and L. rufus), northern and southern flying squirrels (Glaucomys sabrinus and G. volans), and white‐footed and deer mouse (Peromyscus leucopus and P. maniculatus). Signatures of positive selection were found in both the interspecific comparison of Canada lynx and bobcat, and intraspecific analyses in Canada lynx. Northern and southern flying squirrels showed differing frequencies at common CLOCK alleles and a signature of balancing selection. Regional excess homozygosity was found in the deer mouse at PER1 suggesting disruptive selection, and further analyses suggested balancing selection in the white‐footed mouse. These preliminary signatures of selection and the presence of trinucleotide repeats within many clock genes warrant further consideration of the importance of candidate gene motifs for adaptation to climate change.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Peterborough ON Canada
| | | | - Michelle M McKay
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | | | - Cristen M Watt
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Andrew G McAdam
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | | | - Paul J Wilson
- Biology Department Trent University Peterborough ON Canada
| |
Collapse
|
63
|
Bogdanowicz W, Rutkowski R, Gabrielyan BK, Ryspaev A, Asatryan AN, Mkrtchyan JA, Bujalska BM. Fish introductions in the former Soviet Union: The Sevan trout (Salmo ischchan) - 80 years later. PLoS One 2017; 12:e0180605. [PMID: 28683097 PMCID: PMC5500335 DOI: 10.1371/journal.pone.0180605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
The Soviet Union played the leading role in fish introductions in Eurasia. However, only 3% of all introductions prior to 1978 gave a commercial benefit. One of the noteworthy examples appears to be the Sevan trout (Salmo ischchan Kessler, 1877)-an endemic salmonid of Lake Sevan in Armenia. This species has been introduced to Kirghizstan, Kazakhstan, and Uzbekistan, however, only the Kirghiz population has persisted in relatively high numbers. In this paper we provide the first extensive molecular study of S. ischchan using samples from the native population from Lake Sevan and three hatcheries in Armenia, as well as from the population introduced to Lake Issyk Kul in Kirghizstan. The Kirghiz population has been isolated since the introductions took place in 1930 and 1936. Our results, based on 11 nuclear microsatellites and a 905 bp fragment of the mitochondrial control region suggest that hatcheries have maintained genetic variability by way of ongoing translocations of individuals from Lake Sevan. Simultaneously, significant Garza-Williamson M-values suggest that bottlenecks could have reduced the genetic variability of the wild populations in the past. This hypothesis is supported by historical data, indicating highly manipulated water-level regulations and poaching as two main factors that dramatically impact fish abundance in the lake. On the other hand, a similar situation has been observed in Kirghizstan, but this population likely rebounded from small population size faster than the other populations examined. The Kirghiz population is significantly genetically differentiated from the other groups and have morphological features and biological attributes not observed in the source population. Genetic data imply that the effective population size in the native population is lower than that found in the introduced population, suggesting that some active protection of the Lake Sevan population may be needed urgently.
Collapse
Affiliation(s)
- Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- * E-mail:
| | - Robert Rutkowski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| | - Bardukh K. Gabrielyan
- Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Akylbek Ryspaev
- Institute of Biology and Pedology, Kirghizstan National Academy of Sciences, Bishkek, Kirghizstan
| | | | | | - Barbara M. Bujalska
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
64
|
Dias C, Giordano M, Frechette R, Bellone S, Polychronakos C, Legault L, Deal CL, Goodyer CG. Genetic variations at the human growth hormone receptor (GHR) gene locus are associated with idiopathic short stature. J Cell Mol Med 2017; 21:2985-2999. [PMID: 28557176 PMCID: PMC5661101 DOI: 10.1111/jcmm.13210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
GH plays an essential role in the growing child by binding to the growth hormone receptor (GHR) on target cells and regulating multiple growth promoting and metabolic effects. Mutations in the GHR gene coding regions result in GH insensitivity (dwarfism) due to a dysfunctional receptor protein. However, children with idiopathic short stature (ISS) show growth impairment without GH or GHR defects. We hypothesized that decreased expression of the GHR gene may be involved. To test this, we investigated whether common genetic variants (microsatellites, SNPs) in regulatory regions of the GHR gene region were associated with the ISS phenotype. Genotyping of a GT‐repeat microsatellite in the GHR 5′UTR in a Montreal ISS cohort (n = 37 ISS, n = 105 controls) revealed that the incidence of the long/short (L/S) genotype was 3.3× higher in ISS children than controls (P = 0.04, OR = 3.85). In an Italian replication cohort (n = 143 ISS, n = 282 controls), the medium/short (M/S) genotype was 1.9× more frequent in the male ISS than controls (P = 0.017, OR = 2.26). In both ISS cohorts, logistic regression analysis of 27 SNPs showed an association of ISS with rs4292454, while haplotype analysis revealed specific risk haplotypes in the 3′ haploblocks. In contrast, there were no differences in GT genotype frequencies in a cohort of short stature (SS) adults versus controls (CARTaGENE: n = 168 SS, n = 207 controls) and the risk haplotype in the SS cohort was located in the most 5′ haploblock. These data suggest that the variants identified are potentially genetic markers specifically associated with the ISS phenotype.
