51
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
52
|
Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 2024; 8:31. [PMID: 38341519 DOI: 10.1038/s41698-024-00522-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor drug resistance emerges from the interaction of two critical factors: tumor cellular heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) constitute essential components of the TME. M2-like TAMs are essential in facilitating tumor metastasis as well as augmenting the drug resistance of tumors. This review encapsulates the mechanisms that M2-like TAMs use to promote tumor drug resistance. We also describe the emerging therapeutic strategies that are currently targeting M2-like TAMs in combination with other antitumor drugs, with some still undergoing clinical trial evaluation. Furthermore, we summarize and analyze various existing approaches for developing novel drugs that target M2-like TAMs to overcome tumor resistance, highlighting how targeting M2-like TAMs can effectively stop tumor growth, metastasis, and overcome tumor drug resistance.
Collapse
Affiliation(s)
- Shujing Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamin Luo
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
53
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
54
|
Li T, Shi M, Zhao Y, He Z, Zong Y, Chen W, Du R. Mechanism of action of vinegared Cornu Cervi Degelatinatum in suppressing spleen kidney yang deficient ulcerative colitis through NCK2-JNK pathway. Heliyon 2024; 10:e24782. [PMID: 38312676 PMCID: PMC10834813 DOI: 10.1016/j.heliyon.2024.e24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
As a traditional Chinese herbal medicine, Cornu Cervi Degelatinatum (CCD) has the effect of warming the kidney to support yang, astringing, and stopping bleeding, and is used for spleen kidney yang deficient (SKYD). This experiment was to investigate the therapeutic effects of different processes of CCD on SKYD type ulcerative colitis (UC) rats and to explore its impact on the intestinal flora of rats. METHODS ELISA was used to study the anti-inflammatory activity of Cornu Cervi Degelatinatum processed with water (WCCD) and Cornu Cervi Degelatinatum processed with vinegar (VCCD). 16SrRNA and transcriptome sequencing were used to detect the composition of rat intestinal flora and gene expression; RT-PCR and Western blot were used to verify the role of WCCD and VCCD in treating UC. RESULTS WCCD and VCCD have therapeutic effects on UC, could reduce tissue damage. VCCD performed better in improving Bacteroidetes/Firmicutes ratios and species evenness and abundance; performed better in increasing the quantity of lactobacillus. VCCD simultaneously inhibit the intestinal inflammatory response through NCK2, PAK4, and JNK signaling pathways. CONCLUSIONS WCCD and VCCD play a therapeutic role in UC by regulating the proportion of different flora in the intestinal flora. VCCD regulates the intestinal flora and inflammatory response by interfering with the NCK2, PAK4 and JNK signaling pathways.
Collapse
Affiliation(s)
- Tianshi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Mengqi Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China
| |
Collapse
|
55
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
56
|
Huang D, Ke L, Cui H, Li S, Sun F. Efficacy and safety of VEGF/VEGFR inhibitors for platinum-resistant ovarian cancer: a systematic review and meta-analysis of randomized controlled trials. BMC Womens Health 2024; 24:34. [PMID: 38218775 PMCID: PMC10788010 DOI: 10.1186/s12905-023-02879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Almost all patients with ovarian cancer will experience relapse and eventually develop platinum-resistant. The poor prognosis and limited treatment options have prompted the search for novel approaches in managing platinum-resistant ovarian cancer (PROC). Therefore, a meta-analysis was conducted to evaluate the efficacy and safety of combination therapy with vascular endothelial growth factor (VEGF) /VEGF receptor (VEGFR) inhibitors for PROC. METHODS A comprehensive search of online databases was conducted to identify randomized clinical trials published until December 31, 2022. Pooled hazard ratios (HR) was calculated for overall survival (OS) and progression-free survival (PFS), while pooled odds ratio (OR) was calculated for objective response rate (ORR) and treatment-related adverse events (TRAEs). Subgroup analysis was further performed to investigate the source of heterogeneity. RESULTS In total, 1097 patients from eight randomized clinical trials were included in this meta-analysis. The pooled HRs of OS (HR = 0.72; 95% CI: 0.62-0.84, p < 0.0001) and PFS (HR = 0.52; 95% CI: 0.45-0.59, p < 0.0001) demonstrated a significant prolongation in the combination group compared to chemotherapy alone for PROC. In addition, combination therapy demonstrated a superior ORR compared to monotherapy (OR = 2.34; 95%CI: 1.27-4.32, p < 0.0001). Subgroup analysis indicated that the combination treatment of VEGF/VEGFR inhibitors and chemotherapy was significantly more effective than monochemotherapy in terms of OS (HR = 0.71; 95% CI: 0.61-0.84, p < 0.0001), PFS (HR = 0.49; 95% CI: 0.42-0.57, p < 0.0001), and ORR (OR = 2.97; 95% CI: 1.89-4.67, p < 0.0001). Although the combination therapy was associated with higher incidences of hypertension, mucositis, proteinuria, diarrhea, and hand-foot syndrome compared to monochemotherapy, these toxicities were manageable and well-tolerated. CONCLUSIONS The meta-analysis demonstrated that combination therapy with VEGF/VEGFR inhibitors yielded better clinical outcomes for patients with PROC compared to monochemotherapy, especially when combined with chemotherapy. This analysis provides more treatment options for patients with PROC. SYSTEMATIC REVIEW REGISTRATION [ https://www.crd.york.ac.uk/PROSPERO ], Prospective Register of Systematic Reviews (PROSPERO), identifier: CRD42023402050.
Collapse
Affiliation(s)
- Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Feilong Sun
- Jiangsu Hengrui Pharmaceuticals Co., LTD, Lianyungang, China
| |
Collapse
|
57
|
Yang X, Li W, Han X, Wang J, Dai J, Ye X, Meng M. Apatinib weakens proliferation, migration, invasion, and angiogenesis of thyroid cancer cells through downregulating pyruvate kinase M2. Sci Rep 2024; 14:879. [PMID: 38195651 PMCID: PMC10776835 DOI: 10.1038/s41598-023-50369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Thyroid cancer (TC) is the most frequent malignancy of the endocrine system. Apatinib, as an anti-angiogenic agent, has been applied in the therapy of several cancers. However, the function and mechanism of Apatinib in TC have not been clearly elucidated. After processing with Apatinib alone or combined PKM2 overexpression plasmids, cell proliferation, migration, and invasion were analyzed by EdU staining, CCK-8, wound healing, and Transwell. Meanwhile. HUVECs were incubated with the conditioned medium prepared from cell culture medium, and tube formation and VEGFR2 expression in HUVECs were examined using tube formation and immunofluorescence (IF) assays. Besides, we established a nude mouse xenograft model by lentivirus-mediated PKM2 shRNAs, and tested the growth of tumors; the pathological structure was analyzed with H&E staining. And the expressions of N-cadherin, Vimentin, E-cadherin, PKM2, VEGFA, VEGFR2, and Ki67 were determined by immunohistochemistry or Western blot. Apatinib could prominently suppress proliferation, migration, invasion, and HUVEC tube formation in SW579 and TPC-1 cells. Besides, we discovered that Apatinib had a significant inhibitory role on the expression of pyruvate kinase M2 (PKM2) in TC cells. And PKM2 overexpression also could notably reverse Apatinib-mediated inhibition of TC progression. Moreover, PKM2 shRNAs were applied to TC xenografts, resulting in significant reduction in tumor volume and suppression of angiogenesis-related protein expression. In summary, Apatinib has a regulatory role in TC progression, and Apatinib can block cancer cell angiogenesis by downregulating PKM2. This will provide a theoretical basis for therapy of TC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Xiaoying Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Jiao Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Jianjian Dai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| | - Min Meng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
58
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
59
|
Isakova AA, Artykov AA, Plotnikova EA, Trunova GV, Khokhlova VА, Pankratov AA, Shuvalova ML, Mazur DV, Antipova NV, Shakhparonov MI, Dolgikh DA, Kirpichnikov MP, Gasparian ME, Yagolovich AV. Dual targeting of DR5 and VEGFR2 molecular pathways by multivalent fusion protein significantly suppresses tumor growth and angiogenesis. Int J Biol Macromol 2024; 255:128096. [PMID: 37972835 DOI: 10.1016/j.ijbiomac.2023.128096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Destroying tumor vasculature is a relevant therapeutic strategy due to its involvement in tumor progression. However, adaptive resistance to approved antiangiogenic drugs targeting VEGF/VEGFR pathway requires the recruitment of additional targets. In this aspect, targeting TRAIL pathway is promising as it is an important component of the immune system involved in tumor immunosurveillance. For dual targeting of malignant cells and tumor vascular microenvironment, we designed a multivalent fusion protein SRH-DR5-B-iRGD with antiangiogenic VEGFR2-specific peptide SRH at the N-terminus and a tumor-targeting and -penetrating peptide iRGD at the C-terminus of receptor-selective TRAIL variant DR5-B. SRH-DR5-B-iRGD obtained high affinity for DR5, VEGFR2 and αvβ3 integrin in nanomolar range. Fusion of DR5-B with effector peptides accelerated DR5 receptor internalization rate upon ligand binding. Antitumor efficacy was evaluated in vitro in human tumor cell lines and primary patient-derived glioblastoma neurospheres, and in vivo in xenograft mouse model of human glioblastoma. Multivalent binding of SRH-DR5-B-iRGD fusion efficiently stimulated DR5-mediated tumor cell death via caspase-dependent mechanism, suppressed xenograft tumor growth by >80 %, doubled the lifespan of xenograft animals, and inhibited tumor vascularization. Therefore, targeting DR5 and VEGFR2 molecular pathways with SRH-DR5-B-iRGD protein may provide a novel therapeutic approach for treatment of solid tumors.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Artem A Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ekaterina A Plotnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Galina V Trunova
- P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Varvara А Khokhlova
- P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey A Pankratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Margarita L Shuvalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Manebio LLC, 115280 Moscow, Russia.
