51
|
Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers (Basel) 2021; 13:cancers13133185. [PMID: 34202342 PMCID: PMC8269428 DOI: 10.3390/cancers13133185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent advances in nanotechnology gave rise to trials with various types of metallic nanoparticles (NPs) to enhance the radiosensitization of cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. This work reviews the physical and chemical mechanisms leading to the enhancement of ionizing radiation’s detrimental effects on cells and tissues, as well as the plethora of experimental procedures to study these effects of the so-called “NPs’ radiosensitization”. The paper presents the need to a better understanding of all the phases of actions before applying metallic-based NPs in clinical practice to improve the effect of IR therapy. More physical and biological experiments especially in vivo must be performed and simulation Monte Carlo or mathematical codes based on more accurate models for all phases must be developed. Abstract Many different tumor-targeted strategies are under development worldwide to limit the side effects and improve the effectiveness of cancer therapies. One promising method is to enhance the radiosensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy using metallic nanoparticles (NPs). Radiotherapy with MV photons is more commonly available and applied in cancer clinics than high LET particle radiotherapy, so the addition of high-Z NPs has the potential to further increase the efficacy of photon radiotherapy in terms of NP radiosensitization. Generally, when using X-rays, mainly the inner electron shells are ionized, which creates cascades of both low and high energy Auger electrons. When using high LET particles, mainly the outer shells are ionized, which give electrons with lower energies than when using X-rays. The amount of the produced low energy electrons is higher when exposing NPs to heavy charged particles than when exposing them to X-rays. Since ions traverse the material along tracks, and therefore give rise to a much more inhomogeneous dose distributions than X-rays, there might be a need to introduce a higher number of NPs when using ions compared to when using X-rays to create enough primary and secondary electrons to get the desired dose escalations. This raises the questions of toxicity. This paper provides a review of the fundamental processes controlling the outcome of metallic NP-boosted photon beam and ion beam radiation therapy and presents some experimental procedures to study the biological effects of NPs’ radiosensitization. The overview shows the need for more systematic studies of the behavior of NPs when exposed to different kinds of ionizing radiation before applying metallic-based NPs in clinical practice to improve the effect of IR therapy.
Collapse
Affiliation(s)
- Ioanna Tremi
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Maria Souli
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Mersini Makropoulou
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Correspondence: (A.G.G.); (L.S.)
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence: (A.G.G.); (L.S.)
| |
Collapse
|
52
|
Soriano L, Khalid T, O’Brien FJ, O’Leary C, Cryan SA. A Tissue-Engineered Tracheobronchial In Vitro Co-Culture Model for Determining Epithelial Toxicological and Inflammatory Responses. Biomedicines 2021; 9:631. [PMID: 34199462 PMCID: PMC8226664 DOI: 10.3390/biomedicines9060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Translation of novel inhalable therapies for respiratory diseases is hampered due to the lack of in vitro cell models that reflect the complexity of native tissue, resulting in many novel drugs and formulations failing to progress beyond preclinical assessments. The development of physiologically-representative tracheobronchial tissue analogues has the potential to improve the translation of new treatments by more accurately reflecting in vivo respiratory pharmacological and toxicological responses. Herein, advanced tissue-engineered collagen hyaluronic acid bilayered scaffolds (CHyA-B) previously developed within our group were used to evaluate bacterial and drug-induced toxicity and inflammation for the first time. Calu-3 bronchial epithelial cells and Wi38 lung fibroblasts were grown on either CHyA-B scaffolds (3D) or Transwell® inserts (2D) under air liquid interface (ALI) conditions. Toxicological and inflammatory responses from epithelial monocultures and co-cultures grown in 2D or 3D were compared, using lipopolysaccharide (LPS) and bleomycin challenges to induce bacterial and drug responses in vitro. The 3D in vitro model exhibited significant epithelial barrier formation that was maintained upon introduction of co-culture conditions. Barrier integrity showed differential recovery in CHyA-B and Transwell® epithelial cultures. Basolateral secretion of pro-inflammatory cytokines to bacterial challenge was found to be higher from cells grown in 3D compared to 2D. In addition, higher cytotoxicity and increased basolateral levels of cytokines were detected when epithelial cultures grown in 3D were challenged with bleomycin. CHyA-B scaffolds support the growth and differentiation of bronchial epithelial cells in a 3D co-culture model with different transepithelial resistance in comparison to the same co-cultures grown on Transwell® inserts. Epithelial cultures in an extracellular matrix like environment show distinct responses in cytokine release and metabolic activity compared to 2D polarised models, which better mimic in vivo response to toxic and inflammatory stimuli offering an innovative in vitro platform for respiratory drug development.