Collapse
Affiliation(s)
- Christel Dias
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mara Giordano
- Laboratory of Human Genetics, Department of Health Science, University of Eastern Piedmont, Novara, Italy
| | | | - Simonetta Bellone
- Division of Pediatrics, Department of Health Science, University of Eastern Piedmont, Novara, Italy
| | - Constantin Polychronakos
- Departments of Experimental Medicine, Human Genetics and Pediatrics, McGill University, Montreal, QC, Canada
| | - Laurent Legault
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Cheri L Deal
- CHU Ste-Justine Research Centre and Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Gates Goodyer
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.,Departments of Experimental Medicine and Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
65
|
Cattani AM, Siqueira FM, Guedes RLM, Schrank IS. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation. PLoS One 2016; 11:e0168626. [PMID: 28005945 PMCID: PMC5179023 DOI: 10.1371/journal.pone.0168626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.
Collapse
Affiliation(s)
- Amanda Malvessi Cattani
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
66
|
Davies HM, Thalassinos K, Osborne AR. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte. J Biol Chem 2016; 291:26188-26207. [PMID: 27777305 PMCID: PMC5207086 DOI: 10.1074/jbc.m116.761213] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure.
Collapse
Affiliation(s)
- Heledd M Davies
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
67
|
Xu D, Pavlidis P, Thamadilok S, Redwood E, Fox S, Blekhman R, Ruhl S, Gokcumen O. Recent evolution of the salivary mucin MUC7. Sci Rep 2016; 6:31791. [PMID: 27558399 PMCID: PMC4997351 DOI: 10.1038/srep31791] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Genomic structural variants constitute the majority of variable base pairs in primate genomes and affect gene function in multiple ways. While whole gene duplications and deletions are relatively well-studied, the biology of subexonic (i.e., within coding exon sequences), copy number variation remains elusive. The salivary MUC7 gene provides an opportunity for studying such variation, as it harbors copy number variable subexonic repeat sequences that encode for densely O-glycosylated domains (PTS-repeats) with microbe-binding properties. To understand the evolution of this gene, we analyzed mammalian and primate genomes within a comparative framework. Our analyses revealed that (i) MUC7 has emerged in the placental mammal ancestor and rapidly gained multiple sites for O-glycosylation; (ii) MUC7 has retained its extracellular activity in saliva in placental mammals; (iii) the anti-fungal domain of the protein was remodified under positive selection in the primate lineage; and (iv) MUC7 PTS-repeats have evolved recurrently and under adaptive constraints. Our results establish MUC7 as a major player in salivary adaptation, likely as a response to diverse pathogenic exposure in primates. On a broader scale, our study highlights variable subexonic repeats as a primary source for modular evolutionary innovation that lead to rapid functional adaptation.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, New York 14214, USA
| | - Emilie Redwood
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Sara Fox
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minnesota 55455, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, New York 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| |
Collapse
|
68
|
Vieira MLC, Santini L, Diniz AL, Munhoz CDF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 2016; 39:312-28. [PMID: 27561112 PMCID: PMC5004837 DOI: 10.1590/1678-4685-gmb-2016-0027] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
Microsatellites or Single Sequence Repeats (SSRs) are extensively employed in plant genetics studies, using both low and high throughput genotyping approaches. Motivated by the importance of these sequences over the last decades this review aims to address some theoretical aspects of SSRs, including definition, characterization and biological function. The methodologies for the development of SSR loci, genotyping and their applications as molecular markers are also reviewed. Finally, two data surveys are presented. The first was conducted using the main database of Web of Science, prospecting for articles published over the period from 2010 to 2015, resulting in approximately 930 records. The second survey was focused on papers that aimed at SSR marker development, published in the American Journal of Botany's Primer Notes and Protocols in Plant Sciences (over 2013 up to 2015), resulting in a total of 87 publications. This scenario confirms the current relevance of SSRs and indicates their continuous utilization in plant science.
