51
|
Lynch DR, Farmer J, Hauser L, Blair IA, Wang QQ, Mesaros C, Snyder N, Boesch S, Chin M, Delatycki MB, Giunti P, Goldsberry A, Hoyle C, McBride MG, Nachbauer W, O'Grady M, Perlman S, Subramony SH, Wilmot GR, Zesiewicz T, Meyer C. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann Clin Transl Neurol 2018; 6:15-26. [PMID: 30656180 PMCID: PMC6331199 DOI: 10.1002/acn3.660] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Previous studies have demonstrated that suppression of Nrf2 in Friedreich ataxia tissues contributes to excess oxidative stress, mitochondrial dysfunction, and reduced ATP production. Omaveloxolone, an Nrf2 activator and NF-kB suppressor, targets dysfunctional inflammatory, metabolic, and bioenergetic pathways. The dose-ranging portion of this Phase 2 study assessed the safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia patients (NCT02255435). Methods Sixty-nine Friedreich ataxia patients were randomized 3:1 to either omaveloxolone or placebo administered once daily for 12 weeks. Patients were randomized in cohorts of eight patients, at dose levels of 2.5-300 mg/day. Results Omaveloxolone was well tolerated, and adverse events were generally mild. Optimal pharmacodynamic changes (noted by changes in ferritin and GGT) were observed at doses of 80 and 160 mg/day. No significant changes were observed in the primary outcome, peak work load in maximal exercise testing (0.9 ± 2.9 W, placebo corrected). At the 160 mg/day dose, omaveloxolone improved the secondary outcome of the mFARS by 3.8 points versus baseline (P = 0.0001) and by 2.3 points versus placebo (P = 0.06). Omaveloxolone produced greater improvements in mFARS in patients that did not have musculoskeletal foot deformity (pes cavus). In patients without this foot deformity, omaveloxolone improved mFARS by 6.0 points from baseline (P < 0.0001) and by 4.4 points versus placebo (P = 0.01) at the 160 mg/day. Interpretation Treatment of Friedreich ataxia patients with omaveloxolone at the optimal dose level of 160 mg/day appears to improve neurological function. Therefore, omaveloxolone treatment is being examined in greater detail at 150 mg/day for Friedreich ataxia.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology The Children's Hospital of Philadelphia 502 Abramson Research Center 3615 Civic Center Blvd Philadelphia Pennsylvania 19104-4318
| | - Jennifer Farmer
- Friedreich's Ataxia Research Alliance 533 W Uwchlan Ave Downingtown Pennsylvania 19335
| | - Lauren Hauser
- Division of Neurology The Children's Hospital of Philadelphia 502 Abramson Research Center 3615 Civic Center Blvd Philadelphia Pennsylvania 19104-4318
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Qing Qing Wang
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Nathaniel Snyder
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Sylvia Boesch
- Department of Neurology Medizinische Universität Innsbruck Christoph-Probst-Platz 1 Innrain 52 6020 Innsbruck Austria
| | - Melanie Chin
- Reata Pharmaceuticals 2801 Gateway Drive Suite 150 Irving Texas 75063
| | - Martin B Delatycki
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Flemington Road Parkville Victoria 3052 Australia
| | - Paola Giunti
- Institute of Neurology University College of London Queen Square London United Kingdom WC1N 3BG
| | - Angela Goldsberry
- Department of Neurology Medizinische Universität Innsbruck Christoph-Probst-Platz 1 Innrain 52 6020 Innsbruck Austria
| | - Chad Hoyle
- Department of Neurology The Ohio State University 395 W. 12th Ave. 7th Floor Columbus Ohio 43210
| | - Michael G McBride
- Division of Neurology The Children's Hospital of Philadelphia 502 Abramson Research Center 3615 Civic Center Blvd Philadelphia Pennsylvania 19104-4318
| | - Wolfgang Nachbauer
- Department of Neurology Medizinische Universität Innsbruck Christoph-Probst-Platz 1 Innrain 52 6020 Innsbruck Austria
| | - Megan O'Grady
- Reata Pharmaceuticals 2801 Gateway Drive Suite 150 Irving Texas 75063
| | - Susan Perlman
- Department of Neurology University of California Los Angeles BOX 956975 1-167 RNRC Los Angeles California 90095
| | - S H Subramony
- Department of Neurology McKnight Brain Institute Room L3-100 1149 Newell Drive Gainesville Florida 32611
| | - George R Wilmot
