51
|
Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:ijms222413333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
|
52
|
Simultaneous analysis of serum α2,3-linked sialylation and core-type fucosylation of prostate-specific antigen for the detection of high-grade prostate cancer. Br J Cancer 2021; 126:764-770. [PMID: 34802050 DOI: 10.1038/s41416-021-01637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Altered prostate-specific antigen (PSA) glycosylation patterns can be useful biomarkers in detecting high-grade prostate cancer (HGPC). The microfluidic immunoassay system can analyse α2,3-linked sialylated PSA (α2,3-Sia-PSA) and α1,6-linked fucosylated PSA (α1,6-Fuc-PSA) using different lectins, Mackkia amurensis agglutinin and Pholiota squarrosa lectin, respectively. Here, we investigated the diagnostic value of simultaneous analysis of α2,3-Sia-PSA and α1,6-Fuc-PSA for the detection of HGPC. METHODS Men with serum PSA levels of 4-20 ng/mL who underwent prostate biopsy were included. The model to predict HGPC (Gleason grade ≥2) was constructed by multivariate logistic regression analysis, in combination with α2,3-Sia-PSA and α1,6-Fuc-PSA (SF index). RESULTS In the development cohort (n = 150), the SF index showed good discrimination for HGPC (area under the receiver-operating curve (AUC) 0.842; 95% confidence interval (CI) 0.782-0.903), compared to the single PSA test (AUC 0.632, 95% CI 0.543-0.721), α2,3-Sia-PSA (AUC 0.711, 95% CI 0.629-0.793) and α1,6-Fuc-PSA (AUC 0.738, 95% CI 0.657-0.819). Decision-curve analysis showed the superior benefit of the SF index. In the validation cohort (n = 57), the SF index showed good discrimination for HGPC (AUC 0.769, 95% CI 0.643-0.895). CONCLUSIONS The SF index could differentiate HGPC, providing useful information for decision making for prostate biopsy in men with abnormal PSA levels.
Collapse
|
53
|
Berghuis AY, Pijnenborg JFA, Boltje TJ, Pijnenborg JMA. Sialic acids in gynecological cancer development and progression: Impact on diagnosis and treatment. Int J Cancer 2021; 150:678-687. [PMID: 34741527 PMCID: PMC9299683 DOI: 10.1002/ijc.33866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Gynecological cancers are in the top 10 of most common cancers in women. Survival and outcome are strongly related to the stage at diagnosis. Therefore, early diagnosis is essential in reducing morbidity and mortality. The high mortality rate of gynecological cancers can mainly be attributed to ovarian cancer (OC). OC is commonly diagnosed at an advanced stage due to a lack of proper screening tools allowing early detection. Endometrial cancer (EC) on the contrary, is mostly diagnosed at an early stage and has, in general, better outcomes. The incidence of nonendometrioid EC has increased in the last decade, displaying a shared tumor biology with OC and consequently significantly worse outcome. New approaches allowing detection of gynecological cancers in an early stage are therefore desired. Recent studies on cancer biology have shown the relevance of altered glycosylation in the occurrence and progression of cancer. The aberrant expression of sialic acid, a specific carbohydrate terminating glycoproteins and glycolipids on the cell‐surface, is frequently correlated with malignancy. We aimed to determine the current understanding of sialic acid function in different gynecological cancers to identify the gaps in knowledge and its potential use for new diagnostic and therapeutic avenues. Therefore we performed a review on current literature focusing on studies where sialylation was linked to gynecological cancers. The identified studies showed elevated levels of sialic acid in serum, tissue and sialylated antigens in most patients with gynecological cancers, underlining its potential for diagnosis.
What's new?
Recent studies have shown the relevance of altered glycosylation in the occurrence and progression of cancer. In this review, the authors found elevated levels of sialic acid in serum and tissue and high levels of sialylated antigens in most patients with gynaecological cancers, underlining the potential of sialic acid for diagnosis. Elevated levels of sialylation were related with tumour growth, poor differentiation, inhibition of apoptosis, and chemoresistance. Taken together, the studies suggest that sialylation levels could be used to discriminate healthy and benign samples from cancer samples and even early and advanced stages in ovarian, cervical, and endometrial cancer.
Collapse
Affiliation(s)
- Anna Y Berghuis
- Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Johan F A Pijnenborg
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Science, Nijmegen, The Netherlands
| |
Collapse
|
54
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
55
|
Torok R, Horompoly K, Szigeti M, Guttman A, Vitai M, Koranyi L, Jarvas G. N-Glycosylation Profiling of Human Blood in Type 2 Diabetes by Capillary Electrophoresis: A Preliminary Study. Molecules 2021; 26:6399. [PMID: 34770808 PMCID: PMC8586923 DOI: 10.3390/molecules26216399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, diagnosing type 2 diabetes (T2D) is a great challenge. Thus, there is a need to find rapid, simple, and reliable analytical methods that can detect the disease at an early stage. The aim of this work was to shed light on the importance of sample collection options, sample preparation conditions, and the applied capillary electrophoresis bioanalytical technique, for a high-resolution determination of the N-glycan profile in human blood samples of patients with type 2 diabetes (T2D). To achieve the profile information of these complex oligosaccharides, linked by asparagine to hIgG in the blood, the glycoproteins of the samples needed to be cleaved, labelled, and purified with sufficient yield and selectivity. The resulting samples were analyzed by capillary electrophoresis, with laser-induced fluorescence detection. After separation parameter optimization, the capillary electrophoresis technique was implemented for efficient N-glycan profiling of whole blood samples from the diabetic patients. Our results revealed that there were subtle differences between the N-glycan profiles of the diabetic and control samples; in particular, two N-glycan structures were identified as potential glycobiomarkers that could reveal significant changes between the untreated/treated type 2 diabetic and control samples. By analyzing the resulting oligosaccharide profiles, clinically relevant information was obtained, revealing the differences between the untreated and HMG-CoA reductase-inhibitor-treated diabetic patients on changes in the N-glycan profile in the blood. In addition, the information from specific IgG N-glycosylation profiles in T2D could shed light on underlying inflammatory pathophysiological processes and lead to drug targets.
