51
|
Sablok G, Yang K, Chen R, Wen X. tRNA Derived smallRNAs: smallRNAs Repertoire Has Yet to Be Decoded in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1167. [PMID: 28791028 PMCID: PMC5524738 DOI: 10.3389/fpls.2017.01167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 05/28/2023]
Abstract
Among several smallRNAs classes, microRNAs play an important role in controlling the post-transcriptional events. Next generation sequencing has played a major role in extending the landscape of miRNAs and revealing their spatio-temporal roles in development and abiotic stress. Lateral evolution of these smallRNAs classes have widely been seen with the recently emerging knowledge on tRNA derived smallRNAs. In the present perspective, we discussed classification, identification and roles of tRNA derived smallRNAs across plants and their potential involvement in abiotic and biotic stresses.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural HistoryHelsinki, Finland
- Department of Biosciences, Viikki Plant Science Center, University of HelsinkiHelsinki, Finland
| | - Kun Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou UniversityGuiyang, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural SciencesTianjin, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou UniversityGuiyang, China
| |
Collapse
|
52
|
Zhou J, Liu S, Chen Y, Fu Y, Silver AJ, Hill MS, Lee I, Lee YS, Bao X. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J Gen Virol 2017; 98:1600-1610. [PMID: 28708049 DOI: 10.1099/jgv.0.000852] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRTI) in children from infancy up to early childhood. Recently, we demonstrated that RSV infection alters cellular small non-coding RNA (sncRNA) expression, most notably the tRNA-derived RNA fragments (tRFs). However, the functions of the tRFs in virus-host interaction are largely unknown. Herein, we examined the role of three RSV-induced tRFs derived from the 5-end of mature tRNAs decoding GlyCCC, LysCTT and CysGCA (named tRF5-GlyCCC, tRF5-LysCTT and tRF5-CysGCA, respectively) in controlling RSV replication. We found that tRF5-GlyCCC and tRF5-LysCTT, but not tRF5-CysGCA, promote RSV replication, demonstrating the functional specificity of tRFs. The associated molecular mechanisms underlying the functions of tRF5-GlyCCC and tRF5-LysCTT were also investigated. Regulating the expression and/or activity of these tRFs may provide new insights into preventive and therapeutic strategies for RSV infection. The study also accumulated data for future development of a tRF targeting algorithm.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Shenxuan Liu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, TongJi Hospital, Huazhong University of Science and Technology, PR China
| | - Yu Chen
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, TongJi Hospital, Huazhong University of Science and Technology, PR China
| | - Yu Fu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander J Silver
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Chemistry, Williams College, Williamstown, MA, USA
| | - Mark S Hill
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Yong Sun Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Republic of Korea
| | - Xiaoyong Bao
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Science, University of Texas Medical Branch, Galveston, Texas, TX, USA.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
53
|
Hur SSJ, Cropley JE, Suter CM. Paternal epigenetic programming: evolving metabolic disease risk. J Mol Endocrinol 2017; 58:R159-R168. [PMID: 28100703 DOI: 10.1530/jme-16-0236] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/05/2017] [Indexed: 02/03/2023]
Abstract
Parental health or exposures can affect the lifetime health outcomes of offspring, independently of inherited genotypes. Such 'epigenetic' effects occur over a broad range of environmental stressors, including defects in parental metabolism. Although maternal metabolic effects are well documented, it has only recently been established that that there is also an independent paternal contribution to long-term metabolic health. Both paternal undernutrition and overnutrition can induce metabolic phenotypes in immediate offspring, and in some cases, the induced phenotype can affect multiple generations, implying inheritance of an acquired trait. The male lineage transmission of metabolic disease risk in these cases implicates a heritable factor carried by sperm. Sperm-based transmission provides a tractable system to interrogate heritable epigenetic factors influencing metabolism, and as detailed here, animal models of paternal programming have already provided some significant insights. Here, we review the evidence for paternal programming of metabolism in humans and animal models, and the available evidence on potential underlying mechanisms. Programming by paternal metabolism can be observed in multiple species across animal phyla, suggesting that this phenomenon may have a unique evolutionary significance.
