51
|
Increased Histone Acetylation and Decreased Expression of Specific Histone Deacetylases in Ultraviolet-Irradiated and Intrinsically Aged Human Skin In Vivo. Int J Mol Sci 2021; 22:ijms22042032. [PMID: 33670779 PMCID: PMC7923030 DOI: 10.3390/ijms22042032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins and play a crucial role in epigenetic regulation. Previously, we showed that histone acetylation is implicated in ultraviolet (UV)-induced inflammation and matrix impairment. To elucidate the histone acetylation status and specific HDACs involved in skin aging, we examined the changes in histone acetylation, global HDAC activity, and the expression of HDACs and sirtuins (SIRTs) in intrinsically aged and photoaged human skin as well as in UV-irradiated human skin in vivo. Following acute UV irradiation, the acetylated histone H3 (AcH3) level was increased, but HDAC activity and the expression levels of HDAC4, HDAC11, and SIRT4 were significantly decreased. In intrinsically aged skin, AcH3 levels were increased, but HDAC activity and the expression levels of HDAC4, HDAC5, HDAC10, HDAC11, SIRT6, and SIRT7 were significantly decreased. However, histone acetylation and HDAC expression in photoaged skin were not significantly different from those in intrinsically aged skin. Collectively, HDAC4 and HDAC11 were decreased in both UV-irradiated and intrinsically aged skin, suggesting that they may play a universal role in increased histone acetylation associated with skin aging.
Collapse
|
52
|
Antiphotoaging Potential of Extracts of Yin-Tonic Herbal Medicine in Skin Cell and Human Skin Equivalent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8881270. [PMID: 33488755 PMCID: PMC7798114 DOI: 10.1155/2020/8881270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Yin-tonic herbal medicines have been shown to possess properties that make skin healthy by nourishing within various organs of the body. However, the antiphotoaging effect of these medicines on the skin has not been fully studied. Photoaging occurs with prolonged sun exposure and causes skin damage and aging, with depletion of the dermal extracellular matrix and chronic alterations in skin structure, such as wrinkles. In this study, we assessed the antiphotoaging effects of eight yin-tonic herbal medicines on human skin cells and skin equivalents. The levels of type I procollagen and matrix metalloproteinase-1 (MMP-1) in ultraviolet B- (UVB-) irradiated CCD-986sk fibroblasts were measured, and then three medicines were chosen based on screening results. Using UVB-irradiated human skin equivalents, we evaluated the effect of three yin-tonic herbal medicines on histological changes of skin, epidermal and dermal thickness, and MMP-1 production. Furthermore, we observed collagen fiber content and protein expression of filaggrin in UVB-irradiated human skin equivalents. Yin-tonic herbal medicines increased type I procollagen levels and decreased the production of MMP-1 in UVB-irradiated CCD-986sk fibroblasts. The three selected yin-tonic herbal medicines recovered the collagen content and filaggrin expression via MMP-1 downregulation in UVB-irradiated human skin equivalents. Our results show that yin-tonic herbal medicines can prevent skin photoaging by reduction of MMP-1 levels and increasing the expression of moisturizing factors. Based on these results, we suggest that yin-tonic herbal medicines have the potential to be used as helpful agent for skin photoaging.
Collapse
|
53
|
Abdalrazik F, Bedair N, Yaseen N. Skin aging in patients with chronic obstructive pulmonary disease of different ages. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2021. [DOI: 10.4103/ejcdt.ejcdt_215_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
54
|
Choi YE, Song MJ, Hara M, Imanaka-Yoshida K, Lee DH, Chung JH, Lee ST. Effects of Tenascin C on the Integrity of Extracellular Matrix and Skin Aging. Int J Mol Sci 2020; 21:ijms21228693. [PMID: 33217999 PMCID: PMC7698786 DOI: 10.3390/ijms21228693] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Tenascin C (TNC) is an element of the extracellular matrix (ECM) of various tissues, including the skin, and is involved in modulating ECM integrity and cell physiology. Although skin aging is apparently associated with changes in the ECM, little is known about the role of TNC in skin aging. In this study, we found that the Tnc mRNA level was significantly reduced in the skin tissues of aged mice compared with young mice, consistent with reduced TNC protein expression in aged human skin. TNC-large (TNC-L; 330-kDa) and -small (TNC-S; 240-kDa) polypeptides were observed in conditional media from primary dermal fibroblasts. Both recombinant TNC polypeptides, corresponding to TNC-L and TNC-S, increased the expression of type I collagen and reduced the expression of matrix metalloproteinase-1 in fibroblasts. Treatment of fibroblasts with a recombinant TNC polypeptide, corresponding to TNC-L, induced phosphorylation of SMAD2 and SMAD3. TNC increased the level of transforming growth factor-β1 (TGF-β1) mRNA and upregulated the expression of type I collagen by activating the TGF-β signaling pathway. In addition, TNC also promoted the expression of type I collagen in fibroblasts embedded in a three-dimensional collagen matrix. Our findings suggest that TNC contributes to the integrity of ECM in young skin and to prevention of skin aging.