Collapse
Affiliation(s)
- Rebeka Torok
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 8200 Veszprem, Hungary; (R.T.); (K.H.); (M.S.); (A.G.)
| | - Klaudia Horompoly
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 8200 Veszprem, Hungary; (R.T.); (K.H.); (M.S.); (A.G.)
| | - Marton Szigeti
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 8200 Veszprem, Hungary; (R.T.); (K.H.); (M.S.); (A.G.)
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 8200 Veszprem, Hungary; (R.T.); (K.H.); (M.S.); (A.G.)
- Horvath Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Marta Vitai
- DRC Drug Research Center Ltd., 8230 Balatonfured, Hungary; (M.V.); (L.K.)
| | - Laszlo Koranyi
- DRC Drug Research Center Ltd., 8230 Balatonfured, Hungary; (M.V.); (L.K.)
| | - Gabor Jarvas
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 8200 Veszprem, Hungary; (R.T.); (K.H.); (M.S.); (A.G.)
| |
Collapse
|
56
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
57
|
Blaschke CRK, Hartig JP, Grimsley G, Liu L, Semmes OJ, Wu JD, Ippolito JE, Hughes-Halbert C, Nyalwidhe JO, Drake RR. Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Front Chem 2021; 9:734280. [PMID: 34646811 PMCID: PMC8503230 DOI: 10.3389/fchem.2021.734280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan P Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Liping Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Jennifer D Wu
- Departments of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Chanita Hughes-Halbert
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
58
|
Wang Y, Zhao R, Jiao X, Wu L, Wei Y, Shi F, Zhong J, Xiong L. Small Extracellular Vesicles: Functions and Potential Clinical Applications as Cancer Biomarkers. Life (Basel) 2021; 11:life11101044. [PMID: 34685415 PMCID: PMC8541078 DOI: 10.3390/life11101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer, as the second leading cause of death worldwide, is a major public health concern that imposes a heavy social and economic burden. Effective approaches for either diagnosis or therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs, and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Xueqiao Jiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Longyuan Wu
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Fuxiu Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
59
|
Liu D, Zhu J, Zhao T, Sharapov S, Tiys E, Wu L. Associations Between Genetically Predicted Plasma N-Glycans and Prostate Cancer Risk: Analysis of Over 140,000 European Descendants. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1211-1220. [PMID: 34588798 PMCID: PMC8473033 DOI: 10.2147/pgpm.s319308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
Background Previous studies suggest a potential link between glycosylation and prostate cancer. To better characterize the relationship between the two, we performed a study to comprehensively evaluate the associations between genetically predicted blood plasma N-glycan levels and prostate cancer risk. Methods Using genetic variants associated with N-glycan levels as instruments, we evaluated the associations between levels of 138 plasma N-glycans and prostate cancer risk. We analyzed data of 79,194 cases and 61,112 controls of European ancestry included in the consortia of BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL. Results We identified three N-glycans with genetically predicted levels in plasma to be associated with prostate cancer risk after Bonferroni correction. The estimated odds ratios (95% confidence intervals) were 1.29 (1.20–1.40), 0.80 (0.74–0.88), and 0.79 (0.72–0.87) for PGP18, PGP33, and PGP109, respectively, per every one standard deviation increase in genetically predicted levels of N-glycan. However, the instruments for these N-glycans only involved one to two variants. The proportions of variations that can be explained by the instruments range from 1.58% to 2.95% for these three N-glycans. Conclusion We observed associations between genetically predicted levels of three N-glycans PGP18, PGP33, and PGP109 and prostate cancer risk. Given the correlated nature of the N-glycans and that many N-glycans share genetic loci, pleiotropy is a major concern. Future work is warranted to better characterize the relationship between N-glycans and prostate cancer.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.,Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Tianying Zhao
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.,Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Evgeny Tiys
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
60
|
Abd Rahman SF, Md Arshad MK, Gopinath SCB, Fathil MFM, Sarry F, Ibau C. Glycosylated biomarker sensors: advancements in prostate cancer diagnosis. Chem Commun (Camb) 2021; 57:9640-9655. [PMID: 34473143 DOI: 10.1039/d1cc03080a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer is currently diagnosed using the conventional gold standard methods using prostate-specific antigen (PSA) as the selective biomarker. However, lack of precision in PSA screening has resulted in needless biopsies and delays the treatment of potentially fatal prostate cancer. Thus, identification of glycans as novel biomarkers for the early detection of prostate cancer has attracted considerable attention due to their reliable diagnostic platform compared with the current PSA systems. Therefore, biosensing technologies that provide point-of-care diagnostics have demonstrated the ability to detect various analytes, including glycosylated micro- and macro-molecules, thereby enabling versatile detection methodologies. This highlight article discusses recent advances in the biosensor-based detection of prostate cancer glycan biomarkers and the innovative strategies for the conjugation of nanomaterials adapted to biosensing platforms. Finally, the article is concluded with prospects and challenges of prostate cancer biosensors and recommendations to overcome the issues associated with prostate cancer diagnosis.
Collapse
Affiliation(s)
- Siti Fatimah Abd Rahman
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.
| | - Mohd Khairuddin Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia. .,Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia. .,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | | | - Frédéric Sarry
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Conlathan Ibau
- Institute of Nano Optoelectronics Research and Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
61
|
Differential Glycosylation Levels in Saliva from Patients with Lung or Breast Cancer: A Preliminary Assessment for Early Diagnostic Purposes. Metabolites 2021; 11:metabo11090566. [PMID: 34564382 PMCID: PMC8471868 DOI: 10.3390/metabo11090566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Glycans play a fundamental role in several biological processes, such as cell-cell adhesion, signaling, and recognition. Similarly, abnormal glycosylation is involved in many pathological processes, among which include tumor growth and progression. Several highly glycosylated proteins found in blood are currently used in clinical practice as cancer biomarkers (e.g., CA125, PSA, and CA19-9). The development of novel non-invasive diagnostic procedures would greatly simplify the screening and discovery of pathologies at an early stage, thus also allowing for simpler treatment and a higher success rate. In this observational study carried out on 68 subjects diagnosed with either breast or lung cancer and 34 healthy volunteers, we hydrolyzed the glycoproteins in saliva and quantified the obtained free sugars (fucose, mannose, galactose, glucosamine, and galactosamine) by using high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD). The glycosidic profiles were compared by using multivariate statistical analysis, showing differential glycosylation patterns among the three categories. Furthermore, Receiver Operating Characteristics (ROC) analysis allowed obtaining a reliable and minimally invasive protocol able to discriminate between healthy and pathological subjects.