Collapse
Affiliation(s)
- Suzy S J Hur
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
- Faculty of MedicineUniversity of New South Wales, Kensington, New South Wales, Australia
| | - Jennifer E Cropley
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
- Faculty of MedicineUniversity of New South Wales, Kensington, New South Wales, Australia
| | - Catherine M Suter
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
- Faculty of MedicineUniversity of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
54
|
Bayer-Santos E, Marini MM, da Silveira JF. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front Microbiol 2017; 8:474. [PMID: 28377760 PMCID: PMC5359270 DOI: 10.3389/fmicb.2017.00474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
| | - Marjorie M Marini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - José F da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
55
|
Shigematsu M, Kirino Y. 5'-Terminal nucleotide variations in human cytoplasmic tRNAHisGUG and its 5'-halves. RNA (NEW YORK, N.Y.) 2017; 23:161-168. [PMID: 27879434 PMCID: PMC5238791 DOI: 10.1261/rna.058024.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Transfer RNAs (tRNAs) are fundamental adapter components of translational machinery. tRNAs can further serve as a source of tRNA-derived noncoding RNAs that play important roles in various biological processes beyond translation. Among all species of tRNAs, tRNAHisGUG has been known to uniquely contain an additional guanosine residue at the -1 position (G-1) of its 5'-end. To analyze this -1 nucleotide in detail, we developed a TaqMan qRT-PCR method that can distinctively quantify human mature cytoplasmic tRNAHisGUG containing G-1, U-1, A-1, or C-1 or lacking the -1 nucleotide (starting from G1). Application of this method to the mature tRNA fraction of BT-474 breast cancer cells revealed the presence of tRNAHisGUG containing U-1 as well as the one containing G-1 Moreover, tRNA lacking the -1 nucleotide was also detected, thus indicating the heterogeneous expression of 5'-tRNAHisGUG variants. A sequence library of sex hormone-induced 5'-tRNA halves (5'-SHOT-RNAs), identified via cP-RNA-seq of a BT-474 small RNA fraction, also demonstrated the expression of 5'-tRNAHisGUG halves containing G-1, U-1, or G1 as 5'-terminal nucleotides. Although the detected 5'-nucleotide species were identical, the relative abundances differed widely between mature tRNA and 5'-half from the same BT-474 cells. The majority of mature tRNAs contained the -1 nucleotide, whereas the majority of 5'-halves lacked this nucleotide, which was biochemically confirmed using a primer extension assay. These results reveal the novel identities of tRNAHisGUG molecules and provide insights into tRNAHisGUG maturation and the regulation of tRNA half production.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
56
|
Comprehensive evaluation of extracellular small RNA isolation methods from serum in high throughput sequencing. BMC Genomics 2017; 18:50. [PMID: 28061744 PMCID: PMC5219650 DOI: 10.1186/s12864-016-3470-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/23/2016] [Indexed: 01/02/2023] Open
Abstract
Background DNA and RNA fractions from whole blood, serum and plasma are increasingly popular analytes that are currently under investigation for their utility in the diagnosis and staging of disease. Small non-coding ribonucleic acids (sRNAs), specifically microRNAs (miRNAs) and their variant isoforms (isomiRs), and transfer RNA (tRNA)-derived small RNAs (tDRs) comprise a repertoire of molecules particularly promising in this regard. Results In this designed study, we compared the performance of various methods and kits for isolating circulating extracellular sRNAs (ex-sRNAs). ex-sRNAs from one healthy individual were isolated using five different isolation kits: Qiagen Circulating Nucleic Acid Kit, ThermoFisher Scientific Ambion TRIzol LS Reagent, Qiagen miRNEasy, QiaSymphony RNA extraction kit and the Exiqon MiRCURY RNA Isolation Kit. Each isolation method was repeated four times. A total of 20 small RNA sequencing (sRNAseq) libraries were constructed, sequenced and compared using a rigorous bioinformatics approach. The Circulating Nucleic Acid Kit had the greatest miRNA isolation variability, but had the lowest isolation variability for other RNA classes (isomiRs, tDRs, and other miscellaneous sRNAs (osRNA). However, the Circulating Nucleic Acid Kit consistently generated the fewest number of reads mapped to the genome, as compared to the best-performing method, Ambion TRIzol, which mapped 10% of the miRNAs, 7.2% of the tDRs and 23.1% of the osRNAs. The other methods performed intermediary, with QiaSymphony mapping 14% of the osRNAs, and miRNEasy mapping 4.6% of the tDRs and 2.9% of the miRNAs, achieving the second best kit performance rating overall. Conclusions In summary, each isolation kit displayed different performance characteristics that could be construed as biased or advantageous, depending upon the downstream application and number of samples that require processing. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3470-z) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Abstract
Background: The progress of next-generation sequencing technologies has unveiled various non-coding RNAs that have previously been considered products of random degradation and attracted only minimal interest. Among small RNA families, microRNA (miRNAs) have traditionally been considered key post-transcriptional regulators. However, recent studies have reported evidence for widespread presence of fragments of tRNA molecules (tRFs) across a range of organisms and tissues, and of tRF involvement in Argonaute complexes.
Methods:To elucidate potential tRF functionality, we compared available RNA sequencing datasets derived from the brains of young, mid-aged and old rats. Using sliding 7-mer windows along a tRF, we searched for putative seed sequences with high numbers of conserved complementary sites within 3' UTRs of 23 vertebrate genomes. We analyzed Gene Ontology term enrichment of predicted tRF targets and compared their transcript levels with targets of miRNAs in the context of age.
Results and Discussion: We detected tRFs originating from 3’- and 5’-ends of tRNAs in rat brains at significant levels. These fragments showed dynamic changes: 3’ tRFs monotonously increased with age, while 5’ tRFs displayed less consistent patterns. Furthermore, 3’ tRFs showed a narrow size range compared to 5’ tRFs, suggesting a difference in their biogenesis mechanisms. Similar to our earlier results in
Drosophila and compatible with other experimental findings, we found “seed” sequence locations on both ends of different tRFs. Putative targets of these fragments were found to be enriched in neuronal and developmental functions. Comparison of tRFs and miRNAs increasing in abundance with age revealed small, but distinct changes in brain target transcript levels for these two types of small RNA, with the higher proportion of tRF targets decreasing with age. We also illustrated the utility of tRF analysis for annotating tRNA genes in sequenced genomes.