- Department of Neurology Emory University 1365 Clifton Rd Atlanta Georgia 30322
| | - Theresa Zesiewicz
- Department of Neurology University of South Florida 12901 Bruce B Downs Blvd. MDC 55 Tampa Florida 33612
| | - Colin Meyer
- Reata Pharmaceuticals 2801 Gateway Drive Suite 150 Irving Texas 75063
| |
Collapse
|
52
|
Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal 2018; 2:NS20180060. [PMID: 32714592 PMCID: PMC7373238 DOI: 10.1042/ns20180060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and consequently, ATP production abnormalities. Based on the involvement of such processes in FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) production as a key component of the mechanism. With further study, a variety of other events appear to be involved, including abnormalities of mitochondrially related metabolism and dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on free radical damage, but also on control of metabolic abnormalities and correction of mitochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers possibilities for treatment of this disorder.
Collapse
|
53
|
Kasai S, Mimura J, Ozaki T, Itoh K. Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease. Front Vet Sci 2018; 5:242. [PMID: 30364139 PMCID: PMC6191506 DOI: 10.3389/fvets.2018.00242] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Iron has played an important role in energy production since the beginning of life, as iron-catalyzed redox reactions are required for energy production. Oxygen, a highly efficient electron acceptor with high reduction potential, facilitates highly efficient energy production in eukaryotic cells. However, the increasing atmospheric oxygen concentration produces new threats to the organism, as oxygen reacts with iron and produces reactive oxygen species unless its levels are strictly regulated. As the size of multicellular organisms increases, these organisms must transport oxygen to the peripheral tissues and begin to employ red blood cells containing hemoglobin. This system is potentially a double-edged sword, as hemoglobin autoxidation occurs at a certain speed and releases free iron into the cytoplasm. Nrf2 belongs to the CNC transcription factor family, in which NF-E2p45 is the founding member. NF-E2p45 was first identified as a transcription factor that binds to the erythroid gene regulatory element NF-E2 located in the promoter region of the heme biosynthetic porphobilinogen deaminase gene. Human Nrf2 was also identified as a transcription factor that binds to the regulatory region of the β-globin gene. Despite these original findings, NF-E2p45 and Nrf2 knockout mice exhibit few erythroid phenotypes. Nrf2 regulates the expression of a wide range of antioxidant and detoxification enzymes. In this review article, we describe and discuss the roles of Nrf2 in various iron-mediated bioreactions and its possible coevolution with iron and oxygen.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Ozaki
- Department of Biological Science, Iwate University, Morioka, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
54
|
Dinkova‐Kostova AT, Kostov RV, Kazantsev AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J 2018; 285:3576-3590. [PMID: 29323772 PMCID: PMC6221096 DOI: 10.1111/febs.14379] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) functions at the interface of cellular redox and intermediary metabolism. Nrf2 target genes encode antioxidant enzymes, and proteins involved in xenobiotic detoxification, repair and removal of damaged proteins and organelles, inflammation, and mitochondrial bioenergetics. The function of Nrf2 is altered in many neurodegenerative disorders, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia. Nrf2 activation mitigates multiple pathogenic processes involved in these neurodegenerative disorders through upregulation of antioxidant defenses, inhibition of inflammation, improvement of mitochondrial function, and maintenance of protein homeostasis. Small molecule pharmacological activators of Nrf2 have shown protective effects in numerous animal models of neurodegenerative diseases, and in cultures of human cells expressing mutant proteins. Targeting Nrf2 signaling may provide a therapeutic option to delay onset, slow progression, and ameliorate symptoms of neurodegenerative disorders.