| | - Anne V Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; Manebio LLC, 115280 Moscow, Russia.
| |
Collapse
|
60
|
Atalor RE, Dieckmann BW, Penn JS, Uddin MDI. Method to Regulate Monocyte Function by Silencing HIF-1α mRNA in a Model of Retinal Neovascularization. ACS APPLIED NANO MATERIALS 2023; 6:22939-22946. [PMID: 38148985 PMCID: PMC10749564 DOI: 10.1021/acsanm.3c04300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Circulating monocytes migrate into the retina in response to inflammation and neovascularization. Furthermore, under inflammatory conditions such as diabetes, healthy monocytes become activated in the circulation. However, the contribution of activated monocytes to neovascularization is largely unknown. HIF-1α has been shown to contribute to the pathogenesis of neovascularization. We describe here the synthesis of a hybrid nanomaterial for targeted delivery and gene silencing in activated monocytes that are associated with pathological neovascularization. To test the gene silencing ability of AS-shRNA-lipids in vitro, we used the probe to inhibit HIF-1α mRNA induced in mouse monocytes by exposing them to hypoxia. In addition, we tested AS-shRNA-lipids for inhibition of neovascularization in vivo using the mouse model of oxygen-induced retinopathy (OIR). Significant reduction of neovascularization was achieved in mouse OIR by targeting activated monocytes using intraperitoneal injections of AS-shRNA-lipids. Expression of HIF-1α and CD14 mRNA were both inhibited in circulating cells, suggesting normalization of the activated monocytes in P17 OIR animals treated with AS-shRNA-lipids. We hypothesized that inhibition of HIF-1α mRNA in activated monocytes may have a direct impact on VEGF expression in the retinal tissues in vivo. We observed that VEGF mRNA expression was inhibited in P17 retinal tissues after systemic treatment with HIF-1α-targeted AS-shRNA-lipids. These findings may provide a framework for a strategy to inhibit retinal neovascularization by targeting circulating activated monocytes.
Collapse
Affiliation(s)
- Rita E. Atalor
- Department
of Ophthalmology and Visual Sciences, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Blake W. Dieckmann
- Department
of Ophthalmology and Visual Sciences, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - John S. Penn
- Department
of Ophthalmology and Visual Sciences, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - MD Imam Uddin
- Department
of Ophthalmology and Visual Sciences, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
61
|
Zou J, Wang Y, Xu J, Li J, Wang T, Zhang Y, Bai Y. A Retrospective Study of Trifluridine/Tipiracil with Fruquintinib in Patients with Chemorefractory Metastatic Colorectal Cancer. J Clin Med 2023; 13:57. [PMID: 38202064 PMCID: PMC10779919 DOI: 10.3390/jcm13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Trifluridine/tipiracil (TAS-102) and fruquintinib are novel antitumor agents for patients with refractory metastatic colorectal cancer (mCRC). We conducted a retrospective study to explore the clinical efficacy and drug toxicities of combination therapy with TAS-102 and fruquintinib in real-life clinical practice. METHODS Between March 2021 and February 2023, patients at two different centers with mCRC who failed two or more lines of prior therapy and received TAS-102 in combination with fruquintinib were recruited. RESULTS In total, 32 mCRC patients were included in the analysis. The objective response rate (ORR) and the disease control rate (DCR) were 9.4% and 75%. The median progression-free survival (PFS) and overall survival (OS) were 6.3 (95% CI: 5.3-7.3) and 13.5 (95% CI: 9.5-17.5) months, respectively. Patients without liver metastasis or peritoneal metastasis obtained better median PFS (7.1 m vs. 5.6 m, p = 0.03 and 6.3 m vs. 3.4 m, p = 0.04), and OS (15.2 m vs. 10.4 m, p = 0.01 and 13.6 m vs. 7.1 m, p = 0.03), respectively. Other clinicopathological features, including age, tumor site, KRAS status, dosage of fruquintinib, and treatment line, did not affect the clinical efficacy of TAS-102 combined with fruquintinib. The most common grade three-four toxicities were neutropenia (46.9%), anemia (21.9%), diarrhea (15.6%), nausea (12.5%), and hand-foot syndrome rash (12.5%). CONCLUSIONS Our results suggest that TAS-102 combined with fruquintinib has promising clinical efficacy and manageable safety for refractory mCRC patients in a real-world clinical setting. Further prospective trials are warranted to confirm our results.
Collapse
Affiliation(s)
- Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (J.Z.); (J.L.)
| | - Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Jiayu Xu
- Department of VIP In-Patient Ward, the First Hospital of China Medical University, Shenyang 110001, China;
| | - Jinna Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (J.Z.); (J.L.)
| | - Tianzhuo Wang
- The First Clinical College, China Medical University, Shenyang 110122, China;
| | - Ying Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (J.Z.); (J.L.)
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital, China Medical University, Shenyang 110004, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang 110004, China
| |
Collapse
|
62
|
Galos D, Balacescu L, Vidra R, Sur D. Real-World Data on Second-Line Therapy with Ramucirumab for Metastatic Gastric Cancer: A Two-Center Study on Romanian Population. Life (Basel) 2023; 13:2300. [PMID: 38137901 PMCID: PMC10744814 DOI: 10.3390/life13122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Following the results of RAINBOW and REGARD trials, ramucirumab was approved as the standard second-line treatment for patients with advanced or metastatic gastric or gastroesophageal junction (GEJ) cancer, alone or in combination with paclitaxel. The present study aimed to evaluate the efficacy and safety of ramucirumab in the Romanian population during every-day clinical practice. (2) Methods: A two-center, retrospective, observational study evaluated patients with metastatic gastric and GEJ cancer treated with ramucirumab monotherapy or associated with paclitaxel. The patients were treated between 2018 and 2022 in two Romanian centers as follows: 18 patients underwent treatment with ramucirumab monotherapy, while 51 received the combined treatment regimen. Study endpoints included median progression-free survival (PFS), median overall survival (OS), and the evaluation of treatment-induced adverse events (AEs). (3) Results: In the study cohort (n = 69), the most frequent treatment-induced AE in the ramucirumab plus paclitaxel arm was hematological toxicity; the most common AE for patients treated with ramucirumab monotherapy was fatigue and headache. Overall, the median PFS was 4.7 months (95% CI: 3.4-5.9 months) and median OS was 18.23 months (95% CI: 15.6-20.7 months). PFS was correlated with the number of treatment cycle administrations, Eastern Cooperative Oncology Group performance status at treatment initiation, and metastatic site (visceral vs. peritoneal). OS was correlated with the number of treatment cycles administered and human epidermal growth factor receptor-2 status. (4) Conclusions: The results support the previously described toxicity profile for ramucirumab monotherapy or associated with paclitaxel and demonstrated a relatively superior median PFS.
Collapse
Affiliation(s)
- Diana Galos
- Department of Medical Oncology, The Oncology Institute Prof. Dr. Ion Chiricuţă, 400015 Cluj-Napoca, Romania;
| | - Loredana Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuţă, 400015 Cluj-Napoca, Romania;
| | - Radu Vidra
- Postgraduate Program for Bio-Behavioral Integrative Medicine, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
- Department of Medical Oncology, Regional Institute of Gastroenterology and Hepatology Prof. Dr. Octavian Fodor, 400162 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute Prof. Dr. Ion Chiricuţă, 400015 Cluj-Napoca, Romania;
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
63
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
64
|
Nasir I, McGuinness C, Poh AR, Ernst M, Darcy PK, Britt KL. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol 2023; 44:971-985. [PMID: 37995659 DOI: 10.1016/j.it.2023.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.
Collapse
Affiliation(s)
- Ibraheem Nasir
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Conor McGuinness
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia; Cancer Immunology Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
65
|
Mao X, Yan X, Li C, Liu Y, Zhang Y, Lin N. Extensive preclinical evaluation of combined mangiferin and glycyrrhizic acid for restricting synovial neovascularization in rheumatoid arthritis. Chin Med 2023; 18:156. [PMID: 38037139 PMCID: PMC10687849 DOI: 10.1186/s13020-023-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Synovial neovascularization promotes rheumatoid arthritis (RA) progression. Baihu guizhi decoction (BHGZD) has a potential in restricting this pathological change of RA. PURPOSE To identify bioactive compounds (BACs) of BHGZD and to elucidate the underlying mechanisms in restricting synovial neovascularization of RA. METHOD Through transcriptomic profiling, the chemical profiling of BHGZD and its effective transcriptomic profiling against RA were identified. Then, candidate targets and the corresponding BACs against synovial neovascularization were screened by "disease gene-drug target" interaction network analysis and in silico molecular docking. The binding affinities of candidate BAC-target pairs were verified using surface plasmon resonance, and the pharmacokinetic characteristics of BACs in vivo after BHGZD administration at different time points were detected by Ultra Performance Liquid Chromatography-Mass spectrum/Mass spectrum. After that, in vivo experiments based on adjuvant-induced arthritis (AIA-M) rats, and in vitro experiments based on human umbilical vein endothelial cells (HUVEC) and arthritic synovial fibroblasts (MH7A) were carried out to evaluate the pharmacological effects of BHGZD and the two-BACs-combination, and to verify the associated mechanisms. RESULT VEGFA/VEGFR2/SRC/PI3K/AKT signal axis was screened as one of the key network targets of BHGZD against synovial neovascularization in RA. Mangiferin (MG) and glycyrrhizic acid (GA) were identified as the representative BACs of BHGZD for their strong binding affinities with components of the VEGFA/VEGFR2/SRC/PI3K/AKT signal axis, and their high exposed quantity in vivo. Both BHGZD and the two-BAC combination of MG and GA were demonstrated to be effective in restricting disease severity, reducing synovial inflammation and decreasing the formation of vascular opacities in AIA-M rats, and also reducing the migrative and invasive activities of HUVEC and MH7A cells and attenuating the lumen formation ability of HUVEC cells significantly. Mechanically, both BHGZD and the two-BAC combination markedly reduced the expression of VEGFA in synovial tissues, the serum levels of VEGF and NO, and the enzymatic activity of eNOS, increased the content of endostatin, and also reversed the abnormal alterations in the VEGFA/VEGFR2/SRC/PI3K/AKT signal axis in vivo and in vitro. CONCLUSION MG and GA may be the representative BACs of BHGZD for restricting excessive synovial vascularization in RA via regulating VEGFA/VEGFR2/SRC/PI3K/AKT signal axis.