Collapse
Affiliation(s)
- Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| |
Collapse
|
58
|
Ma H, Weber GM, Wei H, Yao J. Identification of Mitochondrial Genome-Encoded Small RNAs Related to Egg Deterioration Caused by Postovulatory Aging in Rainbow Trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:584-597. [PMID: 27778119 DOI: 10.1007/s10126-016-9719-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory aging is one of the most significant causes as reared rainbow trout do not usually volitionally oviposit the ovulated eggs. In order to uncover the genetic regulation underling egg deterioration caused by postovulatory aging in rainbow trout, mitochondrial genome-encoded small RNA (mitosRNAs) were analyzed from unfertilized eggs on Days 1, 7, and 14 postovulation with fertilization rates of 91.8, 73.4, and less than 50 %, respectively. A total of 248 mitosRNAs were identified from Illumina high-throughput sequencing of the small RNA libraries derived from the eggs of ten females. Ninety-eight of the small RNAs exhibited more than a threefold difference in expression between eggs from females exhibiting high fertilization rates at Day 1 and low fertilization rates at Day 14. The differentially expressed mitosRNAs were predominantly derived from mitochondrial D-loop, tRNA, rRNA, COII, and Cytb gene regions. Real-time quantitative PCR analysis was carried out for 14 differentially expressed mitosRNAs, of which, 12 were confirmed to be consistent with the sequencing reads. Further characterization of the differentially expressed mitosRNAs may lead to the development of new biomarkers for egg quality in rainbow trout.
Collapse
Affiliation(s)
- Hao Ma
- National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, 25430, USA.
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, 25430, USA
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
59
|
Veneziano D, Di Bella S, Nigita G, Laganà A, Ferro A, Croce CM. Noncoding RNA: Current Deep Sequencing Data Analysis Approaches and Challenges. Hum Mutat 2016; 37:1283-1298. [PMID: 27516218 DOI: 10.1002/humu.23066] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
One of the most significant biological discoveries of the last decade is represented by the reality that the vast majority of the transcribed genomic output comprises diverse classes of noncoding RNAs (ncRNAs) that may play key roles and/or be affected by many biochemical cellular processes (i.e., RNA editing), with implications in human health and disease. With 90% of the human genome being transcribed and novel classes of ncRNA emerging (tRNA-derived small RNAs and circular RNAs among others), the great majority of the human transcriptome suggests that many important ncRNA functions/processes are yet to be discovered. An approach to filling such vast void of knowledge has been recently provided by the increasing application of next-generation sequencing (NGS), offering the unprecedented opportunity to obtain a more accurate profiling with higher resolution, increased throughput, sequencing depth, and low experimental complexity, concurrently posing an increasing challenge in terms of efficiency, accuracy, and usability of data analysis software. This review provides an overview of ncRNAs, NGS technology, and the most recent/popular computational approaches and the challenges they attempt to solve, which are essential to a more sensitive and comprehensive ncRNA annotation capable of furthering our understanding of this still vastly uncharted genomic territory.
Collapse
Affiliation(s)
- Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | | | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, 10029
| | - Afredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, 95125, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
60
|
Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JWK, Buckland ME, Keam SP, Hutvagner G, Humphreys DT, Langley KG, Henstridge DC, Martin DIK, Febbraio MA, Suter CM. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol Metab 2016; 5:699-708. [PMID: 27656407 PMCID: PMC5021672 DOI: 10.1016/j.molmet.2016.06.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
Objective Parental obesity can induce metabolic phenotypes in offspring independent of the inherited DNA sequence. Here we asked whether such non-genetic acquired metabolic traits can be passed on to a second generation that has never been exposed to obesity, even as germ cells. Methods We examined the F1, F2, and F3 a/a offspring derived from F0 matings of obese prediabetic Avy/a sires and lean a/a dams. After F0, only lean a/a mice were used for breeding. Results We found that F1 sons of obese founder males exhibited defects in glucose and lipid metabolism, but only upon a post-weaning dietary challenge. F1 males transmitted these defects to their own male progeny (F2) in the absence of the dietary challenge, but the phenotype was largely attenuated by F3. The sperm of F1 males exhibited changes in the abundance of several small RNA species, including the recently reported diet-responsive tRNA-derived fragments. Conclusions These data indicate that induced metabolic phenotypes may be propagated for a generation beyond any direct exposure to an inducing factor. This non-genetic inheritance likely occurs via the actions of sperm noncoding RNA. Paternal obesity induces latent defects in metabolism in F1 sons. Metabolic disease in F1 sons is exposed by short challenge with a Western diet. F1 sons transmit their phenotype to F2 grandsons in the absence of dietary challenge. F1 sperm exhibit changes to prominent small RNA species.