Collapse
|
62
|
Sugár S, Tóth G, Bugyi F, Vékey K, Karászi K, Drahos L, Turiák L. Alterations in protein expression and site-specific N-glycosylation of prostate cancer tissues. Sci Rep 2021; 11:15886. [PMID: 34354152 PMCID: PMC8342536 DOI: 10.1038/s41598-021-95417-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Identifying molecular alterations occurring during cancer progression is essential for a deeper understanding of the underlying biological processes. Here we have analyzed cancerous and healthy prostate biopsies using nanoLC-MS(MS) to detect proteins with altered expression and N-glycosylation. We have identified 75 proteins with significantly changing expression during disease progression. The biological processes involved were assigned based on protein-protein interaction networks. These include cellular component organization, metabolic and localization processes. Multiple glycoproteins were identified with aberrant glycosylation in prostate cancer, where differences in glycosite-specific sialylation, fucosylation, and galactosylation were the most substantial. Many of the glycoproteins with altered N-glycosylation were extracellular matrix constituents, and are heavily involved in the establishment of the tumor microenvironment.
Collapse
Affiliation(s)
- Simon Sugár
- grid.425578.90000 0004 0512 3755MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, 1117 Budapest, Hungary ,grid.11804.3c0000 0001 0942 9821Semmelweis University, Ph.D. School of Pharmaceutical Sciences, Üllői út 26, 1085 Budapest, Hungary
| | - Gábor Tóth
- grid.425578.90000 0004 0512 3755MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, 1117 Budapest, Hungary ,grid.6759.d0000 0001 2180 0451Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3, 1111 Budapest, Hungary
| | - Fanni Bugyi
- grid.425578.90000 0004 0512 3755MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, 1117 Budapest, Hungary ,grid.5591.80000 0001 2294 6276Eötvös Loránd University, Hevesy György Ph.D. School of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Károly Vékey
- grid.425578.90000 0004 0512 3755MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Katalin Karászi
- grid.11804.3c0000 0001 0942 98211St Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - László Drahos
- grid.425578.90000 0004 0512 3755MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Lilla Turiák
- grid.425578.90000 0004 0512 3755MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, 1117 Budapest, Hungary ,grid.11804.3c0000 0001 0942 9821Semmelweis University, Ph.D. School of Pharmaceutical Sciences, Üllői út 26, 1085 Budapest, Hungary
| |
Collapse
|
63
|
Glycosylation: Rising Potential for Prostate Cancer Evaluation. Cancers (Basel) 2021; 13:cancers13153726. [PMID: 34359624 PMCID: PMC8345048 DOI: 10.3390/cancers13153726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Aberrant protein glycosylation is a well-known hallmark of cancer and is associated with differential expression of enzymes such as glycosyltransferases and glycosidases. The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign prostate disease and cancer as well as among different stages of prostate cancer development and aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic procedures of prostate diseases. Further research is desired to develop more general algorithms exploiting glycobiology data for the improvement of prostate diseases evaluation. Abstract Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.
Collapse
|
64
|
Shrivastava G, Aljabali AA, Shahcheraghi SH, Lotfi M, Shastri MD, Shukla SD, Chellappan DK, Jha NK, Anand K, Dureja H, Pabari RM, Mishra V, Almutary AG, Alnuqaydan AM, Charbe N, Prasher P, Negi P, Goyal R, Dua K, Gupta G, Serrano-Aroca Á, Bahar B, Barh D, Panda PK, Takayama K, Lundstrom K, McCarron P, Bakshi H, Tambuwala MM. Targeting LIN28: a new hope in prostate cancer theranostics. Future Oncol 2021; 17:3873-3880. [PMID: 34263659 DOI: 10.2217/fon-2021-0247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.
Collapse
Affiliation(s)
- Garima Shrivastava
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Alaa Aa Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid-Jordan
| | - Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Centre, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Madhur D Shastri
- School of Pharmacy & Pharmacology, University of Tasmania, Hobart, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine & Public Health, The University of Newcastle, Callaghan, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences & National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Harish Dureja
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502329, India
| | - Ritesh M Pabari
- RCSI, University of Medicine & Health Sciences, Dublin, Ireland
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain
| | - Bojlul Bahar
- International Institute of Nutritional Sciences & Food Safety Studies, University of Central Lancashire, Preston, United Kingdom
| | - Debmalya Barh
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - Kazuo Takayama
- Center for IPS Cell Research & Application, Kyoto University, Kyoto 606-8397, Japan
| | | | - Paul McCarron
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Hamid Bakshi
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| |
Collapse
|
65
|
Bertokova A, Bertok T, Jane E, Hires M, Ďubjaková P, Novotná O, Belan V, Fillo J, Tkac J. Detection of N,N-diacetyllactosamine (LacdiNAc) containing free prostate-specific antigen for early stage prostate cancer diagnostics and for identification of castration-resistant prostate cancer patients. Bioorg Med Chem 2021; 39:116156. [PMID: 33894508 DOI: 10.1016/j.bmc.2021.116156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancer types among men and also acommon cause of death globally. With an increasing incidence, there is aneed for low-cost, reliable biomarkers present in samples, which could be provided non-invasively (without a need to perform prostate biopsy). Glycosylation changes of free-PSA (fPSA) are considered cancer-specific, while the level of different PSA forms can increase under other than cancerous conditions. In the present study, we investigated the role ofN,N-diacetyllactosamine (LacdiNAc) epitope of fPSA (i.e. glycoprofile of fPSA or gPSA) in combination with total-PSA (tPSA), prostate volume, and tPSA density (tPSA level divided by prostate volume i.e. PSAd) as biomarkers for monitoring of PCa development and progression in 105 men. Furthermore, we applied an genetic (evolutionary) algorithm to identify any suspicious individuals in abenign cohort having benign prostatic hyperplasia (BPH). We identified 3 suspicious men originally diagnosed with BPH using gPSA analysis. In thefollow-up we found out that two men should not be considered as BPH patients since multiparametric magnetic resonance imaging (mpMRI) identified one man with clinically significant PCa via Prostate Imaging - Reporting and Data System (PI RADS v2 = 4) and the second man was with High-gradeprostatic intraepithelial neoplasia (HG PIN), commonly described as apre-cancerous stage. Moreover, in the study we described for the first time that changed LacdiNAc on PSA can be applied to identify prostatitis patients and most importantly this is the first study suggesting that changed glycosylation on PSA can be applied to identify castration-resistant prostate cancer (CRPCa) patients.