Collapse
Affiliation(s)
- Xia Mao
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Xiangying Yan
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Congchong Li
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yanqiong Zhang
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
66
|
Li YL, Yan LJ, Chen HX, Ruan BK, Dao P, Du ZY, Dong CZ, Meunier B. Design, synthesis and evaluation of novel pyrimidinylaminothiophene derivatives as FGFR1 inhibitors against human glioblastoma multiforme. Eur J Med Chem 2023; 260:115764. [PMID: 37651879 DOI: 10.1016/j.ejmech.2023.115764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Vascular endothelial growth factor receptors (VEGFRs) have emerged as the most promising anti-angiogenic therapeutic targets for the treatment of recurrent glioblastomas (GBM). However, anti-VEGF treatments led to the high proportion of non-responder patients or non lasting clinical response and the tumor progression to the greater malignant stage. To overcome these problems, there is an utmost need to develop innovative anti-angiogenic therapies. In this study, we report the development of a series of new FGFR1 inhibitors. Among them, compound 4i was able to potently inhibit FGFR1 kinase activities both in vitro and in vivo. This compound displayed strong anti-angiogenic activity in HUVECs and anti-tumor growth and anti-invasion effects in U-87MG cell line. These results emphasize the importance of FGFR1-mediated signaling pathways in GBM and reveal that pharmacological inhibition of FGFR1 can enhance the anti-tumoral, anti-angiogenic and anti-metastatic efficiency against GBM. These data support targeting of FGFR1 as a novel anti-angiogenic strategy and highlight the potential of compound 4i as a promising anti-angiogenic and anti-metastatic candidate for GBM therapy.
Collapse
Affiliation(s)
- Yong-Liang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Long-Jia Yan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Hui-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270, Paris, Cedex 06, France.
| | - Ban-Kang Ruan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Pascal Dao
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, France
| | - Zhi-Yun Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China.
| | - Chang-Zhi Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Université Paris Cité, ITODYS, UMR 7086 CNRS, 75013, Paris, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex, France
| |
Collapse
|
67
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
68
|
Eissa IH, Yousef RG, Elkady H, Elkaeed EB, Alsfouk BA, Husein DZ, Asmaey MA, Ibrahim IM, Metwaly AM. Anti-breast cancer potential of a new xanthine derivative: In silico, antiproliferative, selectivity, VEGFR-2 inhibition, apoptosis induction and migration inhibition studies. Pathol Res Pract 2023; 251:154894. [PMID: 37857034 DOI: 10.1016/j.prp.2023.154894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The overexpression of VEGFR-2 receptors in breast cancer provides a valuable approach to anticancer strategies. Targeting VEGFR-2, a new semisynthetic compound (T-1-MCPAB) has been designed. METHODS Computational methods (ADMET, toxicity, DFT, Molecular Docking, Molecular Dynamics Simulations, MM-GBSA, PLIP, and PCAT) were conducted. In addition to the semi-synthesis, in vitro studies (anti-VEGFR-2, anti-proliferative, flow cytometry, and wound scratch assay) were employed. RESULTS ADME and toxicity profiles of T-1-MCPAB studies indicated its overall drug-likeness showing results much better than Sorafenib. Then, T-1-MCPAB's exact 3D structure, stability, and reactivity were evoked by the DFT calculations. Molecular docking, molecular dynamics simulations, MM-GPSA, PLIP, and PCAT studies denoted the correct binding and inhibiting potential of T-1-MCPAB, towards VEGFR-2 protein. After the semisynthesis, T-1-MCPAB inhibited VEGFR-2 with an IC50 of 0.135 µM, which was comparable to sorafenib's IC50 of 0.0591 µM. T-1-MCPAB also showed a notable performance against MCF7 and T47D breast cancer cell lines with IC50 values of 30.95 µM and 63.64 µM, respectively, and had high selectivity index values of 3.7 and 1.8, respectively. Furthermore, T-1-MCPAB influenced early and late apoptosis and significantly decreased the potential of MCF7 cells to heal and migrate. CONCLUSION T-1-MCPAB is a promising VEGFR-2 inhibitor with potential for breast cancer treatment. Further chemical and biological studies are needed to explore its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.
| | - Mostafa A Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt.
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University. Cairo 12613, Egypt.
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| |
Collapse
|
69
|
Yang ZY, Yan XC, Zhang JYL, Liang L, Gao CC, Zhang PR, Liu Y, Sun JX, Ruan B, Duan JL, Wang RN, Feng XX, Che B, Xiao T, Han H. Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress. J Clin Invest 2023; 133:e159860. [PMID: 37607001 PMCID: PMC10575731 DOI: 10.1172/jci159860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.
Collapse
|
70
|
Yagi T, Sawada K, Miyamoto M, Shimizu A, Oi Y, Toda A, Nakamura K, Kinose Y, Kodama M, Hashimoto K, Kimura T. Continuous Administration of Anti-VEGFA Antibody Upregulates PAI-1 Secretion from Ovarian Cancer Cells via miR-143-3p Downregulation. Mol Cancer Res 2023; 21:1093-1106. [PMID: 37327051 DOI: 10.1158/1541-7786.mcr-23-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/06/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Although bevacizumab (BEV) plays a key role in ovarian cancer treatment, BEV resistance is often observed in clinical settings. This study aimed to identify the genes responsible for BEV resistance. C57BL/6 mice inoculated with ID-8 murine ovarian cancer cells were treated with anti-VEGFA antibody or IgG (control) twice weekly for 4 weeks. The mice were sacrificed, then, RNA was extracted from the disseminated tumors. qRT-PCR assays were performed to identify angiogenesis-related genes and miRNAs that were altered by anti-VEGFA treatment. SERPINE1/PAI-1 was found to be upregulated during BEV treatment. Therefore, we focused on miRNAs to elucidate the mechanism underlying the upregulation of PAI-1 during BEV treatment. Kaplan-Meier plotter analysis revealed that higher expression levels of SERPINE1/PAI-1 were associated with poor prognoses among BEV-treated patients, suggesting that SERPINE1/PAI may be involved in the acquisition of BEV resistance. miRNA microarray analysis followed by in silico and functional assays revealed that miR-143-3p targeted SERPINE1 and negatively regulated PAI-1 expression. The transfection of miR-143-3p suppressed PAI-1 secretion from ovarian cancer cells and inhibited in vitro angiogenesis in HUVECs. Next, miR-143-3p-overexpressing ES2 cells were intraperitoneally injected into BALB/c nude mice. ES2-miR-143-3p cells downregulated PAI-1 production, attenuated angiogenesis, and significantly inhibited intraperitoneal tumor growth following treatment with anti-VEGFA antibody. Continuous anti-VEGFA treatment downregulated miR-143-3p expression, which upregulated PAI-1 and activated an alternative angiogenic pathway in ovarian cancer. In conclusion, the substitution of this miRNA during BEV treatment may help overcome BEV resistance, and this may be used as a novel treatment strategy in clinical settings. IMPLICATIONS Continuous administration of VEGFA antibody upregulates SERPINE1/PAI-1 expression via the downregulation of miR-143-3p, which contributes to acquiring bevacizumab resistance in ovarian cancer.
Collapse
Affiliation(s)
- Taro Yagi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Mayuko Miyamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yukako Oi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Aska Toda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Koji Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| |
Collapse
|
71
|
Niu B, Wei D, Liu XY, Zhai B, Liu XB, Yao YL, Xue YX, Wang P. CircMTA1 promotes glioblastoma angiogenesis by encoding MTA1-134aa. FASEB J 2023; 37:e23160. [PMID: 37750502 DOI: 10.1096/fj.202300724r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with rapid angiogenesis. How to inhibit GBM angiogenesis is a key problem to be solved. To explore the targets of inhibiting GBM angiogenesis, this study confirmed that the expression of circMTA1 (hsa_circ_0033614) was significantly upregulated in human brain microvascular endothelial cells exposed to glioma cell-conditioned medium (GECs). The expression of circMTA1 in the cytoplasm was significantly higher than that in the nucleus. Upregulated circMTA1 in GECs can promote cell proliferation, migration, and tube formation. Further exploration of the circularization mechanism of circMTA1 confirmed that KHDRBS1 protein can bind to the upstream and downstream flanking sequences of circMTA1 and promote circMTA1 biogenesis by coordinating Alu element pairing. KHDRBS1 upregulated the proliferation, migration, and tube formation of GECs by promoting the biogenesis of circMTA1. CircMTA1 can encode the protein MTA1-134aa by internal ribosome entry site sequence-mediated translation mechanism, and promote the proliferation, migration, and tube formation of GECs through the encoded MTA1-134aa. This study provides a new target for inhibiting angiogenesis in brain GBM and a new strategy for improving the therapeutic efficacy of GBM.