Collapse
Affiliation(s)
- Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Luciane Santini
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Augusto Lima Diniz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Carla de Freitas Munhoz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| |
Collapse
|
69
|
Yang J, Li F. Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet 2016; 63:57-63. [PMID: 27260214 DOI: 10.1007/s00294-016-0619-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/24/2023]
Abstract
Repetitive DNA sequences, comprising up to 50 % of the genome in all eukaryotes, play important roles in a wide range of cellular functions, such as transcriptional regulation, genome stability, and cellular differentiation. However, due to technical difficulties in differentiating their sequences, DNA repeats remain one of the most mysterious parts of eukaryotic genomes. Key questions, such as how repetitive entities behave at individual level and how the internal architecture of these repeats is organized, are still poorly understood. Recent advances from our group reveal unexpected position-dependent variation within tandem DNA repeats in fission yeast. Despite sharing identical DNA sequences, the peri-centromeric repeats are organized into diverse epigenetic states and chromatin structures. We demonstrate that this position-dependent variation requires key heterochromatin factors and condensin. Our works further suggest that the peri-centromeric repeats are organized into distinct higher order structures that ensure a proper positioning of CENP-A, the centromere-specific histone H3 variant, to centromeres. These most recent developments offer insights into the mechanisms underlying the position effect within tandem DNA arrays, and have broad implications in the field of epigenetics and chromatin biology.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003, USA. .,1009 Silver Center, 100 Washington Square East, New York, NY, 10003-6688, USA.
| |
Collapse
|
70
|
Gu C, Tembrock LR, Johnson NG, Simmons MP, Wu Z. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae). PLoS One 2016; 11:e0150752. [PMID: 26950701 PMCID: PMC4780714 DOI: 10.1371/journal.pone.0150752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022] Open
Abstract
Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications.
Collapse
Affiliation(s)
- Cuihua Gu
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, P.R. China
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Nels G. Johnson
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, 37996, Tennessee, United States of America
| | - Mark P. Simmons
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| |
Collapse
|
71
|
Battistuzzi FU, Schneider KA, Spencer MK, Fisher D, Chaudhry S, Escalante AA. Profiles of low complexity regions in Apicomplexa. BMC Evol Biol 2016; 16:47. [PMID: 26923229 PMCID: PMC4770516 DOI: 10.1186/s12862-016-0625-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low complexity regions (LCRs) are a ubiquitous feature in genomes and yet their evolutionary history and functional roles are unclear. Previous studies have shown contrasting evidence in favor of both neutral and selective mechanisms of evolution for different sets of LCRs suggesting that modes of identification of these regions may play a role in our ability to discern their evolutionary history. To further investigate this issue, we used a multiple threshold approach to identify species-specific profiles of proteome complexity and, by comparing properties of these sets, determine the influence that starting parameters have on evolutionary inferences. RESULTS We find that, although qualitatively similar, quantitatively each species has a unique LCR profile which represents the frequency of these regions within each genome. Inferences based on these profiles are more accurate in comparative analyses of genome complexity as they allow to determine the relative complexity of multiple genomes as well as the type of repetitiveness that is most common in each. Based on the multiple threshold LCR sets obtained, we identified predominant evolutionary mechanisms at different complexity levels, which show neutral mechanisms acting on highly repetitive LCRs (e.g., homopolymers) and selective forces becoming more important as heterogeneity of the LCRs increases. CONCLUSIONS Our results show how inferences based on LCRs are influenced by the parameters used to identify these regions. Sets of LCRs are heterogeneous aggregates of regions that include homo- and heteropolymers and, as such, evolve according to different mechanisms. LCR profiles provide a new way to investigate genome complexity across species and to determine the driving mechanism of their evolution.