Collapse
Affiliation(s)
- Albena T. Dinkova‐Kostova
- Division of Cancer ResearchSchool of MedicineUniversity of DundeeUK
- Departments of Medicine and Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rumen V. Kostov
- Division of Cancer ResearchSchool of MedicineUniversity of DundeeUK
| | - Aleksey G. Kazantsev
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Present address:
Effective TherapeuticsCambridgeMAUSA
| |
Collapse
|
55
|
Alsina D, Purroy R, Ros J, Tamarit J. Iron in Friedreich Ataxia: A Central Role in the Pathophysiology or an Epiphenomenon? Pharmaceuticals (Basel) 2018; 11:E89. [PMID: 30235822 PMCID: PMC6161073 DOI: 10.3390/ph11030089] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia is a neurodegenerative disease with an autosomal recessive inheritance. In most patients, the disease is caused by the presence of trinucleotide GAA expansions in the first intron of the frataxin gene. These expansions cause the decreased expression of this mitochondrial protein. Many evidences indicate that frataxin deficiency causes the deregulation of cellular iron homeostasis. In this review, we will discuss several hypotheses proposed for frataxin function, their caveats, and how they could provide an explanation for the deregulation of iron homeostasis found in frataxin-deficient cells. We will also focus on the potential mechanisms causing cellular dysfunction in Friedreich Ataxia and on the potential use of the iron chelator deferiprone as a therapeutic agent for this disease.
Collapse
Affiliation(s)
- David Alsina
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - Rosa Purroy
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| |
Collapse
|
56
|
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018; 359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea; College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
57
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
58
|
Schirinzi T, Vasco G, Zanni G, Petrillo S, Piemonte F, Castelli E, Bertini ES. Serum uric acid in Friedreich Ataxia. Clin Biochem 2018; 54:139-141. [DOI: 10.1016/j.clinbiochem.2018.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
|
59
|
Anzovino A, Chiang S, Brown BE, Hawkins CL, Richardson DR, Huang MLH. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia: An Impaired Nrf2 Response Mediated via Upregulation of Keap1 and Activation of the Gsk3β Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2858-2875. [PMID: 28935570 DOI: 10.1016/j.ajpath.2017.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione/oxidized glutathione ratio were observed, but the opposite was found in skeletal muscle. Decreased total and nuclear Nrf2 and increased levels of its inhibitor, Kelch-like ECH-associated protein 1, were evident in the KO heart, but not in skeletal muscle. Moreover, a mechanism involving activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling was demonstrated in the KO heart. This process involved the following: i) increased Gsk3β activation, ii) β-transducin repeat containing E3 ubiquitin protein ligase nuclear accumulation, and iii) Fyn phosphorylation. A corresponding decrease in Nrf2-DNA-binding activity and a general decrease in Nrf2-target mRNA were observed in KO hearts. Paradoxically, protein levels of some Nrf2 antioxidant targets were significantly increased in KO mice. Collectively, cardiac frataxin deficiency reduces Nrf2 levels via two potential mechanisms: increased levels of cytosolic Kelch-like ECH-associated protein 1 and activation of Gsk3β signaling, which decreases nuclear Nrf2. These findings are in contrast to the frataxin-deficient skeletal muscle, where Nrf2 was not decreased.