Collapse
Affiliation(s)
- Jennifer E Cropley
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Sally A Eaton
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Alastair Aiken
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Paul E Young
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Eleni Giannoulatou
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Joshua W K Ho
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Michael E Buckland
- Brain and Mind Research Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon P Keam
- Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gyorgy Hutvagner
- Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David T Humphreys
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Katherine G Langley
- Cellular and Molecular Metabolism Laboratory, Baker IDI Diabetes and Heart Research Institute, Melbourne, VIC, 3004, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Diabetes and Heart Research Institute, Melbourne, VIC, 3004, Australia
| | - David I K Martin
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Mark A Febbraio
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Catherine M Suter
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
61
|
Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, Demers EG, Dolben EL, Hammond JH, Hogan DA, Stanton BA. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles. PLoS Pathog 2016; 12:e1005672. [PMID: 27295279 PMCID: PMC4905634 DOI: 10.1371/journal.ppat.1005672] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response. Pseudomonas aeruginosa is a gram-negative, opportunistic pathogen that accounts for about 10% of all hospital-acquired infections in the US and primarily infects immunocompromised hosts, including patients with chronic obstructive pulmonary disease and cystic fibrosis. Gram-negative bacteria like P. aeruginosa produce outer membrane vesicles (OMVs), which constitute an important mechanism for host colonization. In this study we demonstrate a novel mechanism of pathogen-host interaction that attenuates the innate immune response in human airway epithelial cells and in mouse lung through a regulatory sRNA contained inside OMVs secreted by P. aeruginosa.
Collapse
Affiliation(s)
- Katja Koeppen
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Michael Jarek
- Genome Analytics Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Maren Scharfe
- Genome Analytics Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Scott A. Gerber
- Departments of Genetics and Biochemistry, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Daniel W. Mielcarz
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Elora G. Demers
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Emily L. Dolben
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - John H. Hammond
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
62
|
Asha S, Soniya EV. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:767. [PMID: 27313593 PMCID: PMC4887504 DOI: 10.3389/fpls.2016.00767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/17/2016] [Indexed: 05/09/2023]
Abstract
Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.
Collapse
|
63
|
Fu Y, Lee I, Lee YS, Bao X. Small Non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their Biogenesis, Function and Implication in Human Diseases. Genomics Inform 2015; 13:94-101. [PMID: 26865839 PMCID: PMC4742329 DOI: 10.5808/gi.2015.13.4.94] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
tRNA-derived RNA fragments (tRFs) are an emerging class of non-coding RNAs (ncRNAs). A growing number of reports have shown that tRFs are not random degradation products but are functional ncRNAs made of specific tRNA cleavage. They play regulatory roles in several biological contexts such as cancer, innate immunity, stress responses, and neurological disorders. In this review, we summarize the biogenesis and functions of tRFs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Yong Sun Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.; The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA.; The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
64
|
Venkatesh T, Suresh PS, Tsutsumi R. Non-coding RNAs: Functions and applications in endocrine-related cancer. Mol Cell Endocrinol 2015; 416:88-96. [PMID: 26360585 DOI: 10.1016/j.mce.2015.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023]
Abstract
A significant fraction of the human genome is transcribed as non-coding RNAs (ncRNAs). This non-coding transcriptome has challenged the notion of the central dogma and its involvement in transcriptional and post-transcriptional regulation of gene expression is well established. Interestingly, several ncRNAs are dysregulated in cancer and current non-coding transcriptome research aims to use our increasing knowledge of these ncRNAs for the development of cancer biomarkers and anti-cancer drugs. In endocrine-related cancers, for which survival rates can be relatively low, there is a need for such advancements. In this review, we aimed to summarize the roles and clinical implications of recently discovered ncRNAs, including long ncRNAs, PIWI-interacting RNAs, tRNA- and Y RNA-derived ncRNAs, and small nucleolar RNAs, in endocrine-related cancers affecting both sexes. We focus on recent studies highlighting discoveries in ncRNA biology and expression in cancer, and conclude with a discussion on the challenges and future directions, including clinical application. ncRNAs show great promise as diagnostic tools and therapeutic targets, but further work is necessary to realize the potential of these unconventional transcripts.
Collapse
MESH Headings
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Endocrine Gland Neoplasms/genetics
- Endocrine Gland Neoplasms/metabolism
- Endocrine Gland Neoplasms/therapy
- Female
- Gene Expression Regulation
- Humans
- Male
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), Nitte University, Deralakatte, Mangalore 575 018, Karnataka, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore 574 199, Karnataka, India.
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
65
|
Selitsky SR, Sethupathy P. tDRmapper: challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. BMC Bioinformatics 2015; 16:354. [PMID: 26530785 PMCID: PMC4632369 DOI: 10.1186/s12859-015-0800-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022] Open
Abstract
Background Small RNA-sequencing has revealed the diversity and high abundance of small RNAs derived from tRNAs, referred to as tRNA-derived RNAs. However, at present, there is no standardized nomenclature and there are no methods for accurate annotation and quantification of these small RNAs. tRNA-derived RNAs have unique features that limit the utility of conventional alignment tools and quantification methods. Results We describe here the challenges of mapping, naming, and quantifying tRNA-derived RNAs and present a novel method that addresses them, called tDRmapper. We then use tDRmapper to perform a comparative analysis of tRNA-derived RNA profiles across different human cell types and diseases. We found that (1) tRNA-derived RNA profiles can differ dramatically across different cell types and disease states, (2) that positions and types of chemical modifications of tRNA-derived RNAs vary by cell type and disease, and (3) that entirely different tRNA-derived RNA species can be produced from the same parental tRNA depending on the cell type. Conclusion tDRmappernot only provides a standardized nomenclature and quantification scheme, but also includes graphical visualization that facilitates the discovery of novel tRNA and tRNA-derived RNA biology.