Collapse
Affiliation(s)
- Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
53
|
Rosendale M, Flores J, Paviolo C, Pagano P, Daniel J, Ferreira J, Verlhac JB, Groc L, Cognet L, Blanchard-Desce M. A Bottom-Up Approach to Red-Emitting Molecular-Based Nanoparticles with Natural Stealth Properties and their Use for Single-Particle Tracking Deep in Brain Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006644. [PMID: 33890332 DOI: 10.1002/adma.202006644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Fluorescent nanoparticles dedicated to bioimaging applications should possess specific properties that have to be maintained in the aqueous, reactive, and crowded biological environment. These include chemical and photostability, small size (on the scale of subcellular structures), biocompatibility, high brightness, and good solubility. The latter is a major challenge for inorganic nanoparticles, which require surface coating to be made water soluble. Molecular-based fluorescent organic nanoparticles (FONs) may prove a promising, spontaneously water-soluble alternative, whose bottom-up design allows for the fine-tuning of individual properties. Here, the critical challenge of controlling the interaction of nanoparticles with cellular membranes is addressed. This is a report on bright, size-tunable, red-emitting, naturally stealthy FONs that do not require the use of antifouling agents to impede interactions with cellular membranes. As a proof of concept, single FONs diffusing up to 150 µm deep in brain tissue are imaged and tracked.
Collapse
Affiliation(s)
- Morgane Rosendale
- Institut des Sciences Moléculaires, CNRS, Univ. Bordeaux, Bordeaux INP, UMR 5255, 351 Cours de la Libération, Talence, 33405, France
| | - Jessica Flores
- Institut des Sciences Moléculaires, CNRS, Univ. Bordeaux, Bordeaux INP, UMR 5255, 351 Cours de la Libération, Talence, 33405, France
| | - Chiara Paviolo
- LP2N, Institut d'Optique & CNRS, Univ. Bordeaux, UMR 5298, Rue François Mitterrand, Talence, 33400, France
| | - Paolo Pagano
- Institut des Sciences Moléculaires, CNRS, Univ. Bordeaux, Bordeaux INP, UMR 5255, 351 Cours de la Libération, Talence, 33405, France
| | - Jonathan Daniel
- Institut des Sciences Moléculaires, CNRS, Univ. Bordeaux, Bordeaux INP, UMR 5255, 351 Cours de la Libération, Talence, 33405, France
| | - Joana Ferreira
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, UMR 5297, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Jean-Baptiste Verlhac
- Institut des Sciences Moléculaires, CNRS, Univ. Bordeaux, Bordeaux INP, UMR 5255, 351 Cours de la Libération, Talence, 33405, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, UMR 5297, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Laurent Cognet
- LP2N, Institut d'Optique & CNRS, Univ. Bordeaux, UMR 5298, Rue François Mitterrand, Talence, 33400, France
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires, CNRS, Univ. Bordeaux, Bordeaux INP, UMR 5255, 351 Cours de la Libération, Talence, 33405, France
| |
Collapse
|
54
|
Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annu Rev Chem Biomol Eng 2021; 12:163-185. [PMID: 33856937 DOI: 10.1146/annurev-chembioeng-102720-015630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; , .,Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
55
|
Dailey KM, Allgood JE, Johnson PR, Ostlie MA, Schaner KC, Brooks BD, Brooks AE. The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiol 2021; 16:341-368. [PMID: 33754804 DOI: 10.2217/fmb-2020-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a 'smart' drug capable of distinguishing tumor from host cells has been sought for centuries, but the microenvironment of solid tumors continues to confound therapeutics. Solid tumors present several challenges for current oncotherapeutics, including aberrant vascularization, hypoxia, necrosis, abnormally high pH and local immune suppression. While traditional chemotherapeutics are limited by such an environment, oncolytic microbes are drawn to it - having an innate ability to selectively infect, colonize and eradicate solid tumors. Development of an oncolytic species would represent a shift in the cancer therapeutic paradigm, with ramifications reaching from the medical into the socio-economic. Modern genetic engineering techniques could be implemented to customize 'Frankenstein' bacteria with advantageous characteristics from several species.