Collapse
Affiliation(s)
- Amy Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bronwyn E Brown
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Clare L Hawkins
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
60
|
Petrillo S, Piermarini E, Pastore A, Vasco G, Schirinzi T, Carrozzo R, Bertini E, Piemonte F. Nrf2-Inducers Counteract Neurodegeneration in Frataxin-Silenced Motor Neurons: Disclosing New Therapeutic Targets for Friedreich's Ataxia. Int J Mol Sci 2017; 18:E2173. [PMID: 29057804 PMCID: PMC5666854 DOI: 10.3390/ijms18102173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is actively involved in Friedreich's Ataxia (FA), thus pharmacological targeting of the antioxidant machinery may have therapeutic value. Here, we analyzed the relevance of the antioxidant phase II response mediated by the transcription factor Nrf2 on frataxin-deficient cultured motor neurons and on fibroblasts of patients. The in vitro treatment of the potent Nrf2 activator sulforaphane increased Nrf2 protein levels and led to the upregulation of phase II antioxidant enzymes. The neuroprotective effects were accompanied by an increase in neurites' number and extension. Sulforaphane (SFN) is a natural compound of many diets and is now being used in clinical trials for other pathologies. Our results provide morphological and biochemical evidence to endorse a neuroprotective strategy that may have therapeutic relevance for FA. The findings of this work reinforce the crucial importance of Nrf2 in FA and provide a rationale for using Nrf2-inducers as pharmacological agents.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Emanuela Piermarini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
- Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - Anna Pastore
- Laboratory of Biochemistry, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Via Torre di Palidoro, Passoscuro Fiumicino, 00050 Rome, Italy.
| | - Tommaso Schirinzi
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Via Torre di Palidoro, Passoscuro Fiumicino, 00050 Rome, Italy.
| | - Rosalba Carrozzo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
61
|
Strawser C, Schadt K, Hauser L, McCormick A, Wells M, Larkindale J, Lin H, Lynch DR. Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev Neurother 2017; 17:895-907. [PMID: 28724340 DOI: 10.1080/14737175.2017.1356721] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a progressive, inherited, neurodegenerative disease for which there is currently no cure or approved treatment. FRDA is caused by deficits in the production and expression of frataxin, a protein found in the mitochondria that is most likely responsible for regulating iron-sulfur cluster enzymes within the cell. A decrease in frataxin causes dysfunction of adenosine triphosphate synthesis, accumulation of mitochondrial iron, and other events leading to downstream cellular dysfunction. Areas covered: Therapeutic development for FRDA currently focuses on improving mitochondrial function and finding ways to increase frataxin expression. Additionally, the authors will review potential approaches aimed at iron modulation and genetic modulation. Finally, gene therapy is progressing rapidly and is being explored as a treatment for FRDA. Expert commentary: The collection of multiple therapeutic approaches provides many possible ways to treat FRDA. Although the mitochondrial approaches are not thought to be curative, as the primary frataxin deficit will remain, they may still produce improvements in quality of life and slowing of progression. Therapies aimed at frataxin restoration are more likely to truly modify the disease, with gene therapy as the best possibility to alter the course of the disease from both a cardiac and neurological perspective.
Collapse
Affiliation(s)
| | - Kimberly Schadt
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Lauren Hauser
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | | | - McKenzie Wells
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Jane Larkindale
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Hong Lin
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- a Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
62
|
|
63
|
Bai Y, Wang Y, Liu M, Gu YH, Jiang B, Wu X, Wang HL. Suppression of nuclear factor erythroid‑2‑related factor 2‑mediated antioxidative defense in the lung injury induced by chronic exposure to methamphetamine in rats. Mol Med Rep 2017; 15:3135-3142. [PMID: 28339044 DOI: 10.3892/mmr.2017.6356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/10/2017] [Indexed: 11/06/2022] Open
Abstract
The imbalance between oxidative stress and antioxidant defense is important in the pathogenesis of lung diseases. Nuclear factor erythroid‑2‑related factor 2 (Nrf2) is a key transcriptional factor that regulates the antioxidant response. The purpose of the present study was to investigate whether Nrf2‑mediated antioxidative defense is involved in methamphetamine (MA)‑induced lung injury in rats. Following establishment of chronic MA toxicity in rats, Doppler ultrasonic detection was used to measure the changes of physiological indexes, followed by hematoxylin and eosin staining, ELISA and western blot analysis. MA was demonstrated to increase the heart rate and peak blood flow velocity of pulmonary arterial valves and to decrease the survival rate of rats, and resulted in lung injury characterized by perivascular exudates, airspace edema, slight hemorrhage and inflammatory cell infiltration. MA significantly inhibited the expression of nuclear Nrf2 protein and its target genes (glutamate‑cysteine ligase catalytic subunit C and heme oxygenase‑1), and dose‑dependently reduced glutathione (GSH) levels and the ratio of GSH/oxidized glutathione, accompanied by increases in reactive oxygen species (ROS) levels in rat lungs. Linear regression analysis revealed that there was a positive correlation between lung ROS level and lung injury indexes. These findings suggested that chronic exposure to MA led to lung injury by suppression of Nrf2‑mediated antioxidative defense, suggesting that Nrf2 may be an important therapeutic target for MA‑induced chronic lung toxicity.