Collapse
Affiliation(s)
| | - Kristan A Schneider
- Department of MNI, University of Applied Sciences Mittweida, Mittweida, Germany.
| | - Matthew K Spencer
- Department of Geology and Physics, Lake Superior State University, Sault Ste. Marie, MI, USA.
| | - David Fisher
- David Eccles School of Business, University of Utah, Salt Lake City, UT, USA.
| | - Sophia Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA. .,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
72
|
Shore R, Covill L, Pettigrew KA, Brandler WM, Diaz R, Xu Y, Tello JA, Talcott JB, Newbury DF, Stein J, Monaco AP, Paracchini S. The handedness-associated PCSK6 locus spans an intronic promoter regulating novel transcripts. Hum Mol Genet 2016; 25:1771-9. [PMID: 26908617 PMCID: PMC4986331 DOI: 10.1093/hmg/ddw047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
We recently reported the association of the PCSK6 gene with handedness through a quantitative genome-wide association study (GWAS; P < 0.5 × 10−8) for a relative hand skill measure in individuals with dyslexia. PCSK6 activates Nodal, a morphogen involved in regulating left–right body axis determination. Therefore, the GWAS data suggest that the biology underlying the patterning of structural asymmetries may also contribute to behavioural laterality, e.g. handedness. The association is further supported by an independent study reporting a variable number tandem repeat (VNTR) within the same PCSK6 locus to be associated with degree of handedness in a general population cohort. Here, we have conducted a functional analysis of the PCSK6 locus combining further genetic analysis, in silico predictions and molecular assays. We have shown that the previous GWAS signal was not tagging a VNTR effect, suggesting that the two markers have independent effects. We demonstrated experimentally that one of the top GWAS-associated markers, rs11855145, directly alters the binding site for a nuclear factor. Furthermore, we have shown that the predicted regulatory region adjacent to rs11855415 acts as a bidirectional promoter controlling the expression of novel RNA transcripts. These include both an antisense long non-coding RNA (lncRNA) and a short PCSK6 isoform predicted to be coding. This is the first molecular characterization of a handedness-associated locus that supports the role of common variants in non-coding sequences in influencing complex phenotypes through gene expression regulation.
Collapse
Affiliation(s)
- Robert Shore
- School of Medicine, University of St Andrews, St Andrews KY169TF, UK
| | - Laura Covill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kerry A Pettigrew
- School of Medicine, University of St Andrews, St Andrews KY169TF, UK
| | - William M Brandler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Rebeca Diaz
- School of Medicine, University of St Andrews, St Andrews KY169TF, UK
| | - Yiwang Xu
- School of Medicine, University of St Andrews, St Andrews KY169TF, UK
| | - Javier A Tello
- School of Medicine, University of St Andrews, St Andrews KY169TF, UK
| | - Joel B Talcott
- School of Life and Health Sciences, Aston University, Birmingham, UK and
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - John Stein
- Department of Physiology, Anatomy & Genetics, Parks Rd., Oxford OX1 3PT, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, St Andrews KY169TF, UK,
| |
Collapse
|
73
|
Prentice MB, Bowman J, Wilson PJ. A test of somatic mosaicism in the androgen receptor gene of Canada lynx (Lynx canadensis). BMC Genet 2015; 16:125. [PMID: 26503624 PMCID: PMC4623281 DOI: 10.1186/s12863-015-0284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022] Open
Abstract
Background The androgen receptor, an X-linked gene, has been widely studied in human populations because it contains highly polymorphic trinucleotide repeat motifs that have been associated with a number of adverse human health and behavioral effects. A previous study on the androgen receptor gene in carnivores reported somatic mosaicism in the tissues of a number of species including Eurasian lynx (Lynx lynx). We investigated this claim in a closely related species, Canada lynx (Lynx canadensis). The presence of somatic mosaicism in lynx tissues could have implications for the future study of exonic trinucleotide repeats in landscape genomic studies, in which the accurate reporting of genotypes would be highly problematic. Methods To determine whether mosaicism occurs in Canada lynx, two lynx individuals were sampled for a variety of tissue types (lynx 1) and tissue locations (lynx 1 and 2), and 1,672 individuals of known sex were genotyped to further rule out mosaicism. Results We found no evidence of mosaicism in tissues from the two necropsied individuals, or any of our genotyped samples. Conclusions Our results indicate that mosaicism does not manifest in Canada lynx. Therefore, the use of hide samples for further work involving trinucleotide repeat polymorphisms in Canada lynx is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0284-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental & Life Sciences, Trent University, 1600 West Bank Drive, Peterborough, K9J 7B8, ON, Canada.
| | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, K9J 7B8, ON, Canada.
| | - Paul J Wilson
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, K9J 7B8, ON, Canada.
| |
Collapse
|
74
|
Alisoltani A, Fallahi H, Shiran B, Alisoltani A, Ebrahimie E. RNA-Seq SSRs and small RNA-Seq SSRs: New approaches in cancer biomarker discovery. Gene 2015; 560:34-43. [DOI: 10.1016/j.gene.2015.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 11/24/2022]
|
75
|
Park BR, Zielke RA, Wierzbicki IH, Mitchell KC, Withey JH, Sikora AE. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen. J Bacteriol 2015; 197:1051-64. [PMID: 25561716 PMCID: PMC4336349 DOI: 10.1128/jb.02329-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023] Open
Abstract
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.