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.S.); (D.H.L.); (J.H.C.)
| | - Mari Hara
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (M.H.); (K.I.-Y.)
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (M.H.); (K.I.-Y.)
- Mie University Research Center for Matrix Biology, Tsu 514-8507, Japan
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.S.); (D.H.L.); (J.H.C.)
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.S.); (D.H.L.); (J.H.C.)
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2123-2703
| |
Collapse
|
55
|
Marchena AM, Franco L, Romero AM, Barriga C, Rodríguez AB. Lycopene and Melatonin: Antioxidant Compounds in Cosmetic Formulations. Skin Pharmacol Physiol 2020; 33:237-243. [PMID: 33070140 DOI: 10.1159/000508673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The use of antioxidants has become a common practice in the development of antiaging cosmetics. OBJECTIVE The aim of this study was to evaluate the clinical efficacy of cosmetic formulations containing lycopene and melatonin antioxidants. METHOD Thirty-six healthy women from 32 to 65 years were enrolled in this study. The study was carried out for 10 weeks, 2 preconditioning weeks with a control cream without antioxidants, and 8-week test with creams containing antioxidants in study. A multifunctional skin physiology monitor (Courage & Khazaka electronic GmbH®, Germany) was used to measure skin sebum content, hydration, elasticity, erythema index, and melanin index in 4 different regions of the face. RESULTS There were significant differences between them.
Collapse
Affiliation(s)
- Ana M Marchena
- Faculty of Veterinary from the Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Lourdes Franco
- Faculty of Medicine from the Department of Physiology, University of Extremadura, Badajoz, Spain,
| | - Ana M Romero
- Faculty of Science from the Department of Physiology, University of Extremadura, Badajoz, Spain
| | - Carmen Barriga
- Faculty of Science from the Department of Physiology, University of Extremadura, Badajoz, Spain
| | - Ana B Rodríguez
- Faculty of Science from the Department of Physiology, University of Extremadura, Badajoz, Spain
| |
Collapse
|
56
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
57
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
58
|
Balcázar M, Cañizares S, Borja T, Pontón P, Bisiou S, Carabasse E, Bacilieri A, Canavese C, Diaz RF, Cabrera F, Caicedo A. Bases for Treating Skin Aging With Artificial Mitochondrial Transfer/Transplant (AMT/T). Front Bioeng Biotechnol 2020; 8:919. [PMID: 32903493 PMCID: PMC7438394 DOI: 10.3389/fbioe.2020.00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The perception of mitochondria as only the powerhouse of the cell has dramatically changed in the last decade. It is now accepted that in addition to being essential intracellularly, mitochondria can promote cellular repair when transferred from healthy to damaged cells. The artificial mitochondria transfer/transplant (AMT/T) group of techniques emulate this naturally occurring process and have been used to develop therapies to treat a range of diseases including cardiac and neurodegenerative. Mitochondria accumulate damage with time, resulting in cellular senescence. Skin cells and its mitochondria are profoundly affected by ultraviolet radiation and other factors that induce premature and accelerated aging. In this article, we propose the basis to use AMT/T to treat skin aging by transferring healthy mitochondria to senescent cells, possibly revitalizing them. We provide insightful information about how skin structure, components, and cells could age rapidly depending on the amount of damage received. Arguments are shown in favor of the use of AMT/T to treat aging skin and its cells, among them the possibility to stop free radical production, add new genetic material, and provide an energetic boost to help cells prolong their viability over time. This article intends to present one of the many aspects in which mitochondria could be used as a universal treatment for cell and tissue damage and aging.