Collapse
Affiliation(s)
- Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Ming Liu
- Department of Drug Control, China Criminal Police University, Shenyang, Liaoning 110035, P.R. China
| | - Yu-Han Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bin Jiang
- Department of Cardiovascular Ultrasound, The First Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huai-Liang Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
64
|
Kemp KC, Cerminara N, Hares K, Redondo J, Cook AJ, Haynes HR, Burton BR, Pook M, Apps R, Scolding NJ, Wilkins A. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol 2017; 81:212-226. [PMID: 28009062 PMCID: PMC5324580 DOI: 10.1002/ana.24846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Friedreich's ataxia is a devastating neurological disease currently lacking any proven treatment. We studied the neuroprotective effects of the cytokines, granulocyte-colony stimulating factor (G-CSF) and stem cell factor (SCF) in a humanized murine model of Friedreich's ataxia. METHODS Mice received monthly subcutaneous infusions of cytokines while also being assessed at monthly time points using an extensive range of behavioral motor performance tests. After 6 months of treatment, neurophysiological evaluation of both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed for messenger RNA, protein, and histological analysis of the dorsal root ganglia, spinal cord, and cerebellum. RESULTS Cytokine administration resulted in significant reversal of biochemical, neuropathological, neurophysiological, and behavioural deficits associated with Friedreich's ataxia. Both G-CSF and SCF had pronounced effects on frataxin levels (the primary molecular defect in the pathogenesis of the disease) and a regulators of frataxin expression. Sustained improvements in motor coordination and locomotor activity were observed, even after onset of neurological symptoms. Treatment also restored the duration of sensory nerve compound potentials. Improvements in peripheral nerve conduction positively correlated with cytokine-induced increases in frataxin expression, providing a link between increases in frataxin and neurophysiological function. Abrogation of disease-related pathology was also evident, with reductions in inflammation/gliosis and increased neural stem cell numbers in areas of tissue injury. INTERPRETATION These experiments show that cytokines already clinically used in other conditions offer the prospect of a novel, rapidly translatable, disease-modifying, and neuroprotective treatment for Friedreich's ataxia. Ann Neurol 2017;81:212-226.
Collapse
Affiliation(s)
- Kevin C. Kemp
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Nadia Cerminara
- Sensory and Motor Systems Group, School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - Kelly Hares
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Juliana Redondo
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Amelia J. Cook
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Harry R. Haynes
- Brain Tumour Research Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Bronwen R. Burton
- Infection and Immunity, School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Mark Pook
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Biosciences, Dept. of Life Sciences, College of Health & Life SciencesBrunel University LondonLondonUnited Kingdom
| | - Richard Apps
- Sensory and Motor Systems Group, School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - Neil J. Scolding
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
65
|
Tamarit J, Obis È, Ros J. Oxidative stress and altered lipid metabolism in Friedreich ataxia. Free Radic Biol Med 2016; 100:138-146. [PMID: 27296838 DOI: 10.1016/j.freeradbiomed.2016.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022]
Abstract
Friedreich ataxia is a genetic disease caused by the deficiency of frataxin, a mitochondrial protein. Frataxin deficiency impacts in the cell physiology at several levels. One of them is oxidative stress with consequences in terms of protein dysfunctions and metabolic alterations. Among others, alterations in lipid metabolism have been observed in several models of the disease. In this review we summarize the current knowledge of the molecular basis of the disease, the relevance of oxidative stress and the therapeutic strategies based on reduction of mitochondrial reactive oxygen species production. Finally, we will focus the interest in alterations of lipid metabolism as a consequence of mitochondrial dysfunction and describe the therapeutic approaches based on targeting lipid metabolism.