Collapse
Affiliation(s)
- Ben Niu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Deng Wei
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiao-Yu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Bei Zhai
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiao-Bai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Long Yao
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
72
|
Wang Y, Chen H, Xu S, Liao C, Xu A, Han Y, Yang M, Zhao L, Hu S, Wang L, Li Q, Zhan L, Ding Y, Wang S. SEMA3B-AS1 suppresses colorectal carcinoma progression by inhibiting Semaphorin 3B-dependent VEGF signaling pathway activation. MedComm (Beijing) 2023; 4:e365. [PMID: 37701532 PMCID: PMC10492924 DOI: 10.1002/mco2.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Mounting evidence has demonstrated the considerable regulatory effects of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of various carcinomas. LncRNA Semaphorin 3B (SEMA3B) antisense RNA 1 (SEMA3B-AS1) has been found to be dysregulated in a few carcinomas recently. However, its potential function and mechanism in colorectal carcinoma (CRC) have not yet been examined. Here we show that SEMA3B-AS1 acts as a crucial regulator of CRC progression. We found that SEMA3B-AS1 expression was downregulated in CRC cell lines and tissues. Downregulation of SEMA3B-AS1 was significantly associated with poor survival in CRC patients. Overexpression of SEMA3B-AS1 reduced the cell growth and metastasis of CRC in vivo and in vitro. In addition, SEMA3B-AS1 promoted the expression of its sense-cognate gene SEMA3B, a member of the Semaphorin family (SEMAs), by recruiting EP300 to induce H3K9 acetylation at the SEMA3B promoter. Furthermore, we proved that SEMA3B-AS1 suppressed CRC angiogenesis by affecting the vascular endothelial growth factor signaling pathway activation which was regulated by the SEMA3B-NRP1 axis. Our work unravels a novel mechanism of SEMA3B-AS1 in the inhibition of CRC malignant progression and highlights its probability as a new promising diagnostic marker and therapeutic target for CRC interventions.
Collapse
Affiliation(s)
- Yi‐Qing Wang
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hui Chen
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shuang Xu
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Cong‐Rui Liao
- Division of Spine SurgeryDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anran Xu
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yue Han
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min‐Hui Yang
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Li Zhao
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Sha‐Sha Hu
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lan Wang
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qing‐Yuan Li
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ling‐Ying Zhan
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yan‐Qing Ding
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shuang Wang
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
73
|
Ren JS, Bai W, Ding JJ, Ge HM, Wang SY, Chen X, Jiang Q. Hypoxia-induced AFAP1L1 regulates pathological neovascularization via the YAP-DLL4-NOTCH axis. J Transl Med 2023; 21:651. [PMID: 37737201 PMCID: PMC10515434 DOI: 10.1186/s12967-023-04503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Pathological neovascularization plays a pivotal role in the onset and progression of tumors and neovascular eye diseases. Despite notable advancements in the development of anti-angiogenic medications that target vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), the occurrence of adverse reactions and drug resistance has somewhat impeded the widespread application of these drugs. Therefore, additional investigations are warranted to explore alternative therapeutic targets. In recent years, owing to the swift advancement of high-throughput sequencing technology, pan-cancer analysis and single-cell sequencing analysis have emerged as pivotal methodologies and focal areas within the domain of omics research, which is of great significance for us to find potential targets related to the regulation of pathological neovascularization. METHODS Pan-cancer analysis and scRNA-seq data analysis were employed to forecast the association between Actin filament-associated protein 1 like 1 (AFAP1L1) and the development of tumors and endothelial cells. Tumor xenograft model and ocular pathological neovascularization model were constructed as well as Isolectin B4 (IsoB4) staining and immunofluorescence staining were used to assess the effects of AFAP1L1 on the progression of neoplasms and neovascular eye diseases in vivo. Transwell assay, wound scratch assay, tube forming assay, three-dimensional germination assay, and rhodamine-phalloidin staining were used to evaluate the impact of AFAP1L1 on human umbilical vein endothelial cells (HUVECs) function in vitro; Dual luciferase reporting, qRT-PCR and western blot were used to investigate the upstream and downstream mechanisms of pathological neovascularization mediated by AFAP1L1. RESULTS Our investigation revealed that AFAP1L1 plays a crucial role in promoting the development of various tumors and demonstrates a strong correlation with endothelial cells. Targeted suppression of AFAP1L1 specifically in endothelial cells in vivo proves effective in inhibiting tumor formation and ocular pathological neovascularization. Mechanistically, AFAP1L1 functions as a hypoxia-related regulatory protein that can be activated by HIF-1α. In vitro experiments demonstrated that reducing AFAP1L1 levels can reverse hypoxia-induced excessive angiogenic capacity in HUVECs. The principal mechanism of angiogenesis inhibition entails the regulation of tip cell behavior through the YAP-DLL4-NOTCH axis. CONCLUSION In conclusion, AFAP1L1, a newly identified hypoxia-related regulatory protein, can be activated by HIF-1α. Inhibiting AFAP1L1 results in the inhibition of angiogenesis by suppressing the germination of endothelial tip cells through the YAP-DLL4-NOTCH axis. This presents a promising therapeutic target to halt the progression of tumors and neovascular eye disease.
Collapse
Affiliation(s)
- Jun-Song Ren
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Wen Bai
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Jing-Juan Ding
- Department of Ophthalmology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Hui-Min Ge
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
| | - Su-Yu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Xi Chen
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital, Nanjing Medical University, #138 Han-ZhongRoad, Nanjing, 210000, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
74
|
Villanueva B, Cerdà P, Torres-Iglesias R, Rocamora JL, Figueras A, Viñals F, Riera-Mestre A. Potential angiogenic biomarkers in hereditary hemorrhagic telangiectasia and other vascular diseases. Eur J Intern Med 2023; 115:10-17. [PMID: 37225595 DOI: 10.1016/j.ejim.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Biomarkers are new tools framed in precision and personalized medicine. Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic vascular disease with disturbances in the angiogenic pathways. Descriptive evidence supports that some angiogenesis-related molecules are differently detected in HHT patients compared to healthy subjects. These molecules are also related to diagnosis, prognosis, complications and therapy monitoring in other common vascular diseases. Despite the need for improving knowledge before applying them in daily clinical practice, there are good candidates to be considered as potential biomarkers in HHT and other vascular diseases. In the present review, the authors aim to summarize and discuss current evidence regarding the main putative angiogenic biomarkers by describing the biological role of each biomarker, the evidence related to HHT and their potential use in this and other common vascular diseases from a clinical point-of-view.
Collapse
Affiliation(s)
- B Villanueva
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Cerdà
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - R Torres-Iglesias
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - J L Rocamora
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Viñals
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - A Riera-Mestre
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
75
|
Ge P, Han C, Reyila A, Liu D, Hong W, Liu J, Zhang J, Han X, Li X, Huang M, Fan S, Kaierdebieke A, Wu X, Huang X, Guo W, Liu S, Bian Y. Risk of antiangiogenic adverse events in metastatic colorectal cancer patients receiving aflibercept in combination with chemotherapy: A meta-analysis. Medicine (Baltimore) 2023; 102:e34793. [PMID: 37657052 PMCID: PMC10476758 DOI: 10.1097/md.0000000000034793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Aflibercept has been approved for the treatment of metastatic colorectal cancer for more than a decade, but its antiangiogenesis adverse effect profile during treatment remains unclear. This study is conducted to systematically review the risk of antiangiogenic adverse events in patients with metastatic colorectal cancer receiving aflibercept plus chemotherapy. METHODS We searched databases, including PubMed, Embase and the Cochrane Library up to September 9, 2021. Relevant randomized controlled trials (RCTs) and single-arm studies were included in the review. Statistical analyses were performed using R to calculate the summary incidence rate of antiangiogenic-related adverse events, odds ratios and 95% CIs. Heterogeneity among the included studies was assessed by subgroup analysis. Publication bias analysis and sensitivity analysis were performed to confirm the reliability of the results. RESULTS A total of 2889 patients from 10 studies met the inclusion criteria. The quality of the included studies was evaluated as qualified for further quantitative synthesis. In part of single-arm studies, the occurrence rates were 44.2% (95%CI, 39.7-48.7%) for hypertension, 31.3% (95% CI, 19.3-43.3%) for proteinuria, 27.3% (95%CI, 21.2-33.4%) for epistaxis, 22.5% (95%CI, 7.8-37.3%) for hemorrhage events, 8.0% (95%CI, 2.0-14 .0%) for venous thromboembolic event in all grades and 22.6% (95%CI, 19.1-26.2%) for grade III/IV hypertension, 7.4% (95%CI, 6.2-8.5%) for grade III/IV proteinuria. In part of RCT, compared to its counterpart, aflibercept containing arm was associated with the increased incidence rate in hypertension (OR:6.30, 95%CI: 3.49-11.36), proteinuria (OR:4.12, 95%CI: 1.25-13.61), epistaxis (OR:3.71, 95%CI: 2.84-4.85), III/IV hypertension (OR:7.20, 95%CI: 5.23-9.92), III/IV proteinuria (OR:5.13, 95%CI: 3.13-8.41). The funnel plot, Begg test and Egger test were carried out on the primary endpoints, III/IV hypertension rate and III/IV proteinuria rate, the result of which detected no obvious publication bias. No significant difference was observed in subgroup analysis in the primary endpoint between the subgroups stratified by treatment line (firstline or non-firstline), chemotherapy regime (FOLFIRI or others) and study design (RCTs or single-arm trials). CONCLUSION The available evidence suggests that using aflibercept is associated with an increased risk of antiangiogenic adverse events compared with controls. Further studies are needed to investigate this association. In the appropriate clinical scenario, the use of aflibercept in its approved indications remains justified. However, the results of this study should be interpreted with caution, as some of the evidence comes from single-arm clinical trials.