Collapse
Affiliation(s)
- Micaela Balcázar
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Stalin Cañizares
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Tatiana Borja
- Servicio de Patología, Hospital Voz Andes, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Patricia Pontón
- Servicio de Patología, Hospital Voz Andes, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sirivanh Bisiou
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Eva Carabasse
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Angela Bacilieri
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Celia Canavese
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Ramiro F Diaz
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Francisco Cabrera
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
59
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
60
|
Oh JH, Joo YH, Karadeniz F, Ko J, Kong CS. Syringaresinol Inhibits UVA-Induced MMP-1 Expression by Suppression of MAPK/AP-1 Signaling in HaCaT Keratinocytes and Human Dermal Fibroblasts. Int J Mol Sci 2020; 21:ijms21113981. [PMID: 32492931 PMCID: PMC7312901 DOI: 10.3390/ijms21113981] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet (UV) irradiation induces detrimental changes in human skin which result in photoaging. UV-induced intracellular changes cause degradation of extracellular matrix (ECM). UV-stimulated cleavage of collagen in ECM occurs via matrix metalloproteinases (MMPs). (±)-syringaresinol (SYR), a phytochemical which belongs to the lignan group of polyphenols, was investigated for its ability to reverse the UVA-induced changes in human HaCaT keratinocytes and dermal fibroblasts (HDFs) in vitro. Effect of SYR on UVA-induced changes was investigated by production and activation of MMPs and its transcriptional upstream effectors; mitogen-activated protein kinases (MAPKs) and pro-inflammatory mediators. Levels of expression were determined using ELISA, RT-PCR and immunoblotting. UVA irradiation stimulated the production of MMP-1 and inhibited collagen production. SYR treatment suppressed MMP-1 and enhanced collagen production in UVA-irradiated HaCaT keratinocytes and HDFs. SYR repressed the UV-induced phosphorylation of p38, ERK and JNK MAPKs in HaCaT keratinocytes while only suppressing JNK phosphorylation in HDFs. In addition, SYR was able to inhibit UVA-induced production of inflammatory cytokines; TNF-α, COX-2, IL-1β and IL-6. Moreover, SYR suppressed the activator protein-1 (AP-1), a heterodimer of phosphorylated transcription factors c-Jun and c-Fos. SYR-treatment decreased nuclear levels of activated c-Fos and c-Jun as a mechanism to inhibit UVA-induced transcriptional activities leading to MMP-1 production. In conclusion, current results demonstrated that SYR could inhibit UVA-induced upregulation of MMP-1 by suppressing MAPK/AP-1 signaling in HaCaT keratinocytes and HDFs. Therefore, SYR was suggested as a potential compound with antiphotoaging properties against UVA-induced skin aging.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
| | - Yung Hyup Joo
- AMOREPACIFIC Research and Development Center, Yongin 17074, Korea;
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
| | - Jaeyoung Ko
- AMOREPACIFIC Research and Development Center, Yongin 17074, Korea;
- Correspondence: (J.K.); (C.-S.K.); Tel.: +82-31-280-5928 (J.K.); +82-51-999-5429 (C.-S.K.)
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
- Correspondence: (J.K.); (C.-S.K.); Tel.: +82-31-280-5928 (J.K.); +82-51-999-5429 (C.-S.K.)
| |
Collapse
|
61
|
Damiani G, Bragazzi NL, McCormick TS, Pigatto PDM, Leone S, Pacifico A, Tiodorovic D, Di Franco S, Alfieri A, Fiore M. Gut microbiota and nutrient interactions with skin in psoriasis: A comprehensive review of animal and human studies. World J Clin Cases 2020; 8:1002-1012. [PMID: 32258071 PMCID: PMC7103976 DOI: 10.12998/wjcc.v8.i6.1002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal tract (i.e., the gut), is where the body’s nutrients are absorbed, and is simultaneously inhabited by numerous microbes. An increasing body of literature suggests a crucial role for the gut microbiome in modulating systemic inflammatory disease. Psoriasis is a chronic systemic inflammatory disease and its pathogenesis is related to the interaction between genetic susceptibility, immune response and environmental triggers. The omics era has allowed physicians to assess different aspects of psoriasis pathogenesis such as the microbiome, infectome, and autoinfectome. Furthermore, diet appears to play an important role in modulating disease activity, perhaps by influencing gut microbes. Given these observations, we aimed to summarize the current knowledge regarding skin-microbiome-gut-nutrients and psoriasis.