Collapse
Affiliation(s)
- Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Èlia Obis
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, Lleida, Spain.
| |
Collapse
|
66
|
Piermarini E, Cartelli D, Pastore A, Tozzi G, Compagnucci C, Giorda E, D'Amico J, Petrini S, Bertini E, Cappelletti G, Piemonte F. Frataxin silencing alters microtubule stability in motor neurons: implications for Friedreich's ataxia. Hum Mol Genet 2016; 25:4288-4301. [PMID: 27516386 DOI: 10.1093/hmg/ddw260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
To elucidate the pathogenesis of axonopathy in Friedreich's Ataxia (FRDA), a neurodegenerative disease characterized by axonal retraction, we analyzed the microtubule (MT) dynamics in an in vitro frataxin-silenced neuronal model (shFxn). A typical feature of MTs is their "dynamic instability", in which they undergo phases of growth (polymerization) and shrinkage (depolymerization). MTs play a fundamental role in the physiology of neurons and every perturbation of their dynamicity is highly detrimental for neuronal functions. The aim of this study is to determine whether MTs are S-glutathionylated in shFxn and if the glutathionylation triggers MT dysfunction. We hypothesize that oxidative stress, determined by high GSSG levels, induces axonal retraction by interfering with MT dynamics. We propose a mechanism of the axonopathy in FRDA where GSSG overload and MT de-polymerization are strictly interconnected. Indeed, using a frataxin-silenced neuronal model we show a significant reduction of neurites extension, a shift of tubulin toward the unpolymerized fraction and a consistent increase of glutathione bound to the cytoskeleton. The live cell imaging approach further reveals a significant decrease in MT growth lifetime due to frataxin silencing, which is consistent with the MT destabilization. The in vitro antioxidant treatments trigger the axonal re-growth and the increase in stable MTs in shFxn, thus contributing to identify new neuronal targets of oxidation in this disease and providing a novel approach for antioxidant therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Graziella Cappelletti
- Department of Biosciences
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Celoria 26, Milan, Italy
| | | |
Collapse
|
67
|
Chiang S, Kovacevic Z, Sahni S, Lane DJR, Merlot AM, Kalinowski DS, Huang MLH, Richardson DR. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clin Sci (Lond) 2016; 130:853-70. [PMID: 27129098 DOI: 10.1042/cs20160072] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| |
Collapse
|
68
|
Hayashi G, Cortopassi G. Lymphoblast Oxidative Stress Genes as Potential Biomarkers of Disease Severity and Drug Effect in Friedreich's Ataxia. PLoS One 2016; 11:e0153574. [PMID: 27078885 PMCID: PMC4831832 DOI: 10.1371/journal.pone.0153574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
There is no current approved therapy for the ultimately lethal neuro- and cardio-degenerative disease Friedreich's ataxia (FA). Finding minimally-invasive molecular biomarkers of disease progression and drug effect could support smaller, shorter clinical trials. Since we and others have noted a deficient oxidative stress response in FA, we investigated the expression of 84 genes involved in oxidative stress, signaling, and protection in control and FA lymphoblasts ranging from 460 to 1122 GAA repeats. Several antioxidant genes responded in a dose-dependent manner to frataxin expression at the mRNA and protein levels, which is inversely correlated with disease progression and severity. We tested the effect of experimental Friedreich's ataxia therapies dimethyl fumarate (DMF) and type 1 histone deacetylase inhibitor (HDACi) on biomarker mRNA expression. We observed that exposure of lymphoblasts to DMF and HDACi dose-dependently unsilenced frataxin expression and restored the potential biomarkers NCF2 and PDLIM1 expression to control levels. We suggest that in addition to frataxin expression, blood lymphoblast levels of NCF2 and PDLIM1 could be useful biomarkers for disease progression and drug effect in future clinical trials of Friedreich's ataxia.