Collapse
Affiliation(s)
- Kaitlin M Dailey
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - JuliAnne E Allgood
- Department of Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Paige R Johnson
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Mackenzie A Ostlie
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Kambri C Schaner
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | | | - Amanda E Brooks
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA.,Office of Research & Scholarly Activity. Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
56
|
Ombredane AS, Silva VRP, Andrade LR, Pinheiro WO, Simonelly M, Oliveira JV, Pinheiro AC, Gonçalves GF, Felice GJ, Garcia MP, Campos PM, Luz GVS, Joanitti GA. In Vivo Efficacy and Toxicity of Curcumin Nanoparticles in Breast Cancer Treatment: A Systematic Review. Front Oncol 2021; 11:612903. [PMID: 33767985 PMCID: PMC7986721 DOI: 10.3389/fonc.2021.612903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is one of the most prevalent types of malignant tumors in the world, resulting in a high incidence of death. The development of new molecules and technologies aiming to apply more effective and safer therapy strategies has been intensively explored to overcome this situation. The association of nanoparticles with known antitumor compounds (including plant-derived molecules such as curcumin) has been considered an effective approach to enhance tumor growth suppression and reduce adverse effects. Therefore, the objective of this systematic review was to summarize published data regarding evaluations about efficacy and toxicity of curcumin nanoparticles (Cur-NPs) in in vivo models of breast cancer. The search was carried out in the databases: CINAHL, Cochrane, LILACS, Embase, FSTA, MEDLINE, ProQuest, BSV regional portal, PubMed, ScienceDirect, Scopus, and Web of Science. Studies that evaluated tumor growth in in vivo models of breast cancer and showed outcomes related to Cur-NP treatment (without association with other antitumor molecules) were included. Of the 528 initially gathered studies, 26 met the inclusion criteria. These studies showed that a wide variety of NP platforms have been used to deliver curcumin (e.g., micelles, polymeric, lipid-based, metallic). Attachment of poly(ethylene glycol) chains (PEG) and active targeting moieties were also evaluated. Cur-NPs significantly reduced tumor volume/weight, inhibited cancer cell proliferation, and increased tumor apoptosis and necrosis. Decreases in cancer stem cell population and angiogenesis were also reported. All the studies that evaluated toxicity considered Cur-NP treatment to be safe regarding hematological/biochemical markers, damage to major organs, and/or weight loss. These effects were observed in different in vivo models of breast cancer (e.g., estrogen receptor-positive, triple-negative, chemically induced) showing better outcomes when compared to treatments with free curcumin or negative controls. This systematic review supports the proposal that Cur-NP is an effective and safe therapeutic approach in in vivo models of breast cancer, reinforcing the currently available evidence that it should be further analyzed in clinical trials for breast cancer treatments.