Collapse
Affiliation(s)
- Giovanni Damiani
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, United States
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan 20122, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan 20122, Italy
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences, University of Genoa, Genoa 16132, Italy
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Paolo Daniele Maria Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan 20122, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan 20122, Italy
| | - Sebastiano Leone
- Department of Medicine, Division of Infectious diseases, “San Giuseppe Moscati” Hospital, Avellino 83100, Italy
| | - Alessia Pacifico
- San Gallicano Dermatological Institute, IRCCS, Rome 00144, Italy
| | - Danica Tiodorovic
- Dermatology Clinic, Medical Faculty, Nis University, Nis 18000, Serbia
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
62
|
Liu M, Zhang J, Wang Y, Xin C, Ma J, Xu S, Wang X, Gao J, Zhang X, Yang S. Non‑invasive proteome‑wide quantification of skin barrier‑related proteins using label‑free LC‑MS/MS analysis. Mol Med Rep 2020; 21:2227-2235. [PMID: 32186761 PMCID: PMC7115193 DOI: 10.3892/mmr.2020.11020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
A number of epidermal proteins are closely related to skin barrier function, the abnormalities of which can lead to specific skin diseases. These proteins must be quantified to further investigate the changes in the skin barrier between healthy and disease states. However, the non-invasive and proteome-wide quantification of skin proteins without any labelling steps remains a challenge. In this study, 3M medical adhesive tapes were used to obtain skin samples from volunteers. Proteins were extracted from fresh skin samples and digested with trypsin. Each tryptic peptide was analysed in three replicates using liquid chromatography with tandem mass spectrometry analysis and label-free quantification. The data were searched against the Human Universal Protein Resource (UniProt) to match with known proteins. Using this method, 1,157 skin proteins recorded in the UniProt were quantified. A total of 50 identical proteins were identified in the three replicate analyses of all samples with no significant differences in abundance. The results provided an objective metric for further study of skin ageing and various skin diseases. Specifically, the non-invasive proteome-wide method used in this study can be applied to future studies of skin diseases related to barrier destruction by monitoring the changes in the levels of epidermal proteins.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yaochi Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cong Xin
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Ma
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shuangjun Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaomeng Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
63
|
Panich U, Slominski AT. Editorial: Redox Biology of Skin Aging and Carcinogenesis: the Role of Natural Antioxidants as Potential Protective Agents. Front Pharmacol 2020; 11:249. [PMID: 32210823 PMCID: PMC7069100 DOI: 10.3389/fphar.2020.00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States.,VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
64
|
Aguirre-Cruz G, León-López A, Cruz-Gómez V, Jiménez-Alvarado R, Aguirre-Álvarez G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants (Basel) 2020; 9:antiox9020181. [PMID: 32098294 PMCID: PMC7070905 DOI: 10.3390/antiox9020181] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are molecules that delay or inhibit the oxidation of other molecules. Its use significantly increased in recent years in the diet of people. Natural antioxidants are replacing the use of synthetic antioxidant ingredients due to their safety, nutritional, and therapeutic values. Hydrolyzed collagen (HC) is a popular ingredient considered to be an antioxidant. This low molecular weight protein has been widely utilized due to its excellent biocompatibility, easy biodegradability, and weak antigenicity. It is a safe cosmetic biomaterial with good moisturizing properties on the skin. The antioxidant properties of HC are conditioned to the size of the molecule: the lower the molecular weight of peptides, the greater the ability to donate an electron or hydrogen to stabilize radicals. The antioxidant capacity of HC is mostly due to the presence of hydrophobic amino acids in the peptide. The exact mechanism of peptides acting as antioxidants is not clearly known but some aromatic amino acids and histidine are reported to play an important role in the antioxidant activity. Oral ingestion of HC increases the levels of collagen-derived peptides in the blood torrent and improves the skin properties such as elasticity, skin moisture, and transepidermal water loss. Additionally, daily intakes of HC protect the skin against UV melasma, enhances the fibroblast production and extracellular matrix of the skin. HC has been identified as a safe cosmetic ingredient for topical formulations with good moisturizing properties at the stratum corneum layer of the skin. It reduces the effects of skin aging (dryness, laxity, and wrinkles). The use of HC as a principal ingredient in safe formulations for skin protection was reviewed and compared when it is used by topical and/or oral administration.