Collapse
Affiliation(s)
- Pu Ge
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chunyan Han
- School of Political Science and Public Administration, Shandong University, Qingdao, China
| | | | - Diyue Liu
- International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Wenying Hong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jiaxin Liu
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Jinzi Zhang
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, China
| | - Xiao Han
- The Fifth Affiliated Hospital of Sun Yat-sat University, Zhuhai, China
| | - Xialei Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Mengjie Huang
- School of Public Health, Shandong University, Jinan, China
| | - Siyuan Fan
- Department of Preventive Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | | | - Xiaoyu Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiaolu Huang
- Clinically Third Series, China Medical University, Shenyang, China
| | - Weirui Guo
- School of Clinical Medicine of Jining Medicine University, Jining, China
| | - Siyu Liu
- Stomatology College of Shandong University, Jinan, China
| | - Ying Bian
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
76
|
Zhou C, Huang Y, Nie S, Zhou S, Gao X, Chen G. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur J Med Res 2023; 28:297. [PMID: 37626424 PMCID: PMC10464434 DOI: 10.1186/s40001-023-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin, a natural flavonoid, possesses numerous biological activities that have been extensively studied in various diseases. When it comes to cancer, fisetin exhibits a range of biological effects, such as suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration. Moreover, fisetin has the ability to enhance the effectiveness of chemotherapy. The anticancer properties of fisetin can be attributed to a diverse array of molecules and signaling pathways, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1. Consequently, fisetin holds promise as a therapeutic agent for anticancer treatment. In this review, we place emphasis on the biological functions and various molecular targets of fisetin in anticancer therapy.
Collapse
Affiliation(s)
- Chenhui Zhou
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Yi Huang
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Xiang Gao
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China.
| | - Gao Chen
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
77
|
Cai C, Zhi Y, Xie C, Geng S, Sun F, Ji Z, Zhang P, Wang H, Tang J. Ursolic acid-downregulated long noncoding RNA ASMTL-AS1 inhibits renal cell carcinoma growth via binding to HuR and reducing vascular endothelial growth factor expression. J Biochem Mol Toxicol 2023; 37:e23389. [PMID: 37300450 DOI: 10.1002/jbt.23389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
It has been reported ursolic acid (UA), one of the naturally abundant pentacyclic triterpenes, possesses a wide range of biological activities including anti-inflammatory, anti-atherosclerotic, and anticancer properties. Renal cell carcinoma (RCC) is a severe malignancy due to its asymptomatically spreading ability. Our study aimed to investigate the role and molecular mechanism of UA in RCC. RCC cell proliferation, migration, invasion, and angiogenesis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Transwell, and tube formation assays. Xenograft tumor models were established to confirm the role of UA and long noncoding RNA ASMTL antisense RNA 1 (ASMTL-AS1) in vivo. Expression levels of ASMTL-AS1 and vascular endothelial growth factor (VEGF) were measured using reverse transcriptase quantitative polymerase chain reaction and western blot analysis. The interaction probabilities of ASMTL-AS1 or VEGF with RNA-binding protein human antigen R (HuR) were verified by RNA immunoprecipitation experiment. The half-life period of messenger RNA (mRNA) was determined using actinomycin D. UA inhibited RCC cell growth in vivo and tumorigenesis in vitro. ASMTL-AS1 was highly expressed in RCC cell lines. Of note, UA downregulated ASMTL-AS1 expression, and overexpressed ASMTL-AS1 reversed the UA-induced suppression on RCC cell migration, invasion, and tube formation. Additionally, ASMTL-AS1 bound to HuR to maintain the stability of VEGF mRNA. Rescue experiments showed that the suppressed malignancy of RCC cells mediated by ASMTL-AS1 knockdown was counteracted by overexpression of VEGF. Moreover, silenced ASMTL-AS1 inhibited RCC tumor growth and metastasis in vivo. The obtained data suggest UA as a promising therapeutic agent to attenuate the development of RCC via regulation of the targeted molecules.
Collapse
Affiliation(s)
- Chengkuan Cai
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yunlai Zhi
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Cheng Xie
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Shen Geng
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Fanghu Sun
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Zhengshuai Ji
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Pengcheng Zhang
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Hui Wang
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Jingyuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
78
|
Limam I, Abdelkarim M, El Ayeb M, Crepin M, Marrakchi N, Di Benedetto M. Disintegrin-like Protein Strategy to Inhibit Aggressive Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12219. [PMID: 37569595 PMCID: PMC10418936 DOI: 10.3390/ijms241512219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Venoms are a rich source of bioactive compounds, and among them is leberagin-C (Leb-C), a disintegrin-like protein derived from the venom of Macrovipera lebetina transmediterrannea snakes. Leb-C has shown promising inhibitory effects on platelet aggregation. Previous studies have demonstrated that this SECD protein specifically targets α5β1, αvβ3, and αvβ6 integrins through a mimic mechanism of RGD disintegrins. In our current study, we focused on exploring the potential effects of Leb-C on metastatic breast cancer. Our findings revealed that Leb-C disrupted the adhesion, migration, and invasion capabilities of MDA-MB-231 breast cancer cells and its highly metastatic D3H2LN sub-population. Additionally, we observed significant suppression of adhesion, migration, and invasion of human umbilical vein endothelial cells (HUVECs). Furthermore, Leb-C demonstrated a strong inhibitory effect on fibroblast-growth-factor-2-induced proliferation of HUVEC. We conducted in vivo experiments using nude mice and found that treatment with 2 µM of Leb-C resulted in a remarkable 73% reduction in D3H2LN xenograft tumor size. Additionally, quantification of intratumor microvessels revealed a 50% reduction in tumor angiogenesis in xenograft after 21 days of twice-weekly treatment with 2 µM of Leb-C. Collectively, these findings suggest the potential utility of this disintegrin-like protein for inhibiting aggressive and resistant metastatic breast cancer.
Collapse
Affiliation(s)
- Inès Limam
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mohamed Abdelkarim
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
- LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, 1 Rue Djebal Lakhdar, Tunis 1006, Tunisia
| | - Mohamed El Ayeb
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Michel Crepin
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mélanie Di Benedetto
- IUT of Saint-Denis, Department HSE, Université Paris 13, UMRS941 SMBH, 1 Rue de Chablis, 93000 Bobigny, France
| |
Collapse
|
79
|
Sang BT, Wang CD, Liu X, Guo JQ, Lai JY, Wu XM. PDGF-BB/PDGFRβ induces tumour angiogenesis via enhancing PKM2 mediated by the PI3K/AKT pathway in Wilms' tumour. Med Oncol 2023; 40:240. [PMID: 37442847 DOI: 10.1007/s12032-023-02115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Platelet-derived growth factor receptor-β (PDGFRβ) is a critical type III receptor tyrosine kinase family member, which is involved in Wilms' tumour (WT) metastasis and aerobic glycolysis. The role of PDGFRβ in tumour angiogenesis has not been fully elucidated. Here, we examined the effect of PDGFRβ on angiogenesis in WT. First, the NCBI database integrated three datasets, GSE2712, GSE11151, and GSE73209, to screen differentially expressed genes. The R language was used to analyse the correlation between PDGFRB and vascular endothelial growth factor (VEGF). The results showed that PDGFRB, encoding PDGFRβ, was upregulated in WT, and its level was correlated with VEGFA expression. Next, PDGFRβ expression was inhibited by small interfering RNA (siRNA) or activated with the exogenous ligand PDGF-BB. The expression and secretion of the angiogenesis elated factor VEGFA in WT G401 cells were detected using Western blotting and ELISA, respectively. The effects of conditioned medium from G401 cells on endothelial cell viability, migration, invasion, the total length of the tube, and the number of fulcrums were investigated. To further explore the mechanism of PDGFRβ in the angiogenesis of WT, the expression of VEGFA was detected after blocking the phosphatidylinositol-3-kinase (PI3K) pathway and inhibiting the expression of PKM2, a key enzyme of glycolysis. The results indicated that PDGFRβ regulated the process of tumour angiogenesis through the PI3K/AKT/PKM2 pathway. Therefore, this study provides a novel therapeutic strategy to target PDGFRβ and PKM2 to inhibit glycolysis and anti-angiogenesis, thus, developing a new anti-vascular therapy.
Collapse
Affiliation(s)
- Bo-Tao Sang
- Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China
- Department of Physiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Chang-Dong Wang
- Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Department of Pediatric Urology, Chongqing Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Jia-Qi Guo
- Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China
- Department of Physiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jia-Yi Lai
- Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xiang-Mei Wu
- Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China.
- Department of Physiology, Basic Medical College, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
80
|
Yan C, Li Y, Liu H, Chen D, Wu J. Antitumor mechanism of cannabidiol hidden behind cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188905. [PMID: 37164234 DOI: 10.1016/j.bbcan.2023.188905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Cannabinoids have been utilized for recreational and therapeutic purposes for over 4,000 years. As the primary ingredient in exogenous cannabinoids, Cannabidiol (CBD) has drawn a lot of interest from researchers due to its negligible psychotropic side effects and potential tumor-suppressing properties. However, the obscure mechanisms that underlie them remain a mystery. Complex biological mechanisms are involved in the progression of cancer, and malignancies have a variety of acquired biological capabilities, including sustained proliferation, death evasion, neovascularization, tissue invasion and metastasis, immune escape, metabolic reprogramming, induction of tumor-associated inflammation, cancerous stemness and genomic instability. Nowadays, the role of CBD hidden in these hallmarks is gradually revealed. Nevertheless, flaws or inconsistencies in the recent studies addressing the anti-cancer effects of CBD still exist. The purpose of this review is to evaluate the potential mechanisms underlying the role of CBD in a range of tumor-acquired biological capabilities. We propose potential drugs that may have a synergistic effect with CBD and provide optional directions for future research.