Collapse
Affiliation(s)
- Sara R Selitsky
- Bioinformatics and Computational Biology Curriculum, University of North Carolina, Chapel Hill, NC, USA. .,Departments of Genetics, University of North Carolina, Chapel Hill, NC, USA. .,Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Praveen Sethupathy
- Bioinformatics and Computational Biology Curriculum, University of North Carolina, Chapel Hill, NC, USA. .,Departments of Genetics, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
66
|
Guo Y, Bosompem A, Mohan S, Erdogan B, Ye F, Vickers KC, Sheng Q, Zhao S, Li CI, Su PF, Jagasia M, Strickland SA, Griffiths EA, Kim AS. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics 2015; 16:727. [PMID: 26400237 PMCID: PMC4581457 DOI: 10.1186/s12864-015-1929-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). Methods Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy. Results Using miRNA sequencing data generated from bone marrow aspirate samples of patients with known MDS (N = 47) and controls (N = 23), we demonstrated that transfer RNA (tRNA) fragments (specifically tRNA halves, tRHs) are one of the most common species of small RNA isolated from size selection. Using tRNA expression values extracted from miRNA sequencing data, we identified six tRNA fragments that are differentially expressed between MDS and normal samples. Using the elastic net method, we identified four tRNAs-derived small RNAs (tDRs) that together can explain 67 % of the variation in treatment response for MDS patients. Similar analysis of specifically mitochondrial tDRs (mt-tDRs) identified 13 mt-tDRs which distinguished disease status in the samples and a single mt-tDR which predited response. Finally, 14 SNVs within the tDRs were found in at least 20 % of the MDS samples and were not observed in any of the control specimens. Discussion This study highlights the prevalence of tDRs in RNA-seq studies focused on small RNAs. The potential etiologies of these species, both technical and biologic, are discussed as well as important challenges in the interpretation of tDR data. Conclusions Our analysis results suggest that tRNA fragments can be accurately detected through miRNA sequencing data and that the expression of these species may be useful in the diagnosis of MDS and the prediction of response to therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1929-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Amma Bosompem
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sanjay Mohan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Begum Erdogan
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA.
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Quanhu Sheng
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Shilin Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Chung-I Li
- Department of Applied Mathematics, National Chiayi University, Chiayi City, Taiwan.
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan City, Taiwan.
| | - Madan Jagasia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Stephen A Strickland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Annette S Kim
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Present address: Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
67
|
Karaiskos S, Naqvi AS, Swanson KE, Grigoriev A. Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biol Direct 2015; 10:51. [PMID: 26374501 PMCID: PMC4572633 DOI: 10.1186/s13062-015-0081-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
Background Development of sequencing technologies and supporting computation enable discovery of small RNA molecules that previously escaped detection or were ignored due to low count numbers. While the focus in the analysis of small RNA libraries has been primarily on microRNAs (miRNAs), recent studies have reported findings of fragments of transfer RNAs (tRFs) across a range of organisms. Results Here we describe Drosophila melanogaster tRFs, which appear to have a number of structural and functional features similar to those of miRNAs but are less abundant. As is the case with miRNAs, (i) tRFs seem to have distinct isoforms preferentially originating from 5’ or 3’ end of a precursor molecule (in this case, tRNA), (ii) ends of tRFs appear to contain short “seed” sequences matching conserved regions across 12 Drosophila genomes, preferentially in 3’ UTRs but also in introns and exons; (iii) tRFs display specific isoform loading into Ago1 and Ago2 and thus likely function in RISC complexes; (iii) levels of loading in Ago1 and Ago2 differ considerably; and (iv) both tRF expression and loading appear to be age-dependent, indicating potential regulatory changes from young to adult organisms. Conclusions We found that Drosophila tRF reads mapped to both nuclear and mitochondrial tRNA genes for all 20 amino acids, while previous studies have usually reported fragments from only a few tRNAs. These tRFs show a number of similarities with miRNAs, including seed sequences. Based on complementarity with conserved Drosophila regions we identified such seed sequences and their possible targets with matches in the 3’UTR regions. Strikingly, the potential target genes of the most abundant tRFs show significant Gene Ontology enrichment in development and neuronal function. The latter suggests that involvement of tRFs in the RNA interfering pathway may play a role in brain activity or brain changes with age. Reviewers This article was reviewed by Eugene Koonin, Neil Smalheiser and Alexander Kel. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0081-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Spyros Karaiskos
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| | - Ammar S Naqvi
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| | - Karl E Swanson