Collapse
Affiliation(s)
- Alicia S Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil.,Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vitória R P Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil
| | - Laise R Andrade
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Willie O Pinheiro
- Post-Graduation Program in Sciences and Technologies in Health, Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil
| | - Mayara Simonelly
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Jaqueline V Oliveira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andréia C Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil.,Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Gabriel F Gonçalves
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil
| | - Gisela J Felice
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil
| | - Mônica P Garcia
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Patrícia M Campos
- Pharmaceutical Sciences Department, State University of Ponta Grossa, Parana, Brazil
| | - Glécia V S Luz
- Post-Graduate Program in Biomedical Engineering-PPGEB, Faculty of Gama-FGA, University of Brasilia, Brasilia, Brazil.,Health Technology Assessment Center-NATS/UnB, University of Brasília, Brasilia, Brazil
| | - Graziella A Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil.,Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
57
|
Lawson TB, Mäkelä JTA, Klein T, Snyder BD, Grinstaff MW. Nanotechnology and osteoarthritis; part 1: Clinical landscape and opportunities for advanced diagnostics. J Orthop Res 2021; 39:465-472. [PMID: 32827322 DOI: 10.1002/jor.24817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease of the entire joint, often triggered by cartilage injury, mediated by a cascade of inflammatory pathways involving a complex interplay among metabolic, genetic, and enzymatic factors that alter the biochemical composition, microstructure, and biomechanical performance. Clinically, OA is characterized by degradation of the articular cartilage, thickening of the subchondral bone, inflammation of the synovium, and degeneration of ligaments that in aggregate reduce joint function and diminish quality of life. OA is the most prevalent joint disease, affecting 140 million people worldwide; these numbers are only expected to increase, concomitant with societal and financial burden of care. We present a two-part review encompassing the applications of nanotechnology to the diagnosis and treatment of OA. Herein, part 1 focuses on OA treatment options and advancements in nanotechnology for the diagnosis of OA and imaging of articular cartilage, while part 2 (10.1002/jor.24842) summarizes recent advances in drug delivery, tissue scaffolds, and gene therapy for the treatment of OA. Specifically, part 1 begins with a concise review of the clinical landscape of OA, along with current diagnosis and treatments. We next review nanoparticle contrast agents for minimally invasive detection, diagnosis, and monitoring of OA via magnetic resonace imaging, computed tomography, and photoacoustic imaging techniques as well as for probes for cell tracking. We conclude by identifying opportunities for nanomedicine advances, and future prospects for imaging and diagnostics.
Collapse
Affiliation(s)
- Taylor B Lawson
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts
- Orthopaedics Research Department, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Brian D Snyder
- Orthopaedics Research Department, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts
| |
Collapse
|
58
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
59
|
Weber F, Ivan DC, Proulx ST, Locatelli G, Aleandri S, Luciani P. Beyond Trial and Error: A Systematic Development of Liposomes Targeting Primary Macrophages. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Florian Weber
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
| | - Daniela C. Ivan
- Theodor Kocher Institute University of Bern Bern 3012 Switzerland
| | - Steven T. Proulx
- Theodor Kocher Institute University of Bern Bern 3012 Switzerland
| | | | - Simone Aleandri
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
| | - Paola Luciani
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
| |
Collapse
|
60
|
Yin S, Sun N, Jiang F, Lu Y, Yang G, Wu X, Lin S, Zhang W, Jiang X. The Translation from In Vitro Bioactive Ion Concentration Screening to In Vivo Application for Preventing Peri-implantitis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5782-5794. [PMID: 33464812 DOI: 10.1021/acsami.0c19698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peri-implantitis is a typical pathological condition characterized by the destructive inflammation in the soft tissue and the progressive loss of supporting bones. As the current effective treatments and preventive measures are inconsistent and unpredictable, the use of biomaterials as carriers of bioactive ion coatings is a promising approach. However, the translation from lab to large-scale production and clinical applications is difficult due to a technology barrier. Determining the effective dosage of each ion to achieve an in vivo application of the in vitro screening is challenging. Here, we selected zinc and strontium ions to provide multiple effects on antibacterial activity and osteogenesis. The optimal coating with effective release concentrations of the two ions was obtained after the two-step screening from in vitro testing. The results showed that this type of in vivo bioactive ion usage leads to an enhanced osseointegration during the immediate implantation in a periodontitis-affected environment and prevents soft tissue inflammation and bone resorption in an inflammatory environment. The new biologically active ion screening method could verify the effectiveness of this clinical translation and its potential for large-scale production and could determine the effective dosage of each ion for a specific application.
