51
|
Guo J, Wu C, Zhang J, Li W, Lv S, Lu D, Qi X, Feng C, Liang W, Chang X, Zhang Y, Xu H, Cao Y, Wang G, Zhou Z. Maternal and childhood urinary phenol concentrations, neonatal thyroid function, and behavioral problems at 10 years of age: The SMBCS study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140678. [PMID: 32653713 DOI: 10.1016/j.scitotenv.2020.140678] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Environmental phenols, bisphenol A (BPA), triclosan (TCS), and benzophenone-3 (BP-3), are known as emerging endocrine-disrupting chemicals; however, their impacts on thyroid hormones and children's neurobehaviors are still unclear. OBJECTIVES We aimed to examine the associations of prenatal and childhood exposure to phenols with neonatal thyroid function and childhood behavioral problems aged 10 years. METHODS A total of 386 mother-singleton pairs were included from Sheyang Mini Birth Cohort Study (SMBCS), a longitudinal birth cohort in China. We quantified urinary BPA, TCS and BP-3 concentrations in maternal and 10-year-old children's urine samples using gas chromatography tandem mass spectrometry and thyroid function parameters in cord serum samples. Caregivers completed the Strength and Difficulties Questionnaire (SDQ) for their children at 10 years of age. Multivariable linear regression models and logistic regression models were applied to estimate associations of urinary phenol concentrations with thyroid hormones and risks of children's behavioral problems, respectively. RESULTS The median values of urinary BPA, TCS and BP-3 concentrations for pregnant women were 1.75 μg/L, 0.54 μg/L and 0.37 μg/L, while 1.29 μg/L, 6.64 μg/L and 1.39 μg/L for children, respectively. Maternal urinary BPA concentrations were in associations with 1.00% [95% confidence interval (CI): 0.20%, 1.92%] increases in cord serum FT4 concentrations and significantly associated with increased risks of total difficulties [odds ratio (OR): 1.45, 95% CI: 1.07, 1.97], while maternal urinary levels of BP-3 were significantly related to poorer prosocial behaviors (OR: 1.58, 95% CI: 1.04, 2.39) of children at 10 years of age. In sex-stratified analyses, maternal urinary BPA concentrations were related to increased total difficulty subscales only in boys. CONCLUSIONS The findings indicated that higher prenatal urinary BPA concentrations were associated with increased risks of total difficulties, especially in boys and maternal urinary BP-3 concentrations were related to poorer prosocial behaviors at 10 years.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Jiming Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Wenting Li
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Shenliang Lv
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Weijiu Liang
- Changning District Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai 200051, China
| | - Xiuli Chang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Hao Xu
- Changning District Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai 200051, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70182, Sweden
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
52
|
Pitto L, Gorini F, Bianchi F, Guzzolino E. New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217787. [PMID: 33114343 PMCID: PMC7662297 DOI: 10.3390/ijerph17217787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, the presence in the environment of chemical compounds with thyroid-disrupting effects is progressively increased. This phenomenon has risen concern for human health as the preservation of thyroid system homeostasis is essential for fetal development and for maintaining psychological and physiological wellbeing. An increasing number of studies explored the role of different classes of toxicants in the occurrence and severity of thyroid diseases, but large epidemiological studies are limited and only a few animal or in vitro studies have attempted to identify the mechanisms of chemical action. Recently, epigenetic changes such as alteration of methylation status or modification of non-coding RNAs have been suggested as correlated to possible deleterious effects leading to different thyroid disorders in susceptible individuals. This review aims to analyze the epigenetic alterations putatively induced by chemical exposures and involved in the onset of frequent thyroid diseases such as thyroid cancer, autoimmune thyroiditis and disruption of fetal thyroid homeostasis.
Collapse
Affiliation(s)
- Letizia Pitto
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Correspondence: ; Tel.: + 39-050-3153090
| | - Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
54
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|