Collapse
Affiliation(s)
- Genki Hayashi
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
69
|
Hayashi G, Cortopassi G. Oxidative stress in inherited mitochondrial diseases. Free Radic Biol Med 2015; 88:10-7. [PMID: 26073122 PMCID: PMC4593728 DOI: 10.1016/j.freeradbiomed.2015.05.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production or decreased ROS protection. The role of oxidative stress in the five most common inherited mitochondrial diseases, Friedreich ataxia, LHON, MELAS, MERRF, and Leigh syndrome (LS), is discussed. Published reports of oxidative stress involvement in the pathomechanisms of these five mitochondrial diseases are reviewed. The strongest evidence for an oxidative stress pathomechanism among the five diseases was for Friedreich ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for "oxidative stress" citation count frequency for each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is for Friedreich ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich ataxia.
Collapse
Affiliation(s)
- Genki Hayashi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
70
|
Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T. Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 2015; 56:91-7. [PMID: 25759513 PMCID: PMC4345178 DOI: 10.3164/jcbn.14-134] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) was originally identified as a positive regulator of drug detoxifying enzyme gene expression during exposure to environmental electrophiles. Currently, Nrf2 is known to regulate the expression of hundreds of cytoprotective genes to counteract endogenously or exogenously generated oxidative stress. Furthermore, when activated in human tumors by somatic mutations, Nrf2 confers growth advantages and chemoresistance by regulating genes involved in various processes such as the pentose phosphate pathway and nucleotide synthesis in addition to antioxidant proteins. Interestingly, increasing evidence shows that Nrf2 is associated with mitochondrial biogenesis during environmental stresses in certain tissues such as the heart. Furthermore, SKN-1, a functional homolog of Nrf2 in C. elegans, is activated by mitochondrial reactive oxygen species and extends life span by promoting mitochondrial homeostasis (i.e., mitohormesis). Similarly, Nrf2 activation was recently observed in the heart of surfeit locus protein 1 (Surf1) -/- mice in which cellular respiration was decreased due to cytochrome c oxidase defects. In this review, we critically examine the relationship between Nrf2 and mitochondria and argue that the Nrf2 stress pathway intimately communicates with mitochondria to maintain cellular homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Peng Ye
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Taku Ozaki
- Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
71
|
Lane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1130-44. [PMID: 25661197 DOI: 10.1016/j.bbamcr.2015.01.021] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
Iron is a crucial transition metal for virtually all life. Two major destinations of iron within mammalian cells are the cytosolic iron-storage protein, ferritin, and mitochondria. In mitochondria, iron is utilized in critical anabolic pathways, including: iron-storage in mitochondrial ferritin, heme synthesis, and iron-sulfur cluster (ISC) biogenesis. Although the pathways involved in ISC synthesis in the mitochondria and cytosol have begun to be characterized, many crucial details remain unknown. In this review, we discuss major aspects of the journey of iron from its initial cellular uptake, its modes of trafficking within cells, to an overview of its downstream utilization in the cytoplasm and within mitochondria. The understanding of mitochondrial iron processing and its communication with other organelles/subcellular locations, such as the cytosol, has been elucidated by the analysis of certain diseases e.g., Friedreich's ataxia. Increased knowledge of the molecules and their mechanisms of action in iron processing pathways (e.g., ISC biogenesis) will shape the investigation of iron metabolism in human health and disease.