Collapse
Affiliation(s)
- Gabriel Aguirre-Cruz
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, C.P. 43684 Tulancingo, Hidalgo, Mexico; (G.A.-C.); (V.C.-G.)
| | - Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, C.P. 43600 Tulancingo, Hidalgo, Mexico; (A.L.-L.); (R.J.-A.)
| | - Verónica Cruz-Gómez
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, C.P. 43684 Tulancingo, Hidalgo, Mexico; (G.A.-C.); (V.C.-G.)
| | - Rubén Jiménez-Alvarado
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, C.P. 43600 Tulancingo, Hidalgo, Mexico; (A.L.-L.); (R.J.-A.)
| | - Gabriel Aguirre-Álvarez
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, C.P. 43684 Tulancingo, Hidalgo, Mexico; (G.A.-C.); (V.C.-G.)
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, C.P. 43600 Tulancingo, Hidalgo, Mexico; (A.L.-L.); (R.J.-A.)
- Correspondence: ; Tel.: +52-7751459265
| |
Collapse
|
65
|
Brożyna AA, Hoffman RM, Slominski AT. Relevance of Vitamin D in Melanoma Development, Progression and Therapy. Anticancer Res 2020; 40:473-489. [PMID: 31892603 PMCID: PMC6948187 DOI: 10.21873/anticanres.13976] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Melanoma is one of the most lethal types of skin cancer, with a poor prognosis once the disease enters metastasis. The efficacy of currently available treatment schemes for advanced melanomas is low, expensive, and burdened by significant side-effects. Therefore, there is a need to develop new treatment options. Skin cells are able to activate vitamin D via classical and non-classical pathways. Vitamin D derivatives have anticancer properties which promote differentiation and inhibit proliferation. The role of systemic vitamin D in patients with melanoma is unclear as epidemiological studies are not definitive. In contrast, experimental data have clearly shown that vitamin D and its derivatives have anti-melanoma properties. Furthermore, molecular and clinicopathological studies have demonstrated a correlation between defects in vitamin D signaling and progression of melanoma and disease outcome. Therefore, adequate vitamin D signaling can play a role in the treatment of melanoma.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, U.S.A. .,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,VA Medical Center, Birmingham, AL, U.S.A
| |
Collapse
|
66
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
67
|
Jackson E, Heidl M, Imfeld D, Meeus L, Schuetz R, Campiche R. Discovery of a Highly Selective MC1R Agonists Pentapeptide to Be Used as a Skin Pigmentation Enhancer and with Potential Anti-Aging Properties. Int J Mol Sci 2019; 20:ijms20246143. [PMID: 31817532 PMCID: PMC6940745 DOI: 10.3390/ijms20246143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
One of the first lines of cutaneous defense against photoaging is (a) the synthesis of melanin and (b) the initiation of an oxidative stress response to protect skin against the harmful effects of solar radiation. Safe and selective means to stimulate epidermal pigmentation associated with oxidative stress defense are; however, scarce. Activation of the melanocortin-1 receptor (MC1R) on epidermal melanocytes represents a key step in cutaneous pigmentation initiation and, additionally, it regulates cellular defense mechanisms like oxidative stress and DNA-repair. Thus, making the activation of MC1R an attractive strategy for modulating skin pigmentation and oxidative stress. In this context, we designed and synthesized pentapeptides that act as MC1R agonists. These peptides bound, with high potency, to MC1R and activated cAMP synthesis in CHO cells expressing human MC1R. Using one lead pentapeptide, we could show that this activation of MC1R was specific as testing the activation of other G-protein coupled receptors, including the MC-receptor family, was negative. In vitro efficacy on mouse melanoma cells showed similar potency as for the synthetic MC1R agonist alpha-melanocyte stimulating hormone (NDP-alpha-MSH). Moreover, we could reproduce this activity in human skin tissue culture. The lead pentapeptide was able to induce ex-vivo protein expression of key melanogenesis markers melanocyte inducing transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related protein 1 (TYRP-1). Concerning oxidative stress response, we found that the pentapeptide enhanced the activation of Nrf2 after UVA-irradiation. Our results make this pentapeptide an ideal candidate as a skin pigmentation enhancer that mimics alpha-MSH and may also have anti-photoaging effects on the skin.