Collapse
Affiliation(s)
- Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
81
|
Xu D, Luo Y, Wang P, Li J, Ma L, Huang J, Zhang H, Yang X, Li L, Zheng Y, Fang G, Yan P. Clinical progress of anti-angiogenic targeted therapy and combination therapy for gastric cancer. Front Oncol 2023; 13:1148131. [PMID: 37384288 PMCID: PMC10295723 DOI: 10.3389/fonc.2023.1148131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The incidence of gastric cancer is increasing year by year. Most gastric cancers are already in the advanced stage with poor prognosis when diagnosed, which means the current treatment is not satisfactory. Angiogenesis is an important link in the occurrence and development of tumors, and there are multiple anti-angiogenesis targeted therapies. To comprehensively evaluate the efficacy and safety of anti-angiogenic targeted drugs alone and in combination against gastric cancer, we systematically searched and sorted out relevant literature. In this review, we summarized the efficacy and safety of Ramucirumab, Bevacizumab, Apatinib, Fruquintinib, Sorafenib, Sunitinib, Pazopanib on gastric cancer when used alone or in combination based on prospective clinical trials reported in the literature, and sorted response biomarkers. We also summarized the challenges faced by anti-angiogenesis therapy for gastric cancer and available solutions. Finally, the characteristics of the current clinical research are summarized and suggestions and prospects are raised. This review will serve as a good reference for the clinical research of anti-angiogenic targeted drugs in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Donghan Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Linrui Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jie Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaoman Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liqi Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yuhong Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Gang Fang
- Guangxi Key Laboratory of Applied Fundamental Research of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
82
|
Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 2023; 22:476-495. [PMID: 37041221 DOI: 10.1038/s41573-023-00671-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/13/2023]
Abstract
Angiogenesis is an essential process in normal development and in adult physiology, but can be disrupted in numerous diseases. The concept of targeting angiogenesis for treating diseases was proposed more than 50 years ago, and the first two drugs targeting vascular endothelial growth factor (VEGF), bevacizumab and pegaptanib, were approved in 2004 for the treatment of cancer and neovascular ophthalmic diseases, respectively. Since then, nearly 20 years of clinical experience with anti-angiogenic drugs (AADs) have demonstrated the importance of this therapeutic modality for these disorders. However, there is a need to improve clinical outcomes by enhancing therapeutic efficacy, overcoming drug resistance, defining surrogate markers, combining with other drugs and developing the next generation of therapeutics. In this Review, we examine emerging new targets, the development of new drugs and challenging issues such as the mode of action of AADs and elucidating mechanisms underlying clinical benefits; we also discuss possible future directions of the field.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
83
|
Mao C, Ji D, Ding Y, Zhang Y, Song W, Liu L, Wu Y, Song L, Feng X, Zhang J, Cao J, Xu N. Suvemcitug as second-line treatment of advanced or metastatic solid tumors and with FOLFIRI for pretreated metastatic colorectal cancer: phase Ia/Ib open label, dose-escalation trials. ESMO Open 2023; 8:101540. [PMID: 37178668 PMCID: PMC10265603 DOI: 10.1016/j.esmoop.2023.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Suvemcitug (BD0801), a novel humanized rabbit monoclonal antibody against vascular endothelial growth factor, has demonstrated promising antitumor activities in preclinical studies. PATIENTS AND METHODS The phase Ia/b trials investigated the safety and tolerability and antitumor activities of suvemcitug for pretreated advanced solid tumors and in combination with FOLFIRI (leucovorin and fluorouracil plus irinotecan) in second-line treatment of metastatic colorectal cancer using a 3 + 3 dose-escalation design. Patients received escalating doses of suvemcitug (phase Ia: 2, 4, 5, 6, and 7.5 mg/kg; phase Ib: 1, 2, 3, 4, and 5 mg/kg plus FOLFIRI). The primary endpoint was safety and tolerability in both trials. RESULTS All patients in the phase Ia trial had at least one adverse event (AE). Dose-limiting toxicities included grade 3 hyperbilirubinemia (one patient), hypertension and proteinuria (one patient), and proteinuria (one patient). The maximum tolerated dose was 5 mg/kg. The most common grade 3 and above AEs were proteinuria (9/25, 36%) and hypertension (8/25, 32%). Forty-eight patients (85.7%) in phase Ib had grade 3 and above AEs, including neutropenia (25/56, 44.6%), reduced leucocyte count (12/56, 21.4%), proteinuria (10/56, 17.9%), and elevated blood pressure (9/56, 16.1%). Only 1 patient in the phase Ia trial showed partial response, [objective response rate 4.0%, 95% confidence interval (CI) 0.1% to 20.4%] whereas 18/53 patients in the phase Ib trial exhibited partial response (objective response rate 34.0%, 95% CI 21.5% to 48.3%). The median progression-free survival was 7.2 months (95% CI 5.1-8.7 months). CONCLUSIONS Suvemcitug has an acceptable toxicity profile and exhibits antitumor activities in pretreated patients with advanced solid tumors or metastatic colorectal cancer.
Collapse
Affiliation(s)
- C Mao
- Department of Medical Oncology, The First Affiliated Hospital of Medical College of Zhejiang University, Shangcheng District, Hangzhou, Zhejiang Province
| | - D Ji
- Department of Head & Neck Tumors and Neuroendocrine Tumors, Fudan University Shanghai Cancer Hospital, Xuhui District, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China
| | - Y Ding
- Phase I Clinical Trials Unit, The First Hospital of Jilin University, Chaoyang District, Changchun, Jilin Province, China
| | - Y Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, China
| | - W Song
- Clinical Science, Shandong Simcere Bio-Pharmaceutical Co., Ltd., Yantai, Shandong Province, China
| | - L Liu
- Clinical Statistics, Shandong Simcere Bio-Pharmaceutical Co., Ltd., Yantai, Shandong Province, China
| | - Y Wu
- Clinical Science, Shandong Simcere Bio-Pharmaceutical Co., Ltd., Yantai, Shandong Province, China
| | - L Song
- Clinical Pharmacology, Shandong Simcere Bio-Pharmaceutical Co., Ltd., Yantai, Shandong Province, China
| | - X Feng
- Clinical Science, Shandong Simcere Bio-Pharmaceutical Co., Ltd., Yantai, Shandong Province, China
| | - J Zhang
- Clinical Science, Shandong Simcere Bio-Pharmaceutical Co., Ltd., Yantai, Shandong Province, China
| | - J Cao
- Department of Lymphoma, Fudan University Shanghai Cancer Hospital, Xuhui District, Shanghai, China.
| | - N Xu
- Department of Medical Oncology, The First Affiliated Hospital of Medical College of Zhejiang University, Shangcheng District, Hangzhou, Zhejiang Province.
| |
Collapse
|
84
|
Manzi J, Hoff CO, Ferreira R, Pimentel A, Datta J, Livingstone AS, Vianna R, Abreu P. Targeted Therapies in Colorectal Cancer: Recent Advances in Biomarkers, Landmark Trials, and Future Perspectives. Cancers (Basel) 2023; 15:cancers15113023. [PMID: 37296986 DOI: 10.3390/cancers15113023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In 2022, approximately 600,000 cancer deaths were expected; more than 50,000 of those deaths would be from colorectal cancer (CRC). The CRC mortality rate in the US has decreased in recent decades, with a 51% drop between 1976 and 2014. This drop is attributed, in part, to the tremendous therapeutic improvements, especially after the 2000s, in addition to increased social awareness regarding risk factors and diagnostic improvement. Five-fluorouracil, irinotecan, capecitabine, and later oxaliplatin were the mainstays of mCRC treatment from the 1960s to 2002. Since then, more than a dozen drugs have been approved for the disease, betting on a new chapter in medicine, precision oncology, which uses patient and tumor characteristics to guide the therapeutic choice. Thus, this review will summarize the current literature on targeted therapies, highlighting the molecular biomarkers involved and their pathways.
Collapse
Affiliation(s)
- Joao Manzi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Agustin Pimentel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Alan S Livingstone
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
85
|
Deng L, Wang L, Zhang J, Zhao L, Meng Y, Zheng J, Xu W, Zhu Z, Huang H. The mechanism of action and biodistribution of a novel EGFR/VEGF bispecific fusion protein that exhibited superior antitumor activities. Heliyon 2023; 9:e16922. [PMID: 37484224 PMCID: PMC10360952 DOI: 10.1016/j.heliyon.2023.e16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite the promising clinical benefits of therapies targeting epidermal growth factor receptor (EGFR) or vascular endothelial growth factor (VEGF) with antibodies in various cancers, resistance to these therapies will inevitably develop following treatment. Recent studies suggest that crosstalk between the EGFR and VEGF signaling pathways might be involved in the development of resistance. Therefore, simultaneous blockade of EGFR and VEGF signaling may be able to counteract this resistance and improve clinical outcomes. Here, we devised a fusion protein with two copies of VEGFR1 domain 2 connected to the C-terminus of cetuximab that can simultaneously bind to EGFR and VEGF and effectively inhibit target cell growth mediated by these two pathways. Furthermore, the fusion protein could bring soluble VEGF into target cells for degradation through internalization upon binding to EGFR. Tissue distribution in mice confirmed that the fusion protein effectively accumulated in tumors compared to its mAb counterpart cetuximab. These features resulted in stronger antitumor efficacies in vivo than the combination of bevacizumab and cetuximab. Thus, we provide a promising new strategy for the treatment of EGFR-overexpressing cancers.