Collapse
Affiliation(s)
- D J R Lane
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - A M Merlot
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - M L-H Huang
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D-H Bae
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - P J Jansson
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - S Sahni
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D S Kalinowski
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D R Richardson
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
72
|
Friedreich's Ataxia: A Neuronal Point of View on the Oxidative Stress Hypothesis. Antioxidants (Basel) 2014; 3:592-603. [PMID: 26785073 PMCID: PMC4665420 DOI: 10.3390/antiox3030592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022] Open
Abstract
A prominent feature of Friedreich’s ataxia (FRDA) is the neurodegeneration of the central and peripheral nervous systems, but little information is available about the mechanisms leading to neuronal damage in this pathology. Currently, no treatments delay, prevent, or reverse the inexorable decline that occurs in this condition. Evidence of oxidative damage has been demonstrated in Friedreich’s ataxia, and this damage has been proposed as the origin of the disease. Nevertheless, the role of oxidative stress in FRDA remains debatable. The lack of direct evidence of reactive oxygen species overproduction in FRDA cells and tissues and the failure of exogenous antioxidants to rescue FRDA phenotypes questions the role of oxidative stress in this pathology. For example, the antioxidant “idebenone” ameliorates cardiomyopathy in FRDA patients, but this therapy does not improve neurodegeneration. To date, no known pharmacological treatment with antioxidant properties cures or delays FRDA neuropathology. This review reports and discusses the evidence of oxidative stress in FRDA and focuses on the existing knowledge of the apparent ineffectiveness of antioxidants for the treatment of neuronal damage.
Collapse
|
73
|
Mustafa Rizvi SH, Parveen A, Verma AK, Ahmad I, Arshad M, Mahdi AA. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS One 2014; 9:e98409. [PMID: 24878590 PMCID: PMC4039480 DOI: 10.1371/journal.pone.0098409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Aluminium (Al) is the third most abundant element in the earth’s crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer’s disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway.
Collapse
Affiliation(s)
| | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anoop K Verma
- Forensic Medicine & Toxicology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Md Arshad
- Department of Zoology, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
74
|
Carletti B, Piermarini E, Tozzi G, Travaglini L, Torraco A, Pastore A, Sparaco M, Petrillo S, Carrozzo R, Bertini E, Piemonte F. Frataxin silencing inactivates mitochondrial Complex I in NSC34 motoneuronal cells and alters glutathione homeostasis. Int J Mol Sci 2014; 15:5789-806. [PMID: 24714088 PMCID: PMC4013596 DOI: 10.3390/ijms15045789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI) activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA.
Collapse
Affiliation(s)
- Barbara Carletti
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Emanuela Piermarini
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Giulia Tozzi
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Lorena Travaglini
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Anna Pastore
- Biochemistry Laboratory, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Sparaco
- Division of Neurology, Department of Neurosciences, Azienda Ospedaliera, "G. Rummo", Via Pacevecchia 53, 82100 Benevento, Italy.
| | - Sara Petrillo
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Rosalba Carrozzo
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Fiorella Piemonte
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
75
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|
76
|
Gomes CM, Santos R. Neurodegeneration in Friedreich's ataxia: from defective frataxin to oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:487534. [PMID: 23936609 PMCID: PMC3725840 DOI: 10.1155/2013/487534] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/14/2013] [Indexed: 02/08/2023]
Abstract
Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. This small protein with an α / β sandwich fold undergoes complex processing and imports into the mitochondria, generating isoforms with distinct N-terminal lengths which may underlie different functionalities, also in respect to oligomerization. Missense mutations in the FXN coding region, which compromise protein folding, stability, and function, are found in 4% of FRDA heterozygous patients and are useful to understand how loss of functional frataxin impacts on FRDA physiopathology. In cells, frataxin deficiency leads to pleiotropic phenotypes, including deregulation of iron homeostasis and increased oxidative stress. Increasing amount of data suggest that oxidative stress contributes to neurodegeneration in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cláudio M. Gomes
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2784-505 Oeiras, Portugal
| | - Renata Santos
- Development of the Nervous System, IBENS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| |
Collapse
|