Collapse
Affiliation(s)
- Bo R Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Igor H Wierzbicki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kristie C Mitchell
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
76
|
Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 2015; 6:776-91. [PMID: 24671744 PMCID: PMC4007544 DOI: 10.1093/gbe/evu058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Carlson KD, Sudmant PH, Press MO, Eichler EE, Shendure J, Queitsch C. MIPSTR: a method for multiplex genotyping of germline and somatic STR variation across many individuals. Genome Res 2015; 25:750-61. [PMID: 25659649 PMCID: PMC4417122 DOI: 10.1101/gr.182212.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
Short tandem repeats (STRs) are highly mutable genetic elements that often reside in regulatory and coding DNA. The cumulative evidence of genetic studies on individual STRs suggests that STR variation profoundly affects phenotype and contributes to trait heritability. Despite recent advances in sequencing technology, STR variation has remained largely inaccessible across many individuals compared to single nucleotide variation or copy number variation. STR genotyping with short-read sequence data is confounded by (1) the difficulty of uniquely mapping short, low-complexity reads; and (2) the high rate of STR amplification stutter. Here, we present MIPSTR, a robust, scalable, and affordable method that addresses these challenges. MIPSTR uses targeted capture of STR loci by single-molecule Molecular Inversion Probes (smMIPs) and a unique mapping strategy. Targeted capture and our mapping strategy resolve the first challenge; the use of single molecule information resolves the second challenge. Unlike previous methods, MIPSTR is capable of distinguishing technical error due to amplification stutter from somatic STR mutations. In proof-of-principle experiments, we use MIPSTR to determine germline STR genotypes for 102 STR loci with high accuracy across diverse populations of the plant A. thaliana. We show that putatively functional STRs may be identified by deviation from predicted STR variation and by association with quantitative phenotypes. Using DNA mixing experiments and a mutant deficient in DNA repair, we demonstrate that MIPSTR can detect low-frequency somatic STR variants. MIPSTR is applicable to any organism with a high-quality reference genome and is scalable to genotyping many thousands of STR loci in thousands of individuals.
Collapse
Affiliation(s)
- Keisha D Carlson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Peter H Sudmant
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Maximilian O Press
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
78
|
Dominant short repeated sequences in bacterial genomes. Genomics 2015; 105:175-81. [PMID: 25561351 DOI: 10.1016/j.ygeno.2014.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022]
Abstract
We use a novel multidimensional searching approach to present the first exhaustive search for all possible repeated sequences in 166 genomes selected to cover the bacterial domain. We found an overrepresentation of repeated sequences in all but one of the genomes. The most prevalent repeats by far were related to interspaced short palindromic repeats (CRISPRs)—conferring bacterial adaptive immunity. We identified a deep branching clade of thermophilic Firmicutes containing the highest number of CRISPR repeats. We also identified a high prevalence of tandem repeated heptamers. In addition, we identified GC-rich repeats that could potentially be involved in recombination events. Finally, we identified repeats in a 16322 amino acid mega protein (involved in biofilm formation) and inverted repeats flanking miniature transposable elements (MITEs). In conclusion, the exhaustive search for repeated sequences identified new elements and distribution of these, which has implications for understanding both the ecology and evolution of bacteria.