Collapse
|
86
|
Jiang YL, Fu XY, Yin ZH. Retrospective efficacy analysis of olaparib combined with bevacizumab in the treatment of advanced colorectal cancer. World J Gastrointest Surg 2023; 15:906-916. [PMID: 37342840 PMCID: PMC10277937 DOI: 10.4240/wjgs.v15.i5.906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent malignancy of the digestive tract worldwide, characterized by a significant morbidity and mortality rate and subtle initial symptoms. Diarrhea, local abdominal pain, and hematochezia occur with the development of cancer, while systemic symptoms such as anemia and weight loss occur in patients with advanced CRC. Without timely interventions, the disease can have fatal consequences within a short span. The current therapeutic options for colon cancer include olaparib and bevacizumab, which are widely utilized. This study intends to evaluate the clinical efficacy of olaparib combined with bevacizumab in the treatment of advanced CRC, hoping to provide insights into advanced CRC treatment.
AIM To investigate the retrospective efficacy of olaparib combined with bevacizumab in the treatment of advanced CRC.
METHODS A retrospective analysis was conducted on a cohort of 82 patients with advanced colon cancer who were admitted to the First Affiliated Hospital of the University of South China between January 2018 and October 2019. Among them, 43 patients subjected to the classical FOLFOX chemotherapy regimen were selected as the control group, and 39 patients undergoing treatment with olaparib combined with bevacizumab were selected as the observation group. Subsequent to different treatment regimens, the short-term efficacy, time to progression (TTP), and incidence rate of adverse reactions between the two groups were compared. Changes in serum-related indicators [vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9), cyclooxygenase-2 (COX-2)] and tumor markers [human epididymis protein 4 (HE4), carbohydrate antigen 125 (CA125), carbohydrate antigen 199 (CA199)] levels before and after treatment were compared between the two groups at the same time.
RESULTS The objective response rate was discovered to be 82.05%, and the disease control rate was 97.44% in the observation group, which were significantly higher than the respective rates of 58.14% and 83.72% in the control group (P < 0.05). The median TTP was 24 mo (95%CI: 19.987-28.005) in the control group and 37 mo (95%CI: 30.854-43.870) in the observation group. The TTP in the observation group was significantly better than that in the control group, and the difference held statistical significance (log-rank test value = 5.009, P = 0.025). Before treatment, no substantial difference was detected in serum VEGF, MMP-9, and COX-2 levels and tumor markers HE4, CA125, and CA199 levels between the two groups (P > 0.05). Following treatment with different regimens, the above indicators in the two groups were remarkably promoted (P < 0.05), VEGF, MMP-9, and COX-2 in the observation group were lower than those in the control group (P < 0.05), and HE4, CA125, and CA199 levels were also lower than those in the control group (P < 0.05). Vis-à-vis the control group, the total incidence of gastrointestinal reactions, thrombosis, bone marrow suppression, liver and kidney function injury, and other adverse reactions in the observation group was notably lowered, with the difference considered statistically significant (P < 0.05).
CONCLUSION Olaparib combined with bevacizumab in the treatment of advanced CRC demonstrates a strong clinical effect of delaying disease progression and reducing the serum levels of VEGF, MMP-9, COX-2 and tumor markers HE4, CA125 and CA199. Moreover, given its fewer adverse reactions, it can be regarded as a safe and reliable treatment option.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Xue-Yuan Fu
- Department of Anorectal, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zhi-Hui Yin
- Department of Anorectal, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
87
|
Lin Y, Zhao Y, Chen M, Li Z, Liu Q, Chen J, Ding Y, Ding C, Ding Y, Qi C, Zheng L, Li J, Zhang R, Zhou J, Wang L, Zhang QQ. CYD0281, a Bcl-2 BH4 domain antagonist, inhibits tumor angiogenesis and breast cancer tumor growth. BMC Cancer 2023; 23:479. [PMID: 37237269 DOI: 10.1186/s12885-023-10974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Yihua Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiling Zhao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zishuo Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiao Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
88
|
Borlongan MC, Wang H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front Cell Dev Biol 2023; 11:1125174. [PMID: 37305676 PMCID: PMC10247984 DOI: 10.3389/fcell.2023.1125174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Tumorigenic cancer stem cells (CSCs) represent a subpopulation of cells within the tumor that express genetic and phenotypic profiles and signaling pathways distinct from the other tumor cells. CSCs have eluded many conventional anti-oncogenic treatments, resulting in metastases and relapses of cancers. Effectively targeting CSCs' unique self-renewal and differentiation properties would be a breakthrough in cancer therapy. A better characterization of the CSCs' unique signaling mechanisms will improve our understanding of the pathology and treatment of cancer. In this paper, we will discuss CSC origin, followed by an in-depth review of CSC-associated signaling pathways. Particular emphasis is given on CSC signaling pathways' ligand-receptor engagement, upstream and downstream mechanisms, and associated genes, and molecules. Signaling pathways associated with regulation of CSC development stand as potential targets of CSC therapy, which include Wnt, TGFβ (transforming growth factor-β)/SMAD, Notch, JAK-STAT (Janus kinase-signal transducers and activators of transcription), Hedgehog (Hh), and vascular endothelial growth factor (VEGF). Lastly, we will also discuss milestone discoveries in CSC-based therapies, including pre-clinical and clinical studies featuring novel CSC signaling pathway cancer therapeutics. This review aims at generating innovative views on CSCs toward a better understanding of cancer pathology and treatment.
Collapse
Affiliation(s)
- Mia C. Borlongan
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
| | - Hongbin Wang
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
89
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
90
|
Zou Y, Sun Y, Chen X, Hong L, Dong G, Bai X, Wang H, Rao B, Ren Z, Yu Z. Nanosecond pulse effectively ablated hepatocellular carcinoma with alterations in the gut microbiome and serum metabolites. Front Pharmacol 2023; 14:1163628. [PMID: 37234705 PMCID: PMC10205996 DOI: 10.3389/fphar.2023.1163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.
Collapse
Affiliation(s)
- Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Marry School, Nanchang, Jiangxi, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
91
|
Zhao S, Li B, Chen Y, Li C, Zhang Y. Analysis of the Prognostic and Immunological Role of HSPB1 in Pituitary Adenoma: A Potential Target for Therapy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050885. [PMID: 37241117 DOI: 10.3390/medicina59050885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: The diagnosis and treatment of pituitary adenomas with cavernous sinus invasion pose significant challenges for clinicians. The objective of this study is to investigate the expression profile and prognostic value of HSPB1 (heat shock protein beta-1) in pituitary adenomas with invasive and non-invasive features. Additionally, we aim to explore the potential relationship between HSPB1 expression and immunological functions in pituitary adenoma. Materials and Methods: A total of 159 pituitary adenoma specimens (73 invasive tumours and 86 non-invasive tumours) underwent whole-transcriptome sequencing. Differentially expressed genes and pathways in invasive and non-invasive tumours were analysed. HSPB1 was subjected to adequate bioinformatics analysis using various databases such as TIMER, Xiantao and TISIDB. We investigated the correlation between HSPB1 expression and immune infiltration in cancers and predicted the target drug of HSPB1 using the TISIDB database. Results: HSPB1 expression was upregulated in invasive pituitary adenomas and affected immune cell infiltration. HSPB1 was significantly highly expressed in most tumours compared to normal tissues. High expression of HSPB1 was significantly associated with poorer overall survival. HSPB1 was involved in the regulation of the immune system in most cancers. The drugs DB11638, DB06094 and DB12695 could act as inhibitors of HSPB1. Conclusions: HSPB1 may serve as an important marker for invasive pituitary adenomas and promote tumour progression by modulating the immune system. Inhibitors of HSPB1 expression are currently available, making it a potential target for therapy in invasive pituitary adenoma.