Collapse
Affiliation(s)
- Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia; Glycanostics, Ltd., Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia; Glycanostics, Ltd., Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Petra Ďubjaková
- University Hospital Bratislava, Mickiewiczova 13, 811 07 Bratislava, Slovakia
| | - Oľga Novotná
- University Hospital Bratislava, Mickiewiczova 13, 811 07 Bratislava, Slovakia
| | | | - Juraj Fillo
- University Hospital Bratislava, Mickiewiczova 13, 811 07 Bratislava, Slovakia
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia; Glycanostics, Ltd., Dubravska cesta 9, Bratislava 845 38, Slovakia.
| |
Collapse
|
66
|
Williams GT, Kedge JL, Fossey JS. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens 2021; 6:1508-1528. [PMID: 33844515 PMCID: PMC8155662 DOI: 10.1021/acssensors.1c00462] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Boronic acids can reversibly bind diols, a molecular feature that is ubiquitous within saccharides, leading to their use in the design and implementation of sensors for numerous saccharide species. There is a growing understanding of the importance of saccharides in many biological processes and systems; while saccharide or carbohydrate sensing in medicine is most often associated with detection of glucose in diabetes patients, saccharides have proven to be relevant in a range of disease states. Herein the relevance of carbohydrate sensing for biomedical applications is explored, and this review seeks to outline how the complexity of saccharides presents a challenge for the development of selective sensors and describes efforts that have been made to understand the underpinning fluorescence and binding mechanisms of these systems, before outlining examples of how researchers have used this knowledge to develop ever more selective receptors.
Collapse
Affiliation(s)
- George T. Williams
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Jonathan L. Kedge
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - John S. Fossey
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
67
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
68
|
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32:466-477. [PMID: 33548389 PMCID: PMC8268076 DOI: 10.1016/j.annonc.2021.01.074] [Citation(s) in RCA: 442] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.
Collapse
Affiliation(s)
- W Yu
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - J Hurley
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - D Roberts
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | | | - D Enderle
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - M Noerholm
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - X O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Neuroscience Program, Harvard Medical School, Boston, USA
| | - J K Skog
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA.
| |
Collapse
|
69
|
Hatakeyama S, Yoneyama T, Tobisawa Y, Yamamoto H, Ohyama C. Narrative review of urinary glycan biomarkers in prostate cancer. Transl Androl Urol 2021; 10:1850-1864. [PMID: 33968674 PMCID: PMC8100853 DOI: 10.21037/tau-20-964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. The application of the prostate-specific antigen (PSA) test has improved the diagnosis and treatment of PC. However, the PSA test has become associated with overdiagnosis and overtreatment. Therefore, there is an unmet need for novel diagnostic, prognostic, and predictive biomarkers of PC. Urinary glycoproteins and exosomes are a potential source of PC glycan biomarkers. Urinary glycan profiling can provide noninvasive monitoring of tumor heterogeneity and aggressiveness throughout a treatment course. However, urinary glycan profiling is not popular due to technical disadvantages, such as complicated structural analysis that requires specialized expertise. The technological development of glycan analysis is a rapidly advancing field. A lectin-based microarray can detect aberrant glycoproteins in urine, including PSA glycoforms and exosomes. Glycan enrichment beads can enrich the concentration of N-linked glycans specifically. Capillary electrophoresis, liquid chromatography-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry can detect glycans directory. Many studies suggest potential of urinary glycoproteins, exosomes, and glycosyltransferases as a biomarker of PC. Although further technological challenges remain, urinary glycan analysis is one of the promising approaches for cancer biomarker discovery.
Collapse
Affiliation(s)
- Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
70
|
Vermassen T, Van Den Broeck A, Lumen N, Callewaert N, Rottey S, Delanghe J. Tissue N-linked glycosylation as potential prognostic biomarker for biochemical recurrence-free survival. Biomarkers 2021; 26:275-285. [PMID: 33657946 DOI: 10.1080/1354750x.2021.1891290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Only few biomarkers have been evaluated for their prognostic value following radical prostatectomy. We explored if tissue N-glycosylation shows prognostic properties for biochemical recurrence (BCR)-free survival. MATERIALS AND METHODS Tissue N-glycosylation profile was determined from 82 prostate cancer (PCa) patients and prognostic features were compared to clinical and biochemical parameters for BCR-free survival. RESULTS Majority presented with Gleason score 3 + 4 (41%), extensive local disease (62%) and without pelvic lymph nodes invasion (83%). Several parameters (low T stage, low Gleason score, low EAU risk groups for BCR, absence of positive surgical margins, high ratio of fucosylated triantennary structures on total of multiantennary structures [3AFc/MA], low ratio of fucosylated biantennary with core-branched N-acetylglucosamine on total of biantennary structures, and high ratio of triantennary structures on total of multiantennary structures) proved to have a univariate beneficial effect on BCR-free survival. Multivariate analysis proved positive surgical margins and 3AFc/MA to be independent prognosticators. CONCLUSIONS Tissue N-glycans are a powerful prognostic tool and can be an asset in PCa as the ratio of 3AFc/MA is independently associated with BCR-free survival. This could be of clinical use in guiding patients following radical prostatectomy, e.g. referral to adjuvant radiotherapy. Further elaboration of this biomarker is warranted.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | | | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
71
|
Moran AB, Domínguez-Vega E, Nouta J, Pongracz T, de Reijke TM, Wuhrer M, Lageveen-Kammeijer GSM. Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis - mass spectrometry. J Proteomics 2021; 238:104148. [PMID: 33618028 DOI: 10.1016/j.jprot.2021.104148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients' urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA. SIGNIFICANCE: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and non-cleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.