Collapse
Affiliation(s)
- Shi Yin
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Ningjia Sun
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Fei Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuezhi Lu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Sihan Lin
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
61
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
62
|
Red Blood Cell Membrane-Camouflaged Tedizolid Phosphate-Loaded PLGA Nanoparticles for Bacterial-Infection Therapy. Pharmaceutics 2021; 13:pharmaceutics13010099. [PMID: 33466655 PMCID: PMC7828826 DOI: 10.3390/pharmaceutics13010099] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple drug resistance (MDR) in bacterial infections is developed with the abuse of antibiotics, posing a severe threat to global health. Tedizolid phosphate (TR-701) is an efficient prodrug of tedizolid (TR-700) against gram-positive bacteria, including methicillin-sensitive staphylococcus aureus (MSSA) and methicillin-resistant staphylococcus aureus (MRSA). Herein, a novel drug delivery system: Red blood cell membrane (RBCM) coated TR-701-loaded polylactic acid-glycolic acid copolymer (PLGA) nanoparticles (RBCM-PLGA-TR-701NPs, RPTR-701Ns) was proposed. The RPTR-701Ns possessed a double-layer core-shell structure with 192.50 ± 5.85 nm in size, an average encapsulation efficiency of 36.63% and a 48 h-sustained release in vitro. Superior bio-compatibility was confirmed with red blood cells (RBCs) and HEK 293 cells. Due to the RBCM coating, RPTR-701Ns on one hand significantly reduced phagocytosis by RAW 264.7 cells as compared to PTR-701Ns, showing an immune escape effect. On the other hand, RPTR-701Ns had an advanced exotoxins neutralization ability, which helped reduce the damage of MRSA exotoxins to RBCs by 17.13%. Furthermore, excellent in vivo bacteria elimination and promoted wound healing were observed of RPTR-701Ns with a MRSA-infected mice model without causing toxicity. In summary, the novel delivery system provides a synergistic antibacterial treatment of both sustained release and bacterial toxins absorption, facilitating the incorporation of TR-701 into modern nanotechnology.
Collapse
|
63
|
Bauleth-Ramos T, Sarmento B. In Vitro Assays for Nanoparticle-Cancer Cell Interaction Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:223-242. [PMID: 33543462 DOI: 10.1007/978-3-030-58174-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanotechnology is a rapid-growing field with an extreme potential to revolutionize cancer treatments. However, despite the rapid advances, the clinical translation is still scarce. One of the main hurdles contributing for this setback is the lack of reliable in vitro models for preclinical testing capable of predicting the outcomes in an in vivo setting. In fact, the use of 2D monolayers, considered the gold-standard in vitro technique, leads to the creation of misleading data that might not be completely observed in in vivo or clinical setting. Thus, there is the need to use more complex models capable of better mimicking the tumor microenvironment. For that purpose, the development and use of multicellular tumor spheroids, three-dimensional (3D) cell cultures which recapitulate numerous aspects of the tumors, represents an advantageous approach to test the developed anticancer therapies. In this chapter, we identify and discuss the advantages of the use of these 3D cellular models compared to the 2D models and how they can be utilized to study nanoparticle-cancer cell interaction in a more reliable way to predict the treatment outcome in vivo.
Collapse
Affiliation(s)
- Tomás Bauleth-Ramos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.,ICBAS, Instituto Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal. .,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
64
|
Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, Trinh HT, Verrills NM, Karakoti A, Vinu A. Silica-Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. CHEM REC 2020; 21:1535-1568. [PMID: 33320438 DOI: 10.1002/tcr.202000104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers and is the fifth common cause of cancer-related mortality in men. Current methods for PCa treatment are insufficient owing to the challenges related to the non-specificity, instability and side effects caused by the drugs and therapy agents. These drawbacks can be mitigated by the design of a suitable drug delivery system that can ensure targeted delivery and minimise side effects. Silica based nanoparticles (SBNPs) have emerged as one of the most versatile materials for drug delivery due to their tunable porosities, high surface area and tremendous capacity to load various sizes and chemistry of drugs. This review gives a brief overview of the diagnosis and current treatment strategies for PCa outlining their existing challenges. It critically analyzes the design, development and application of pure, modified and hybrid SBNPs based drug delivery systems in the treatment of PCa, their advantages and limitations.