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| | - Andrey Grigoriev
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| |
Collapse
|
68
|
Shigematsu M, Kirino Y. tRNA-Derived Short Non-coding RNA as Interacting Partners of Argonaute Proteins. GENE REGULATION AND SYSTEMS BIOLOGY 2015; 9:27-33. [PMID: 26401098 PMCID: PMC4567038 DOI: 10.4137/grsb.s29411] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/28/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
The advent of next-generation sequencing technologies has not only accelerated findings on various novel non-coding RNA (ncRNA) species but also led to the revision of the biological significance and versatility of fundamental RNA species with canonical function, such as transfer RNAs (tRNAs). Although tRNAs are best known as adapter components of translational machinery, recent studies suggest that tRNAs are not always end products but can further serve as a source for short ncRNAs. In many organisms, various tRNA-derived ncRNA species are produced from mature tRNAs or their precursor transcripts as functional molecules involved in various biological processes beyond translation. In this review, we focus on the tRNA-derived ncRNAs associated with Argonaute proteins and summarize recent studies on their conceivable biogenesis factors and on their emerging roles in gene expression regulation as regulatory RNAs.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
69
|
Casas E, Cai G, Neill JD. Characterization of circulating transfer RNA-derived RNA fragments in cattle. Front Genet 2015; 6:271. [PMID: 26379699 PMCID: PMC4547532 DOI: 10.3389/fgene.2015.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/07/2015] [Indexed: 11/21/2022] Open
Abstract
The objective was to characterize naturally occurring circulating transfer RNA-derived RNA fragments (tRFs) in cattle1. Serum from eight clinically normal adult dairy cows was collected, and small non-coding RNAs were extracted immediately after collection and sequenced by Illumina MiSeq. Sequences aligned to transfer RNA (tRNA) genes or their flanking sequences were characterized. Sequences aligned to the beginning of 5′ end of the mature tRNA were classified as tRF5; those aligned to the 3′ end of mature tRNA were classified as tRF3; and those aligned to the beginning of the 3′ end flanking sequences were classified as tRF1. There were 3,190,962 sequences that mapped to transfer RNA and small non-coding RNAs in the bovine genome. Of these, 2,323,520 were identified as tRF5s, 562 were tRF3s, and 81 were tRF1s. There were 866,799 sequences identified as other small non-coding RNAs (microRNA, rRNA, snoRNA, etc.) and were excluded from the study. The tRF5s ranged from 28 to 40 nucleotides; and 98.7% ranged from 30 to 34 nucleotides in length. The tRFs with the greatest number of sequences were derived from tRNA of histidine, glutamic acid, lysine, glycine, and valine. There was no association between number of codons for each amino acid and number of tRFs in the samples. The reason for tRF5s being the most abundant can only be explained if these sequences are associated with function within the animal.
Collapse
Affiliation(s)
- Eduardo Casas
- National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service Ames, IA, USA
| | - Guohong Cai
- National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service Ames, IA, USA
| | - John D Neill
- National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service Ames, IA, USA
| |
Collapse
|
70
|
Bradford AP, Jones K, Kechris K, Chosich J, Montague M, Warren WC, May MC, Al-Safi Z, Kuokkanen S, Appt SE, Polotsky AJ. Joint MiRNA/mRNA expression profiling reveals changes consistent with development of dysfunctional corpus luteum after weight gain. PLoS One 2015; 10:e0135163. [PMID: 26258540 PMCID: PMC4530955 DOI: 10.1371/journal.pone.0135163] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/18/2015] [Indexed: 12/22/2022] Open
Abstract
Obese women exhibit decreased fertility, high miscarriage rates and dysfunctional corpus luteum (CL), but molecular mechanisms are poorly defined. We hypothesized that weight gain induces alterations in CL gene expression. RNA sequencing was used to identify changes in the CL transcriptome in the vervet monkey (Chlorocebus aethiops) during weight gain. 10 months of high-fat, high-fructose diet (HFHF) resulted in a 20% weight gain for HFHF animals vs. 2% for controls (p = 0.03) and a 66% increase in percent fat mass for HFHF group. Ovulation was confirmed at baseline and after intervention in all animals. CL were collected on luteal day 7-9 based on follicular phase estradiol peak. 432 mRNAs and 9 miRNAs were differentially expressed in response to HFHF diet. Specifically, miR-28, miR-26, and let-7b previously shown to inhibit sex steroid production in human granulosa cells, were up-regulated. Using integrated miRNA and gene expression analysis, we demonstrated changes in 52 coordinately regulated mRNA targets corresponding to opposite changes in miRNA. Specifically, 2 targets of miR-28 and 10 targets of miR-26 were down-regulated, including genes linked to follicular development, steroidogenesis, granulosa cell proliferation and survival. To the best of our knowledge, this is the first report of dietary-induced responses of the ovulating ovary to developing adiposity. The observed HFHF diet-induced changes were consistent with development of a dysfunctional CL and provide new mechanistic insights for decreased sex steroid production characteristic of obese women. MiRNAs may represent novel biomarkers of obesity-related subfertility and potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew P. Bradford
- Department of Obstetrics & Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Kenneth Jones