Collapse
Affiliation(s)
- Alan B Moran
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Jan Nouta
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Tamas Pongracz
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Theo M de Reijke
- Amsterdam UMC, location Academic Medical Center, Department of Urology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | | |
Collapse
|
72
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
73
|
Kawahara R, Recuero S, Srougi M, Leite KRM, Thaysen-Andersen M, Palmisano G. The Complexity and Dynamics of the Tissue Glycoproteome Associated With Prostate Cancer Progression. Mol Cell Proteomics 2021; 20:100026. [PMID: 33127837 PMCID: PMC8010466 DOI: 10.1074/mcp.ra120.002320] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
The complexity and dynamics of the immensely heterogeneous glycoproteome of the prostate cancer (PCa) tumor microenvironment remain incompletely mapped, a knowledge gap that impedes our molecular-level understanding of the disease. To this end, we have used sensitive glycomics and glycoproteomics to map the protein-, cell-, and tumor grade-specific N- and O-glycosylation in surgically removed PCa tissues spanning five histological grades (n = 10/grade) and tissues from patients with benign prostatic hyperplasia (n = 5). Quantitative glycomics revealed PCa grade-specific alterations of the oligomannosidic-, paucimannosidic-, and branched sialylated complex-type N-glycans, and dynamic remodeling of the sialylated core 1- and core 2-type O-glycome. Deep quantitative glycoproteomics identified ∼7400 unique N-glycopeptides from 500 N-glycoproteins and ∼500 unique O-glycopeptides from nearly 200 O-glycoproteins. With reference to a recent Tissue and Blood Atlas, our data indicate that paucimannosidic glycans of the PCa tissues arise mainly from immune cell-derived glycoproteins. Furthermore, the grade-specific PCa glycosylation arises primarily from dynamics in the cellular makeup of the PCa tumor microenvironment across grades involving increased oligomannosylation of prostate-derived glycoproteins and decreased bisecting GlcNAcylation of N-glycans carried by the extracellular matrix proteins. Furthermore, elevated expression of several oligosaccharyltransferase subunits and enhanced N-glycoprotein site occupancy were observed associated with PCa progression. Finally, correlations between the protein-specific glycosylation and PCa progression were observed including increased site-specific core 2-type O-glycosylation of collagen VI. In conclusion, integrated glycomics and glycoproteomics have enabled new insight into the complexity and dynamics of the tissue glycoproteome associated with PCa progression generating an important resource to explore the underpinning disease mechanisms.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, Brazil; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Saulo Recuero
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Miguel Srougi
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Katia R M Leite
- Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|
74
|
Bastian K, Scott E, Elliott DJ, Munkley J. FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. Int J Mol Sci 2021; 22:E455. [PMID: 33466384 PMCID: PMC7795606 DOI: 10.3390/ijms22010455] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-β, EGF, α3β1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.
Collapse
Affiliation(s)
- Kayla Bastian
- Institute of Biosciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; (E.S.); (D.J.E.); (J.M.)
| | | | | | | |
Collapse
|
75
|
Akarken İ, Dere Y. Could trop-2 overexpression indicate tumor aggressiveness among prostatic adenocarcinomas? Ann Diagn Pathol 2020; 50:151680. [PMID: 33341704 DOI: 10.1016/j.anndiagpath.2020.151680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND TROP-2, a novel marker of trophoblastic cells, is being widely analyzed for its possible role in carcinogenesis and clinical behavior of various carcinomas. In this study, we aimed to evaluate the relationship between clinicopathologic parameters and TROP2 expression in prostatic adenocarcinomas. METHODS 101 prostatic adenocarcinomas treated by radical prostatectomy in our hospital between 2013 and 2018 were reviewed retrospectively for histopathological features, and one representative block of each case was stained with TROP2 antibody. Histopathologic prognostic features were assessed for their relationship with TROP2 expression. RESULTS The mean age was found as 64.11 year. TROP2 was stained in over 10% of the tumoral cells in 64 (63.4.%) cases. Gleason grade group, perineural invasion, lymphovascular invasion, ganglionic and seminal vesicle involvement, lateral and basal surgical margin positivity showed a significant relationship with TROP2 staining. CONCLUSION TROP2 is overexpressed in various human cancers and TROP2 overexpression appears to correlate with poor prognosis leading to the suggestion that TROP2 could be a therapeutic target for various carcinomas. Our results suggest that TROP2 expression is higher in advanced tumors and these results need to be supported by larger studies.
Collapse
Affiliation(s)
- İlker Akarken
- Muğla Sıtkı Koçman University Faculty of Medicine, Department of Pathology, Turkey
| | - Yelda Dere
- Muğla Sıtkı Koçman University Faculty of Medicine, Department of Urology, Turkey.
| |
Collapse
|
76
|
Gilgunn S, Murphy K, Stöckmann H, Conroy PJ, Murphy TB, Watson RW, O’Kennedy RJ, Rudd PM, Saldova R. Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling. Int J Mol Sci 2020; 21:ijms21239233. [PMID: 33287410 PMCID: PMC7730228 DOI: 10.3390/ijms21239233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies.
Collapse
Affiliation(s)
- Sarah Gilgunn
- School of Biotechnology, Dublin City University, D09 V209 Dublin 9, Ireland; (S.G.); (R.J.O.)