Collapse
Affiliation(s)
- Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Kannan Krishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Fatemeh Hashemi
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| |
Collapse
|
65
|
Liu Y, Li L, Liu J, Yang M, Wang H, Chu X, Zhou J, Huo M, Yin T. Biomineralization-inspired dasatinib nanodrug with sequential infiltration for effective solid tumor treatment. Biomaterials 2020; 267:120481. [PMID: 33189053 DOI: 10.1016/j.biomaterials.2020.120481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
The complex blood environment, heterogenic enhanced permeability and retention (EPR) effect, and dense matrix comprise the primary "leakage obstacles" impeding specific accumulation and penetration of nanodrugs against solid tumors, thus forming a key bottleneck for their clinical application. Herein, we present a biomineralization-inspired dasatinib (DAS) nanodrug (CIPHD/DAS) that sequentially permeates all of the abovementioned hindrances for efficient treatment of solid tumors. CIPHD/DAS exhibited a robust hybrid structure constructed from an iRGD-modified hyaluronic acid-deoxycholic acid organic core and a calcium phosphate mineral shell. In vitro and in vivo data demonstrated the mechanism of sequential tumoral infiltration was based on mineral-stiffened blood circulation with decreased premature drug leakage, iRGD-endowed tumor-specific transendothelial transport for "first-order promotion of accumulation" and DAS-mediated restoration of fibrotic stromal homeostasis for "second-order promotion of penetration". Resultantly, CIPHD/DAS showed remarkable distal drug availability in desmoplastic 4T1/CAFs orthotropic mouse models and significantly suppressed tumor growth and metastasis. This optimized strategy with sequential permeabilization of the capital "leakage obstacles" validates a promising paradigm to conquer the "impaired delivery and penetration" associated bottleneck of nanodrugs in the clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingchao Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jiyong Liu
- Department of pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200433, China
| | - Mengnan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Honglan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xuxin Chu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Tingjie Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
66
|
Xin X, Kumar V, Lin F, Kumar V, Bhattarai R, Bhatt VR, Tan C, Mahato RI. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. SCIENCE ADVANCES 2020; 6:eabd6764. [PMID: 33177098 PMCID: PMC7673723 DOI: 10.1126/sciadv.abd6764] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Desmoplastic and hypoxic pancreatic cancer microenvironment induces aberrant expression of miRNAs and hypoxia-inducible factor-1α (HIF-1α) responsible for gemcitabine (GEM) resistance. We demonstrated that miR-519c was down-regulated in pancreatic cancer and transfection of miR-519c in GEM-resistant pancreatic cancer cells inhibited HIF-1α level under hypoxia. We synthesized redox-sensitive mPEG-co-P(Asp)-g-DC-g-S-S-GEM polymer, with GEM payload of 14% (w/w) and 90% GEM release upon incubation with l-glutathione. We synthesized mPEG-co-P(Asp)-g-TEPA-g-DC for complex formation with miRNA. Chemical modification of miR-519c with 2'-O-methyl phosphorothioate (OMe-PS) at 3' end enhanced its stability and activity without being immunogenic. Epidermal growth factor receptor targeting peptide GE11 decoration increased tumor accumulation of micelles after systemic administration and significantly inhibited orthotopic desmoplastic pancreatic cancer growth in NSG mice by down-regulating HIF-1α and genes responsible for glucose uptake and cancer cell metabolism. Our multifunctional nanomedicine of GEM and OMe-PS-miR-519c offers a novel therapeutic strategy to treat desmoplasia and hypoxia-induced chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rajan Bhattarai
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijaya R Bhatt
- Department of Internal Medicine, Division of Hematology-Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA.
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
67
|
Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1671. [PMID: 33047504 DOI: 10.1002/wnan.1671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shahab Ranjbar Bahadori
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Hart
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dianbo Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anil Pillai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
68
|
Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci 2020; 21:E6280. [PMID: 32872646 PMCID: PMC7504176 DOI: 10.3390/ijms21176280] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
The usage of nanomaterials for cancer treatment has been a popular research focus over the past decade. Nanomaterials, including polymeric nanomaterials, metal nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials such as graphene oxide (GO), have been used for cancer cell imaging, chemotherapeutic drug targeting, chemotherapy, photothermal therapy, and photodynamic therapy. In this review, we discuss the concept of targeted nanoparticles in cancer therapy and summarize the in vivo biocompatibility of graphene-based nanomaterials. Specifically, we discuss in detail the chemistry and properties of GO and provide a comprehensive review of functionalized GO and GO-metal nanoparticle composites in nanomedicine involving anticancer drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA;
| | | |
Collapse
|
69
|
Yücel O, Şengelen A, Emik S, Önay-Uçar E, Arda N, Gürdağ G. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. NANOTECHNOLOGY 2020; 31:355101. [PMID: 32413875 DOI: 10.1088/1361-6528/ab9395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methotrexate (MTX), an analog of folic acid (FA), is a drug widely used in cancer treatment. To prevent its potential toxicity and enhance therapeutic efficacy, targeted drug delivery systems, especially nanotechnology-folate platforms, are a central strategy. Gold nanoparticles (AuNPs) are promising candidates to be used as drug delivery systems because of their small particle sizes and their inertness for the body. In this study, glutathione (GSH)-coated FA-modified spherical AuNPs (5.6 nm) were successfully synthesized, and the anticancer activity of novel MTX-loaded (MTX/Au-GSH-FA) NPs (11 nm) was examined. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that MTX/AuNPs possess spherical morphology, nanoscaled particle size, narrow size distribution, and good stability. In vitro studies showed that cytotoxicity of MTX/Au-GSH-FA to folate receptor-positive (FR+) human brain (U-87 MG) and cervical (HeLa) cancer cells enhanced significantly (∼3 and ∼10 fold, respectively) compared to free MTX while there was no significant effect in FR-negative human cell lines A549 (lung carcinoma), PC3 (prostate carcinoma), HEK-293 (healthy embryonic kidney). Moreover, the receptor specificity of the conjugate was shown by fluorescent microscopic imaging. In conclusion, these results indicate that the synthesized novel MTX/Au-GSH-FA NP complex seems to be a good candidate for effective and targeted delivery in FR+ cancer therapy.