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, United States of America
| | - Justin Chosich
- Department of Obstetrics & Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Michael Montague
- The Genome Institute, Washington University School of Medicine, St Louis, MO 63108, United States of America
| | - Wesley C. Warren
- The Genome Institute, Washington University School of Medicine, St Louis, MO 63108, United States of America
| | - Margaret C. May
- Department of Pathology (Comparative Medicine), Wake Forest University Primate Center, Winston-Salem, NC 27157, United States of America
| | - Zain Al-Safi
- Department of Obstetrics & Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Satu Kuokkanen
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, United States of America
| | - Susan E. Appt
- Department of Pathology (Comparative Medicine), Wake Forest University Primate Center, Winston-Salem, NC 27157, United States of America
| | - Alex J. Polotsky
- Department of Obstetrics & Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
- * E-mail:
| |
Collapse
|
71
|
Abstract
The discovery of the first microRNA (miRNA) over 20 years ago has ushered in a new era in molecular biology. There are now over 2000 miRNAs that have been discovered in humans and it is believed that they collectively regulate one third of the genes in the genome. miRNAs have been linked to many human diseases and are being pursued as clinical diagnostics and as therapeutic targets. This review presents an overview of the miRNA pathway, including biogenesis routes, biological roles, and clinical approaches.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
72
|
Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Sci Rep 2015; 5:7675. [PMID: 25567797 PMCID: PMC4286764 DOI: 10.1038/srep07675] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Persistent infections with hepatitis B virus (HBV) or hepatitis C virus (HCV) account for the majority of cases of hepatic cirrhosis and hepatocellular carcinoma (HCC) worldwide. Small, non-coding RNAs play important roles in virus-host interactions. We used high throughput sequencing to conduct an unbiased profiling of small (14-40 nts) RNAs in liver from Japanese subjects with advanced hepatitis B or C and hepatocellular carcinoma (HCC). Small RNAs derived from tRNAs, specifically 30–35 nucleotide-long 5′ tRNA-halves (5′ tRHs), were abundant in non-malignant liver and significantly increased in humans and chimpanzees with chronic viral hepatitis. 5′ tRH abundance exceeded microRNA abundance in most infected non-cancerous tissues. In contrast, in matched cancer tissue, 5′ tRH abundance was reduced, and relative abundance of individual 5′ tRHs was altered. In hepatitis B-associated HCC, 5′ tRH abundance correlated with expression of the tRNA-cleaving ribonuclease, angiogenin. These results demonstrate that tRHs are the most abundant small RNAs in chronically infected liver and that their abundance is altered in liver cancer.
Collapse
|
73
|
Åsman AKM, Vetukuri RR, Jahan SN, Fogelqvist J, Corcoran P, Avrova AO, Whisson SC, Dixelius C. Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection. BMC Microbiol 2014; 14:308. [PMID: 25492044 PMCID: PMC4272539 DOI: 10.1186/s12866-014-0308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022] Open
Abstract
Background The oomycete Phytophthora infestans possesses active RNA silencing pathways, which presumably enable this plant pathogen to control the large numbers of transposable elements present in its 240 Mb genome. Small RNAs (sRNAs), central molecules in RNA silencing, are known to also play key roles in this organism, notably in regulation of critical effector genes needed for infection of its potato host. Results To identify additional classes of sRNAs in oomycetes, we mapped deep sequencing reads to transfer RNAs (tRNAs) thereby revealing the presence of 19–40 nt tRNA-derived RNA fragments (tRFs). Northern blot analysis identified abundant tRFs corresponding to half tRNA molecules. Some tRFs accumulated differentially during infection, as seen by examining sRNAs sequenced from P. infestans-potato interaction libraries. The putative connection between tRF biogenesis and the canonical RNA silencing pathways was investigated by employing hairpin RNA-mediated RNAi to silence the genes encoding P. infestans Argonaute (PiAgo) and Dicer (PiDcl) endoribonucleases. By sRNA sequencing we show that tRF accumulation is PiDcl1-independent, while Northern hybridizations detected reduced levels of specific tRNA-derived species in the PiAgo1 knockdown line. Conclusions Our findings extend the sRNA diversity in oomycetes to include fragments derived from non-protein-coding RNA transcripts and identify tRFs with elevated levels during infection of potato by P. infestans. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0308-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, PO. Box 7080, SE-75007, Uppsala, Sweden.
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, PO. Box 7080, SE-75007, Uppsala, Sweden.
| | - Sultana N Jahan
- Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, PO. Box 7080, SE-75007, Uppsala, Sweden.
| | - Johan Fogelqvist
- Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, PO. Box 7080, SE-75007, Uppsala, Sweden.
| | - Pádraic Corcoran
- Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, PO. Box 7080, SE-75007, Uppsala, Sweden. .,Current affiliation: Department of Evolutionary Biology, Uppsala University, SE-75236, Uppsala, Sweden.
| | - Anna O Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Christina Dixelius
- Department of Plant Biology, Uppsala BioCenter, Linnéan Centre for Plant Biology, Swedish University of Agricultural Sciences, PO. Box 7080, SE-75007, Uppsala, Sweden.