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, D09 V209 Dublin 9, Ireland
| | - Keefe Murphy
- Department of Mathematics and Statistics, Maynooth University, Maynooth, W23 F2K8 Co. Kildare, Ireland;
| | - Henning Stöckmann
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
| | - Paul J. Conroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia;
| | - T. Brendan Murphy
- UCD School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin 4, Ireland;
| | - R. William Watson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin 4, Ireland;
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Richard J. O’Kennedy
- School of Biotechnology, Dublin City University, D09 V209 Dublin 9, Ireland; (S.G.); (R.J.O.)
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, D09 V209 Dublin 9, Ireland
- Research, Development and Innovation, Qatar Foundation, Luqta Street, Doha 5825, Qatar
| | - Pauline M. Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8 Dublin 4, Ireland
- Correspondence: ; Tel.: +353-1215-8147
| |
Collapse
|
77
|
Takeda K, Kusuoka R, Inukai M, Igarashi K, Ohno H, Nakamura N. An amperometric biosensor of L-fucose in urine for the first screening test of cancer. Biosens Bioelectron 2020; 174:112831. [PMID: 33288426 DOI: 10.1016/j.bios.2020.112831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023]
Abstract
Quantitative routine detection of fucose, which is a cancer marker, in urine is effective for the preliminary screening of cancer. Amperometric biosensing methods have the advantage of being simple, rapid, and precise for urinalysis. However, coexisting electroactive interferences such as ascorbic acid (AA), dopamine (DA), and uric acid (UA) prevent accurate measurements. In this work, an amperometric l-fucose biosensor unaffected by interferences was developed and utilizes direct electron transfer type bioelectrocatalysis of pyrroloquinoline quinone (PQQ)-dependent pyranose dehydrogenase from Coprinopsis cinerea (CcPDH). The isolated PQQ domain from CcPDH was immobilized on gold nanoparticle (AuNP)-modified electrodes, which obtained a catalytic current at a lower potential than the oxidation potential of the interfering compounds. Applying an operating potential of -0.1 V vs. Ag|AgCl (3 M NaCl) enabled the detection of l-fucose while completely eliminating the oxidation of AA, DA, and UA on the electrodes. The increase in the specific area of the electrodes by increasing the AuNP drop-casting time resulted in an improvement in the sensor performance. The biosensor exhibited a linear range for l-fucose detection between 0.1 mM and 1 mM (R2 = 0.9996), including a cut-off value, the sensitivity was 3.12 ± 0.05 μA mM-1 cm-2, and the detection limit was 13.6 μM at a signal-to-noise ratio of three. The biosensor can be used to quantify the concentration of l-fucose at physiological levels and does not require urine preprocessing, making it applicable to practical use for point-of-care testing with urine.
Collapse
Affiliation(s)
- Kouta Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Ryo Kusuoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Misaki Inukai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan; Protein Discovery and Engineering Team, VTT Technical Research Center of Finland Ltd., FI-02044 VTT, Espoo, Finland
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
78
|
Falagan-Lotsch P, Murphy CJ. Network-based analysis implies critical roles of microRNAs in the long-term cellular responses to gold nanoparticles. NANOSCALE 2020; 12:21172-21187. [PMID: 32990715 PMCID: PMC7606723 DOI: 10.1039/d0nr04701e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since gold nanoparticles (AuNPs) have great potential to bring improvements to the biomedical field, their impact on biological systems should be better understood, particularly over the long term, using realistic doses of exposure. MicroRNAs (miRNAs) are small noncoding RNAs that play key roles in the regulation of biological pathways, from development to cellular stress responses. In this study, we performed genome-wide miRNA expression profiling in primary human dermal fibroblasts 20 weeks after chronic and acute (non-chronic) treatments to four AuNPs with different shapes and surface chemistries at a low dose. The exposure condition and AuNP surface chemistry had a significant impact on the modulation of miRNA levels. In addition, a network-based analysis was employed to provide a more complex, systems-level perspective of the miRNA expression changes. In response to the stress caused by AuNPs, miRNA co-expression networks perturbed in cells under non-chronic exposure to AuNPs were enriched for target genes implicated in the suppression of proliferative pathways, possibly in attempt to restore cell homeostasis, while changes in miRNA co-expression networks enriched for target genes related to activation of proliferative and suppression of apoptotic pathways were observed in cells chronically exposed to one specific type of AuNPs. In this case, miRNA dysregulation might be contributing to enforce a new cell phenotype during stress. Our findings suggest that miRNAs exert critical roles in the cellular responses to the stress provoked by a low dose of NPs in the long term and provide a fertile ground for further targeted experimental studies.
Collapse
Affiliation(s)
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
79
|
Characterisation of the main PSA glycoforms in aggressive prostate cancer. Sci Rep 2020; 10:18974. [PMID: 33149259 PMCID: PMC7643140 DOI: 10.1038/s41598-020-75526-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Serum levels of prostate specific antigen (PSA) are commonly used for prostate cancer (PCa) detection. However, their lack of specificity to distinguish benign prostate pathologies from PCa, or indolent from aggressive PCa have prompted the study of new non-invasive PCa biomarkers. Aberrant glycosylation is involved in neoplastic progression and specific changes in PSA glycosylation pattern, as the reduction in the percentage of α2,6-sialic acid (SA) are associated with PCa aggressiveness. In this study, we have characterised the main sialylated PSA glycoforms from blood serum of aggressive PCa patients and have compared with those of standard PSA from healthy individuals’ seminal plasma. PSA was immunoprecipitated and α2,6-SA were separated from α2,3-SA glycoforms using SNA affinity chromatography. PSA N-glycans were released, labelled and analysed by hydrophilic interaction liquid chromatography combined with exoglycosidase digestions. The results showed that blood serum PSA sialylated glycoforms containing GalNAc residues were largely increased in aggressive PCa patients, whereas the disialylated core fucosylated biantennary structures with α2,6-SA, which are the major PSA glycoforms in standard PSA from healthy individuals, were markedly reduced in aggressive PCa. The identification of these main PSA glycoforms altered in aggressive PCa opens the way to design specific strategies to target them, which will be useful to improve PCa risk stratification.