Collapse
Affiliation(s)
- Oğuz Yücel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcılar 34320, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
70
|
Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol 2020; 66:113-122. [PMID: 32745889 DOI: 10.1016/j.copbio.2020.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Efficient cross-presentation is pivotal for vaccination against cancer and infection by intracellular virus and bacteria. Recently, various types of nanoparticle vaccines have been developed and investigated for efficiently and specifically improving cross-presentation and CD8+ T cell priming. In this review, we will summarize the known intracellular pathways involved in cross-presentation, and focus on several nanoparticle strategies that have been reported for enhancing cross-presentation, including designing multifunctional nano-vaccines for increasing endosomal escape, designing nano-vaccines that can target lymph nodes to improve antigen uptake by lymph node resident CD8α+ dendritic cells, and co-delivering immune modulators for upregulating cross-presentation related intracellular components. We will also briefly discuss the future prospects of cross-presentation based nano-vaccine strategy for curing diseases.
Collapse
|
71
|
Osborn J, Pullan JE, Froberg J, Shreffler J, Gange KN, Molden T, Choi Y, Brooks A, Mallik S, Sarkar K. Echogenic Exosomes as ultrasound contrast agents. NANOSCALE ADVANCES 2020; 2:3411-3422. [PMID: 36034734 PMCID: PMC9410358 DOI: 10.1039/d0na00339e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 05/19/2023]
Abstract
Exosomes are naturally secreted extracellular bilayer vesicles (diameter 40-130 nm), which have recently been found to play a critical role in cell-to-cell communication and biomolecule delivery. Their unique characteristics-stability, permeability, biocompatibility and low immunogenicity-have made them a prime candidate for use in delivering cancer therapeutics and other natural products. Here we present the first ever report of echogenic exosomes, which combine the benefits of the acoustic responsiveness of traditional microbubbles with the non-immunogenic and small-size morphology of exosomes. Microbubbles, although effective as ultrasound contrast agents, are restricted to intravascular usage due to their large size. In the current study, we have rendered bovine milk-derived exosomes echogenic by freeze drying them in the presence of mannitol. Ultrasound imaging and direct measurement of linear and nonlinear scattered responses were used to investigate the echogenicity and stability of the prepared exosomes. A commercial scanner registered enhancement (28.9% at 40 MHz) in the brightness of ultrasound images in presence of echogenic exosomes at 5 mg/mL. The exosomes also showed significant linear and nonlinear scattered responses-11 dB enhancement in fundamental, 8.5 dB in subharmonic and 3.5 dB in second harmonic all at 40 μg/mL concentration. Echogenic exosomes injected into the tail vein of mice and the synovial fluid of rats resulted in significantly higher brightness-as much as 300%-of the ultrasound images, showing their promise in a variety of in vivo applications. The echogenic exosomes, with their large-scale extractability from bovine milk, lack of toxicity and minimal immunogenic response, successfully served as ultrasound contrast agents in this study and offer an exciting possibility to act as an effective ultrasound responsive drug delivery system.