| |
Collapse
|
74
|
Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014; 12:78. [PMID: 25270025 PMCID: PMC4203973 DOI: 10.1186/s12915-014-0078-0] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/18/2014] [Indexed: 02/07/2023] Open
Abstract
Background tRFs, 14 to 32 nt long single-stranded RNA derived from mature or precursor tRNAs, are a recently discovered class of small RNA that have been found to be present in diverse organisms at read counts comparable to miRNAs. Currently, there is a debate about their biogenesis and function. Results This is the first meta-analysis of tRFs. Analysis of more than 50 short RNA libraries has revealed that tRFs are precisely generated fragments present in all domains of life (bacteria to humans), and are not produced by the miRNA biogenesis pathway. Human PAR-CLIP data shows a striking preference for tRF-5s and tRF-3s to associate with AGO1, 3 and 4 rather than AGO2, and analysis of positional T to C mutational frequency indicates these tRFs associate with Argonautes in a manner similar to miRNAs. The reverse complements of canonical seed positions in these sequences match cross-link centered regions, suggesting these tRF-5s and tRF-3s interact with RNAs in the cell. Consistent with these results, human AGO1 CLASH data contains thousands of tRF-5 and tRF-3 reads chimeric with mRNAs. Conclusions tRFs are an abundant class of small RNA present in all domains of life whose biogenesis is distinct from miRNAs. In human HEK293 cells tRFs associate with Argonautes 1, 3 and 4 and not Argonaute 2 which is the main effector protein of miRNA function, but otherwise have very similar properties to miRNAs, indicating tRFs may play a major role in RNA silencing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville 22901, VA, USA.
| |
Collapse
|
75
|
Lopez-Gomollon S, Beckers M, Rathjen T, Moxon S, Maumus F, Mohorianu I, Moulton V, Dalmay T, Mock T. Global discovery and characterization of small non-coding RNAs in marine microalgae. BMC Genomics 2014; 15:697. [PMID: 25142467 PMCID: PMC4156623 DOI: 10.1186/1471-2164-15-697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/09/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. RESULTS Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. CONCLUSIONS This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|
76
|
Liu B, Dou W, Ding TB, Zhong R, Liao CY, Xia WK, Wang JJ. An analysis of the small RNA transcriptome of four developmental stages of the citrus red mite (Panonychus citri). INSECT MOLECULAR BIOLOGY 2014; 23:216-229. [PMID: 24330037 DOI: 10.1111/imb.12075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The citrus red mite (Panonychus citri) can feed on more than 112 plant species around the world. Endogenous small RNAs (sRNAs) have proved to be important components of gene regulation in many eukaryotes. Recently, many sRNAs have been shown to be involved in various biological processes, such as development in many animals, including insects; however, to date, no sRNAs have been reported in the citrus red mite. Using Illumina sequencing, several categories of sRNAs were identified, including 594 known microRNAs (miRNAs) grouped into 206 families and 31 novel miRNAs in the four developmental stages of citrus red mite. In addition, according to bioinformatics analysis and S-Poly(T) miRNA assays, the expression level of many miRNAs varied among the developmental stages. Furthermore, the prediction of miRNAs target genes and their functional annotation indicated that miRNAs are involved in the regulation of multiple pathways in the citrus red mite. As the first report of the sRNA world in citrus red mite, the present study furthers our understanding of the roles played by sRNAs in the development of citrus red mite and the data may help to develop methods of controlling the pests in the field.
Collapse
Affiliation(s)
- B Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
77
|
Shigematsu M, Honda S, Kirino Y. Transfer RNA as a source of small functional RNA. JOURNAL OF MOLECULAR BIOLOGY AND MOLECULAR IMAGING 2014; 1:8. [PMID: 26389128 PMCID: PMC4572697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since their discovery in the 1950s, transfer RNAs (tRNAs) have been best known as adapter molecules that play a central role in translating genetic information. However, recent biochemical and bioinformatic evidence has led to a previously unexpected conceptual consensus that tRNAs are not always end products; they further serve as a source of small functional RNAs. In many organisms, specific tRNA fragments are produced from mature tRNAs or their precursor transcripts not as random degradation products, but as functional molecules involved in many biological processes beyond translation. In this review, we summarize recent studies of tRNA fragments that have provided new insights into tRNA biology by examining the molecular functions of tRNA fragments and proteins with which they interact.
Collapse
Affiliation(s)
| | | | - Yohei Kirino
- Correspondence: Yohei Kirino, Computational Medicine Center, Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, JAH Suite #M77, Philadelphia, PA 19107, USA; Tel: 215-503-8648; Fax: 215-503-0466;
| |
Collapse
|
78
|
Abstract
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Substrates for such RNA fragmentations are coding as well as non-protein-coding RNAs. In particular, fragments derived from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA fragments possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules. Here we review recent reports on tRNA cleavage and attempt to categorize tRNA pieces according to their origin and cellular function. The biological scope of tRNA-derived fragments ranges from translation control, over RNA silencing, to regulating apoptosis, and thus clearly enlarges the functional repertoire of ncRNA biology.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Department of Chemistry and Biochemistry; University of Bern; Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry; University of Bern; Bern, Switzerland; Division of Genomics and RNomics; Medical University Innsbruck; Innsbruck, Austria
| |
Collapse
|
79
|
Garcia-Silva MR, Cabrera-Cabrera F, Güida MC, Cayota A. Novel aspects of tRNA-derived small RNAs with potential impact in infectious diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.45a002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|