Collapse
|
80
|
Lin S, Zhou S, Yuan T. The "sugar-coated bullets" of cancer: Tumor-derived exosome surface glycosylation from basic knowledge to applications. Clin Transl Med 2020; 10:e204. [PMID: 33135347 PMCID: PMC7551131 DOI: 10.1002/ctm2.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific interest in exosomes has exploded in recent decades. In 1990 only three articles were published on exosomes, while over 1,700 have already been published half-way into 2020.1 While researchers have shown much interest in exosomes since being discovered in 1981, an appreciation of the potential role of glycans in exosome structure and function has emerged only recently. Glycosylation is one of the most common post-translational modification, which functions in many physiological and pathological aspects of cellular function. Many components of exosomes are heavily glycosylated including proteins, lipids, among others. Thus, glycosylation undoubtedly has a great impact on exosome biosynthesis and function. Despite the importance of glycosylation in exosomes and the recent recognition of them as biomarkers for not only malignancies but also other system dysfunction and disease, the characterization of exosome glycans remains understudied. In this review, we discuss glycosylation patterns of exosomes derived from various tissues, their biological features, and potential for various clinical applications. We highlight state-of-the-art knowledge about the fine structure of exosomes, which will allow researchers to reconstruct them by surface modification. These efforts will likely lead to novel disease-related biomarker discovery, purification tagging, and targeted drug transfer for clinical applications in the future.
Collapse
Affiliation(s)
- Shanyi Lin
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Ting Yuan
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| |
Collapse
|
81
|
da Fonseca LM, Calvalhan DM, Previato JO, Mendonça Previato L, Freire-de-Lima L. Resistance to paclitaxel induces glycophenotype changes and mesenchymal-to-epithelial transition activation in the human prostate cancer cell line PC-3. Tumour Biol 2020; 42:1010428320957506. [PMID: 32914709 DOI: 10.1177/1010428320957506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.
Collapse
Affiliation(s)
| | - Danilo Macedo Calvalhan
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
82
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
83
|
Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Alonso V. Role of Calcium Signaling in Prostate Cancer Progression: Effects on Cancer Hallmarks and Bone Metastatic Mechanisms. Cancers (Basel) 2020; 12:E1071. [PMID: 32344908 PMCID: PMC7281772 DOI: 10.3390/cancers12051071] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers that progress to tumor metastases are often considered incurable or difficult to treat. The etiology of prostate cancers is multi-factorial. Among other factors, de-regulation of calcium signals in prostate tumor cells mediates several pathological dysfunctions associated with tumor progression. Calcium plays a relevant role on tumor cell death, proliferation, motility-invasion and tumor metastasis. Calcium controls molecular factors and signaling pathways involved in the development of prostate cancer and its progression. Such factors and pathways include calcium channels and calcium-binding proteins. Nevertheless, the involvement of calcium signaling on prostate cancer predisposition for bone tropism has been relatively unexplored. In this regard, a diversity of mechanisms triggers transient accumulation of intracellular calcium in prostate cancer cells, potentially favoring bone metastases development. New therapies for the treatment of prostate cancer include compounds characterized by potent and specific actions that target calcium channels/transporters or pumps. These novel drugs for prostate cancer treatment encompass calcium-ATPase inhibitors, voltage-gated calcium channel inhibitors, transient receptor potential (TRP) channel regulators or Orai inhibitors. This review details the latest results that have evaluated the relationship between calcium signaling and progression of prostate cancer, as well as potential therapies aiming to modulate calcium signaling in prostate tumor progression.
Collapse
Affiliation(s)
- Juan A. Ardura
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| | - Luis Álvarez-Carrión
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
| | - Irene Gutiérrez-Rojas
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
| | - Verónica Alonso
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| |
Collapse
|
84
|
Abstract
Sialylation (the covalent addition of sialic acid to the terminal end of glycoproteins or glycans), tightly regulated cell- and microenvironment-specific process and orchestrated by sialyltransferases and sialidases (neuraminidases) family, is one of the posttranslational modifications, which plays an important biological role in the maintenance of normal physiology and involves many pathological dysfunctions. Glycans have roles in all the cancer hallmarks, referring to capabilities acquired during all steps of cancer development to initiate malignant transformation (a driver of a malignant genotype), enable cancer cells to survive, proliferate, and metastasize (a consequence of a malignant phenotype), which includes sustaining proliferative signaling, evading growth suppressor, resisting cell apoptosis, enabling replicative immortality, inducing angiogenesis, reprogramming of energy metabolism, evading tumor destruction, accumulating inflammatory microenvironment, and activating invasion and accelerating metastases. Regarding the important role of altered sialylation of cancers, further knowledge about the initiation and the consequences of altered sialylation pattern in tumor cells is needed, because all may offer a better chance for developing novel therapeutic strategy. In this review, we would like to update alteration of sialylation in ovarian cancers.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
85
|
Profiling of Naturally Occurring Antibodies to the Thomsen-Friedenreich Antigen in Health and Cancer: The Diversity and Clinical Potential. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9747040. [PMID: 32280709 PMCID: PMC7128052 DOI: 10.1155/2020/9747040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The Thomsen-Friedenreich (TF) antigen is expressed in a majority of human tumors due to aberrant glycosylation in cancer cells. There is strong evidence that humoral immune response to TF represents an effective mechanism for the elimination of cancer cells that express TF-positive glycoconjugates. The presence of naturally occurring antibodies to tumor-associated TF and cancer-specific changes in their levels, isotype distribution and interrelation, avidity, and glycosylation profile make these Abs a convenient and ubiquitous marker for cancer diagnostics and prognostics. In this review, we attempt to summarize the latest data on the potential of TF-specific Abs for cancer diagnostics and prognostics.