Collapse
Affiliation(s)
- Jenna Osborn
- Mechanical and Aerospace Engineering, George Washington UniversityWashington DC 20052USA
| | - Jessica E. Pullan
- Pharmaceutical Sciences, North Dakota State UniversityFargoND 58105USA
| | - James Froberg
- Physics, North Dakota State UniversityFargoND 58105USA
| | - Jacob Shreffler
- Pharmaceutical Sciences, North Dakota State UniversityFargoND 58105USA
| | - Kara N. Gange
- Health, Nutrition, and Exercise Science, North Dakota State UniversityFargoND 58105USA
| | - Todd Molden
- Animal Science, North Dakota State UniversityFargoND 58105USA
| | - Yongki Choi
- Physics, North Dakota State UniversityFargoND 58105USA
| | - Amanda Brooks
- Pharmaceutical Sciences, North Dakota State UniversityFargoND 58105USA
| | - Sanku Mallik
- Pharmaceutical Sciences, North Dakota State UniversityFargoND 58105USA
| | - Kausik Sarkar
- Mechanical and Aerospace Engineering, George Washington UniversityWashington DC 20052USA
| |
Collapse
|
72
|
Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS JOURNAL 2020; 22:83. [DOI: 10.1208/s12248-020-00464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
73
|
Weiss ACG, Herold HM, Lentz S, Faria M, Besford QA, Ang CS, Caruso F, Scheibel T. Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24635-24643. [PMID: 32369330 DOI: 10.1021/acsami.0c06344] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, spider silk-based materials have attracted attention because of their biocompatibility, processability, and biodegradability. For their potential use in biomaterial applications, i.e., as drug delivery systems and implant coatings for tissue regeneration, it is vital to understand the interactions between the silk biomaterial surface and the biological environment. Like most polymeric carrier systems, spider silk material surfaces can adsorb proteins when in contact with blood, resulting in the formation of a biomolecular corona. Here, we assessed the effect of surface net charge of materials made of recombinant spider silk on the biomolecular corona composition. In-depth proteomic analysis of the biomolecular corona revealed that positively charged spider silk materials surfaces interacted predominantly with fibrinogen-based proteins. This fibrinogen enrichment correlated with blood clotting observed for both positively charged spider silk films and particles. In contrast, negative surface charges prevented blood clotting. Genetic engineering allows the fine-tuning of surface properties of the spider silk particles providing a whole set of recombinant spider silk proteins with different charges or peptide tags to be used for, for example, drug delivery or cell docking, and several of these were analyzed concerning the composition of their biomolecular corona. Taken together this study demonstrates how the surface net charge of recombinant spider silk surfaces affects the composition of the biomolecular corona, which in turn affects macroscopic effects such as fibrin formation and blood clotting.
Collapse
Affiliation(s)
- Alessia C G Weiss
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Heike M Herold
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof. Rüdiger-Bormann-Strasse 1, Bayreuth 95447, Germany
| | - Sarah Lentz
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof. Rüdiger-Bormann-Strasse 1, Bayreuth 95447, Germany
| | - Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria 3052, Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, and the Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- Leibniz-Institute für Polymerforschung, Hohe Straβe 6, Dresden 01069 , Germany
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof. Rüdiger-Bormann-Strasse 1, Bayreuth 95447, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Bayreuth 95440, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Bayreuth 95440, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
- Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
74
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
75
|
Editorial of Special Issue "Surface-Functionalized Nanoparticles as Drug Carriers". Int J Mol Sci 2019; 20:ijms20246352. [PMID: 31861113 PMCID: PMC6941103 DOI: 10.3390/ijms20246352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Safe and effective delivery of therapeutics at the target site is the key to successful therapy. Nanocarriers can offer significant advantages over conventional dosage forms. Over the decades, nanoparticles have been extensively used to increase bioavailability, improve solubility and stability, reduce toxicities, and facilitate the controlled release of therapeutics. Further, nanoparticles have often been surface-functionalized with a variety of ligands to enhance circulation half-life and increase target-specificity. Although nanotechnology has shown significant therapeutic benefits for multiple biomedical applications, limited nanoparticle-based formulations have progressed to clinical trials, and only a few have reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Surface-Functionalized Nanoparticles as Drug Carriers. We outline the scope of the special issue, summarize the results and conclusions of the nine articles published in this issue, and provide perspective on the application of surface-functionalized nanoparticles in the drug delivery field.
Collapse
|