Collapse
Affiliation(s)
- Sida Zhao
- Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, China
| | - Bin Li
- Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, China
| | - Yiyuan Chen
- Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, China
| | - Chuzhong Li
- Neurosurgical Department, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, China
| | - Yazhuo Zhang
- Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, China
| |
Collapse
|
92
|
Li X, Wang J, Wang Q, Luo T, Song X, Wan G, Feng Z, He X, Lei Q, Xu Y, You X, Yu L, Zhang L, Zhao L. A novel VEGFR inhibitor ZLF-095 with potent antitumor activity and low toxicity. Heliyon 2023; 9:e15152. [PMID: 37251840 PMCID: PMC10209341 DOI: 10.1016/j.heliyon.2023.e15152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/31/2023] Open
Abstract
Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Tianwen Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610000, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaojie He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Lei
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, No.229 North Taibai Road, Xi’an, Shaanxi, 710069, China
| | - Xinyu You
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
93
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
94
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
95
|
Gao P, Li T, Zhang K, Luo G. Recent advances in the molecular targeted drugs for prostate cancer. Int Urol Nephrol 2023; 55:777-789. [PMID: 36719528 DOI: 10.1007/s11255-023-03487-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
CONTEXT Prostate cancer (PCa) is the second largest male tumor in the world and one of the most common malignant tumors in the urinary system. In recent years, the incidence rate of PCa in China has been increasing year by year. Meanwhile, refractory hormone resistance and adverse drug reactions of advanced PCa cause serious harm to patients. OBJECTIVE The present study aims to systematically review the recent advances in molecularly targeted drugs for prostate cancer and to use the retrieval and analysis of the literature library to summarize the adverse effects of different drugs so as to maximize the treatment benefits of targeted therapies. EVIDENCE ACQUISITION We performed a systematic literature search of the Medline, EMBASE, PubMed, and Cochrane databases up to March 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Medical Subject Heading (MeSH) terms and keywords such as (prostate cancer) AND (molecular target drugs) AND (side effect) were used. No language restrictions were set on the search process, and all these results were processed independently by two authors. Consensus was reached through discussion once met with any disagreements. The primary endpoint was differential features between different molecular targeted drugs. Secondary endpoints were side effects of different drugs on the body and corresponding prognostic values. EVIDENCE SYNTHESIS The Cochrane Collaboration risk of bias tool was used to assess the study quality in terms of sequence generation, allocation concealment, blinding, the completeness of outcome data, selective reporting and other biases. We retrieved 332 articles, of which 49 met the criteria for inclusion. Included studies show that prostatic tumor cells, tumor neovascularization and immune checkpoints are the main means for targeted therapy. Common drugs include 177 Lu-PSMA, Olaparib, Rucaparib, Bevacizumab, Pazopanib, Sorafenib, Cabozantinib, Aflibercept, Ipilimumab, Atezolizumab, Avelumab, Durvalumab. A series of publicly available data suitable for further analysis of side effects. An over-representation analysis of these datasets revealed reasonable dosage and usage is the key to controlling the side effects of targeted drugs. Important information such as the publication year, the first author, location and outcome observation of adverse effects was extracted from the original article. If the study data has some insufficient data, contacting the corresponding authors is necessary. All the studies included prospective nonrandomized and randomized research. Retrospective reviews were also screened according to the relevant to the purpose of this study. Meeting abstracts as well as letters to the editor and editorials were excluded. STATISTICAL ANALYSIS Data analysis was based on Cochrane's risk of bias tools to obtain the quality assessment. The included randomized studies used RoB2 and non-randomized ones corresponded to ROBINS-I. Standardized mean differences (SMD) were used to determine relative risk (RR) and side effects between groups. The eggers' test was used to check the publication bias from variable information in the included studies. All p < 0.05 were considered to be significant, and 95% was set as the confidence interval. CONCLUSIONS With the approval of a variety of targeted drugs, targeted therapy will be widely used in the treatment of advanced or metastatic prostate cancer. Despite the existence of adverse reactions related to targeted drug treatment, it is still meaningful to adjust the drug dosage or treatment cycle to reduce the occurrence of adverse reactions, improving the treatment benefits of patients.
Collapse
Affiliation(s)
- Pudong Gao
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Tao Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Kuiyuan Zhang
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
96
|
Liu XJ, Zhao HC, Hou SJ, Zhang HJ, Cheng L, Yuan S, Zhang LR, Song J, Zhang SY, Chen SW. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg Chem 2023; 133:106425. [PMID: 36801788 DOI: 10.1016/j.bioorg.2023.106425] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hong-Cheng Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College of China Three Gorges University, Yichang 443003, China
| | - Su-Juan Hou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hao-Jie Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
97
|
Lavacchi D, Roviello G, Guidolin A, Romano S, Venturini J, Caliman E, Vannini A, Giommoni E, Pellegrini E, Brugia M, Pillozzi S, Antonuzzo L. Evaluation of Fruquintinib in the Continuum of Care of Patients with Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065840. [PMID: 36982913 PMCID: PMC10051170 DOI: 10.3390/ijms24065840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The management of patients with metastatic colorectal cancer (mCRC) has the continuum of care as the treatment paradigm. To date, trifluridine/tipiracil, a biochemically modulated fluoropyrimidine, and regorafenib, a multi-kinase inhibitor, remain the main options for the majority of patients who progressed to standard doublet- or triplet-based chemotherapies, although a tailored approach could be indicated in certain circumstances. Being highly selective for vascular endothelial growth factor receptor (VEGFR)-1, -2 and -3, fruquintinib demonstrated a strong anti-tumor activity in preclinical models and received approval from China's National Medical Products Administration (NMPA) in 2018 for the treatment of patients with chemo-refractory mCRC. The approval was based on the results of the phase III FRESCO trial. Then, in order to overcome geographic differences in clinical practice, the FRESCO-2 trial was conducted in the US, Europe, Japan, and Australia. In a heavily pretreated patient population, the study met its primary endpoint, demonstrating an advantage of fruquintinib over a placebo in overall survival (OS). Here, we review the clinical development of fruquintinib and its perspectives in gastrointestinal cancers. Then, we discuss the introduction of fruquintinib in the continuum of care of CRC paying special attention to unmet needs, including the identification of cross-resistant and potentially susceptible populations, evaluation of radiological response, and identification of novel biomarkers of clinical benefit.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | | | - Alessia Guidolin
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Silvia Romano
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Jacopo Venturini
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Agnese Vannini
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Elisa Giommoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Elisa Pellegrini
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
98
|
Lee CC, Lee AW, Wei PL, Liu YS, Chang YJ, Huang CY. In silico analysis to identify miR-1271-5p/PLCB4 (phospholipase C Beta 4) axis mediated oxaliplatin resistance in metastatic colorectal cancer. Sci Rep 2023; 13:4366. [PMID: 36927770 PMCID: PMC10020571 DOI: 10.1038/s41598-023-31331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Oxaliplatin (OXA) is the first-line chemotherapy drug for metastatic colorectal cancer (mCRC), and the emergence of drug resistance is a major clinical challenge. Although there have been numerous studies on OXA resistance, but its underlying molecular mechanisms are still unclear. This study aims to identify key regulatory genes and pathways associated with OXA resistance. The Gene Expression Omnibus (GEO) GSE42387 dataset containing gene expression profiles of parental and OXA-resistant LoVo cells was applied to explore potential targets. GEO2R, STRING, CytoNCA (a plug-in of Cytoscape), and DAVID were used to analyze differentially expressed genes (DEGs), protein-protein interactions (PPIs), hub genes in PPIs, and gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. R2 online platform was used to run a survival analysis of validated hub genes enriched in KEGG pathways. The ENCORI database predicted microRNAs for candidate genes. A survival analysis of those genes was performed, and validated using the OncoLnc database. In addition, the 'clusterProfiler' package in R was used to perform gene set enrichment analysis (GSEA). We identified 395 DEGs, among which 155 were upregulated and 240 were downregulated. In total, 95 DEGs were screened as hub genes after constructing the PPI networks. Twelve GO terms and three KEGG pathways (steroid hormone biosynthesis, malaria, and pathways in cancer) were identified as being significant in the enrichment analysis of hub genes. Twenty-one hub genes enriched in KEGG pathways were defined as key genes. Among them AKT3, phospholipase C Beta 4 (PLCB4), and TGFB1 were identified as OXA-resistance genes through the survival analysis. High expressions of AKT3 and TGFB1 were each associated with a poor prognosis, and lower expression of PLCB4 was correlated with worse survival. Further, high levels of hsa-miR-1271-5p, which potentially targets PLCB4, were associated with poor overall survival in patients with CRC. Finally, we found that PLCB4 low expression was associated with MAPK signaling pathway and VEGF signaling pathway in CRC. Our results demonstrated that hsa-miR-1271-5p/PLCB4 in the pathway in cancer could be a new potential therapeutic target for mCRC with OXA resistance.
Collapse
Affiliation(s)
- Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ai-Wei Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC.,Cancer Research Center and Translational Laboratory, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yi-Shin Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC. .,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
99
|
Wieser V, Tsibulak I, Reimer DU, Zeimet AG, Fiegl H, Hackl H, Marth C. An angiogenic tumor phenotype predicts poor prognosis in ovarian cancer. Gynecol Oncol 2023; 170:290-299. [PMID: 36758419 DOI: 10.1016/j.ygyno.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Epithelial ovarian cancer (OC) is the deadliest gynecological malignancy worldwide. Blocking angiogenesis with bevacizumab, an antibody targeting vascular endothelial growth factor (VEGF), shows efficacy in different lines of OC therapy. This study investigates the clinical impact of tumoral expression of angiogenesis-related genes and their association with bevacizumab response in OC in retrospective analysis of three independent cohorts. METHODS mRNA expression of seven angiogenic genes (VEGF, VEGFR2, PDGFA, PDGFB, PDGFRA, PDGFRB, KIT) was quantified in an inception OC cohort (n = 195) and a transcriptional tumor angiogenesis score from 0 to 3 was established and linked to progression-free survival (PFS) and overall survival (OS). This score was corroborated in an independent publicly available cohort from The Cancer Genome Atlas (TCGA, n = 582) and prediction of therapeutic efficacy of bevacizumab by the angiogenesis score was analyzed in the Gene Expression Omnibus (GEO) dataset GSE140082 (n = 380) from the ICON7-trial. RESULTS The tumor angiogenesis score prognosticated PFS and OS in patients with OC from the inception cohort (p < 0.001, respectively). Tumoral PDGFA expression (PFS: HR 2.46, p = 0.005; OS: HR 2.26, p = 0.011) and a high tumoral transcriptional angiogenesis score (PFS: HR 1.41, p = 0.018) were identified as independent predictors of clinical outcome. The transcriptional angiogenesis score exhibited a significant though smaller effect size on PFS in the TCGA cohort. However, in the ICON7-trial, the angiogenesis score was not associated with benefit of bevacizumab treatment. CONCLUSIONS Our study indicates that tumoral expression of angiogenic genes is unfavorable in OC. The established score could be used to identify patients who respond to targeted angiogenic therapies, a concept that warrants prospective controlled clinical trials.
Collapse
Affiliation(s)
- Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Uwe Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
100
|
Tian Y, Ma B, Yu S, Li Y, Pei H, Tian S, Zhao X, Liu C, Zuo Z, Wang Z. Clinical antitumor application and pharmacological mechanisms of Dahuang Zhechong Pill. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|