Collapse
|
86
|
Ideo H, Kondo J, Nomura T, Nonomura N, Inoue M, Amano J. Study of glycosylation of prostate-specific antigen secreted by cancer tissue-originated spheroids reveals new candidates for prostate cancer detection. Sci Rep 2020; 10:2708. [PMID: 32066783 PMCID: PMC7026178 DOI: 10.1038/s41598-020-59622-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate-specific antigen (PSA) is the most frequently used biomarker for the screening of prostate cancer. Understanding the structure of cancer-specific glycans can help us improve PSA assay. In the present study, we analysed the glycans of PSA obtained from culture medium containing cancer tissue-originated spheroids (CTOS) which have similar characteristics as that of the parent tumour to explore the new candidates for cancer-related glycoforms of PSA. The glycan profile of PSA from CTOS was determined by comparing with PSA from normal seminal plasma and cancer cell lines (LNCaP and 22Rv1) using lectin chromatography and mass spectrometry. PSA from CTOS was mostly sialylated and the content of Wisteria floribunda agglutinin reactive glycan (LacdiNAc) was similar to that of PSA derived from seminal plasma and 22Rv1. Conversely, concanavalin A (Con A)-unbound PSA was definitely detected from the three cancer origins but was almost negligible in seminal PSA. Two novel types of PSA were elucidated in the Con A-unbound fraction: one is a high molecular weight PSA with highly branched N-glycans, and the other is a low molecular weight PSA without N-glycans. Furthermore, the existence of Lewis X antigen group on PSA was indicated. These PSAs will be candidates for new cancer-related markers.
Collapse
Affiliation(s)
- Hiroko Ideo
- Laboratory of glycobiology, The Noguchi Institute, Tokyo, 173-0033, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Department of Biochemistry, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Taisei Nomura
- Animal Models of Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Department of Biochemistry, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Junko Amano
- Laboratory of glycobiology, The Noguchi Institute, Tokyo, 173-0033, Japan.
| |
Collapse
|
87
|
Scott E, Elliott DJ, Munkley J. Tumour associated glycans: A route to boost immunotherapy? Clin Chim Acta 2019; 502:167-173. [PMID: 31870793 DOI: 10.1016/j.cca.2019.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
While the development of immunotherapies for cancer treatment offer significant promise across several cancers, still only a small subset of patients respond to immune based monotherapies. As such, attention has turned to the development of combination therapies. These use conventional cancer treatments such as chemotherapy to sensitise tumours to immunotherapy. Here, we summarise key research, highlighting the exciting potential of tumour associated glycans as therapeutic targets to sensitise tumours to immunotherapy. When cells undergo carcinogenesis they reprogram their glyco-code. Several cancer associated glycans have been identified, and therapies targeting them are under development. Proteins containing carbohydrate binding domains (lectins) are expressed by many immune cell subtypes, and upon glycan binding, transduce immune modulatory signals that regulate the tumour immune microenvironment.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK.
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| |
Collapse
|
88
|
Munkley J, Scott E. Targeting Aberrant Sialylation to Treat Cancer. MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6040102. [PMID: 31614918 PMCID: PMC6963943 DOI: 10.3390/medicines6040102] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 04/28/2023]
Abstract
Cell surface carbohydrates (known as glycans) are often aberrantly expressed or found at atypical levels in cancer. Glycans can impact all steps in tumour progression, from malignant transformation to metastasis, and have roles in all the cancer hallmarks. An increased understanding of glycans in the metastatic cascade offers exciting new therapeutic opportunities. Glycan-based targeting strategies are currently being tested in clinical trials and are a rich and untapped frontier for development. As we learn more about cancer glycobiology, new targets will continue to emerge for drug design. One key change in tumour glycosylation is the upregulation of cancer-associated sialylated glycans. Abnormal sialylation is integral to tumour growth, metastasis and immune evasion; therefore, targeting sialic acid moieties in cancer could be of high therapeutic value. Here, we summarise the changes to sialic acid biology in cancer and discuss recent advances and technologies bringing sialic-acid targeting treatments to the forefront of cancer therapeutics.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
| | - Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
89
|
Abstract
Abstract
Despite all major breakthroughs in recent years of research, we are still unsuccessful to effectively diagnose and treat cancer that has express and metastasizes. Thus, the development of a novel approach for cancer detection and treatment is crucial. Recent progress in Glyconanotechnology has allowed the use of glycans and lectins as bio-functional molecules for many biological and biomedical applications. With the known advantages of quantum dots (QDs) and versatility of carbohydrates and lectins, Glyco-functionalised QD is a new prospect in constructing biomedical imaging platform for cancer behaviour study as well as treatment. In this review, we aim to describe the current utilisation of Glyco-functionalised QDs as well as their future prospective to interpret and confront cancer.
Collapse
|
90
|
Garnham R, Scott E, Livermore KE, Munkley J. ST6GAL1: A key player in cancer. Oncol Lett 2019; 18:983-989. [PMID: 31423157 PMCID: PMC6607188 DOI: 10.3892/ol.2019.10458] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells and there is now overwhelming evidence that glycans can modulate pathways intrinsic to tumour cell biology. Glycans are important in all of the cancer hallmarks and there is a renewed interest in the glycomic profiling of tumours to improve early diagnosis, determine patient prognosis and identify targets for therapeutic intervention. One of the most widely occurring cancer associated changes in glycosylation is abnormal sialylation which is often accompanied by changes in sialyltransferase activity. Several sialyltransferases are implicated in cancer, but in recent years ST6 β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) has become increasingly dominant in the literature. ST6GAL1 catalyses the addition of α2,6-linked sialic acids to terminal N-glycans and can modify glycoproteins and/or glycolipids. ST6GAL1 is upregulated in numerous types of cancer (including pancreatic, prostate, breast and ovarian cancer) and can promote growth, survival and metastasis. The present review discusses ST6GAL in relation to the hallmarks of cancer, and highlights its key role in multiple mechanisms intrinsic to tumour cell biology.
Collapse
Affiliation(s)
- Rebecca Garnham
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Emma Scott
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Karen E Livermore
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| |
Collapse
|