Collapse
Affiliation(s)
- Eileen Jackson
- DSM Nutritional Products, Personal Care and Aroma, 4303 Kaiseraugst, Switzerland; (E.J.); (M.H.); (D.I.); (R.S.)
| | - Marc Heidl
- DSM Nutritional Products, Personal Care and Aroma, 4303 Kaiseraugst, Switzerland; (E.J.); (M.H.); (D.I.); (R.S.)
| | - Dominik Imfeld
- DSM Nutritional Products, Personal Care and Aroma, 4303 Kaiseraugst, Switzerland; (E.J.); (M.H.); (D.I.); (R.S.)
| | - Laurent Meeus
- EuroscreenFast, a Business Unit of EPICS Therapeutics S.A., 6041 Gosselies, Belgium;
| | - Rolf Schuetz
- DSM Nutritional Products, Personal Care and Aroma, 4303 Kaiseraugst, Switzerland; (E.J.); (M.H.); (D.I.); (R.S.)
| | - Remo Campiche
- DSM Nutritional Products, Personal Care and Aroma, 4303 Kaiseraugst, Switzerland; (E.J.); (M.H.); (D.I.); (R.S.)
- Correspondence:
| |
Collapse
|
68
|
Yoshida H, Okada Y. Role of HYBID (Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization), Alias KIAA1199/CEMIP, in Hyaluronan Degradation in Normal and Photoaged Skin. Int J Mol Sci 2019; 20:ijms20225804. [PMID: 31752258 PMCID: PMC6888145 DOI: 10.3390/ijms20225804] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
Photoaged skin is characterized clinically by apparent manifestations such as wrinkles and sagging, and histologically by an accumulation of abnormal elastin and a severe loss of collagen fibers in the dermis. Quantitative and qualitative alterations in elastin and collagens are considered to be responsible for the formation of wrinkles and sagging. However, since the integrity of elastin and collagen fibers in the dermis is maintained by their interactions with hyaluronan (HA) and a proteoglycan network structure, HA degradation may be the initial process, prior to the breakdown of the fibrillary components, leading to wrinkles and sagging in photoaged skin. We have recently discovered a new HA-degrading mechanism mediated by HYBID (hyaluronan binding protein involved in hyaluronan depolymerization), alias KIAA1199/CEMIP, in human skin fibroblasts, and examined the implication of HYBID for skin photoaging. In this review, we give an overview of the characteristics of HYBID and its prospective roles in HA turnover in normal skin and excessive HA degradation in photoaged skin. In addition, we describe our data on the inhibition of HYBID activity and expression by plant extracts in skin fibroblasts; and propose novel strategies to prevent or improve photoaging symptoms, such as skin wrinkling, by inhibition of HYBID-mediated HA degradation.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, 3-28, 5-chome, Kotobuki-cho, Odawara-shi, Kanagawa 250-0002, Japan
- Correspondence: (H.Y.); (Y.O.); Tel.: +81-465-34-6116 (H.Y.); +81-3-5800-7531 (Y.O.); Fax: +81-465-34-3037 (H.Y.); +81-3-5800-7532 (Y.O.)
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (H.Y.); (Y.O.); Tel.: +81-465-34-6116 (H.Y.); +81-3-5800-7531 (Y.O.); Fax: +81-465-34-3037 (H.Y.); +81-3-5800-7532 (Y.O.)
| |
Collapse
|