Collapse
|
79
|
Abstract
The diverse Fusobacterium genus contains species implicated in multiple clinical pathologies, including periodontal disease, preterm birth, and colorectal cancer. The lack of genetic tools for manipulating these organisms leaves us with little understanding of the genes responsible for adherence to and invasion of host cells. Actively invading Fusobacterium species can enter host cells independently, whereas passively invading species need additional factors, such as compromise of mucosal integrity or coinfection with other microbes. We applied whole-genome sequencing and comparative analysis to study the evolution of active and passive invasion strategies and to infer factors associated with active forms of host cell invasion. The evolution of active invasion appears to have followed an adaptive radiation in which two of the three fusobacterial lineages acquired new genes and underwent expansions of ancestral genes that enable active forms of host cell invasion. Compared to passive invaders, active invaders have much larger genomes, encode FadA-related adhesins, and possess twice as many genes encoding membrane-related proteins, including a large expansion of surface-associated proteins containing the MORN2 domain of unknown function. We predict a role for proteins containing MORN2 domains in adhesion and active invasion. In the largest and most comprehensive comparison of sequenced Fusobacterium species to date, we have generated a testable model for the molecular pathogenesis of Fusobacterium infection and illuminate new therapeutic or diagnostic strategies. Fusobacterium species have recently been implicated in a broad spectrum of human pathologies, including Crohn’s disease, ulcerative colitis, preterm birth, and colorectal cancer. Largely due to the genetic intractability of member species, the mechanisms by which Fusobacterium causes these pathologies are not well understood, although adherence to and active invasion of host cells appear important. We examined whole-genome sequence data from a diverse set of Fusobacterium species to identify genetic determinants of active forms of host cell invasion. Our analyses revealed that actively invading Fusobacterium species have larger genomes than passively invading species and possess a specific complement of genes—including a class of genes of unknown function that we predict evolved to enable host cell adherence and invasion. This study provides an important framework for future studies on the role of Fusobacterium in pathologies such as colorectal cancer.
Collapse
|
80
|
Characterization of a novel spore wall protein NbSWP16 with proline-rich tandem repeats from Nosema bombycis (microsporidia). Parasitology 2014; 142:534-42. [DOI: 10.1017/s0031182014001565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Press MO, Carlson KD, Queitsch C. The overdue promise of short tandem repeat variation for heritability. Trends Genet 2014; 30:504-12. [PMID: 25182195 DOI: 10.1016/j.tig.2014.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022]
Abstract
Short tandem repeat (STR) variation has been proposed as a major explanatory factor in the heritability of complex traits in humans and model organisms. However, we still struggle to incorporate STR variation into genotype-phenotype maps. We review here the promise of STRs in contributing to complex trait heritability and highlight the challenges that STRs pose due to their repetitive nature. We argue that STR variants are more likely than single-nucleotide variants to have epistatic interactions, reiterate the need for targeted assays to genotype STRs accurately, and call for more appropriate statistical methods in detecting STR-phenotype associations. Lastly, we suggest that somatic STR variation within individuals may serve as a read-out of disease susceptibility, and is thus potentially a valuable covariate for future association studies.
Collapse
Affiliation(s)
- Maximilian O Press
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA
| | - Keisha D Carlson
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA.
| |
Collapse
|
82
|
Abstract
Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5′-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron–exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5′ and 3′ ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae.
Collapse
|
83
|
Arning L, Ocklenburg S, Schulz S, Ness V, Gerding WM, Hengstler JG, Falkenstein M, Epplen JT, Güntürkün O, Beste C. PCSK6 VNTR Polymorphism Is Associated with Degree of Handedness but Not Direction of Handedness. PLoS One 2013; 8:e67251. [PMID: 23826248 PMCID: PMC3695088 DOI: 10.1371/journal.pone.0067251] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/15/2013] [Indexed: 11/22/2022] Open
Abstract
Although the left and right human cerebral hemispheres differ both functionally and anatomically, the mechanisms that underlie the establishment of these hemispheric specializations, as well as their physiological and behavioral implications, remain largely unknown. Since cerebral asymmetry is strongly correlated with handedness, and handedness is assumed to be influenced by a number of genetic and environmental factors, we performed an association study of LRRTM1 rs6733871 and a number of polymorphisms in PCSK6 and different aspects of handedness assessed with the Edinburgh handedness inventory in a sample of unrelated healthy adults (n = 1113). An intronic 33bp variable-number tandem repeat (VNTR) polymorphism in PCSK6 (rs10523972) shows a significant association (significance threshold: p<0.0025, adjusted for multiple comparisons) with a handedness category comparison (P = 0.0005) and degree of handedness (P = 0.001). These results provide further evidence for the role of PCSK6 as candidate for involvement in the biological mechanisms that underlie the establishment of normal brain lateralization and thus handedness and support the assumption that the degree of handedness, instead the direction, may be the more appropriate indicator of cerebral organization.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Ruhr-University, Bochum, Germany
- * E-mail:
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Stefanie Schulz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Vanessa Ness
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University, Bochum, Germany
| | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Michael Falkenstein
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Jörg T. Epplen
- Department of Human Genetics, Ruhr-University, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Christian Beste
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|