51
|
Spinka G, Bartko PE, Pavo N, Freitag C, Zlabinger K, Prausmüller S, Arfsten H, Heitzinger G, Mascherbauer J, Hengstenberg C, Gyöngyösi M, Hülsmann M, Goliasch G. Secondary mitral regurgitation-Insights from microRNA assessment. Eur J Clin Invest 2021; 51:e13381. [PMID: 32780418 PMCID: PMC7900984 DOI: 10.1111/eci.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND While secondary mitral regurgitation (sMR) is associated with adverse outcome in heart failure with reduced ejection fraction (HFrEF), key pathophysiologic mechanisms remain poorly understood and might be elucidated by microRNAs (miRNA/miR), that were recently related to cardiac remodelling. This study sought to assess (i) the differences of miRNA profiles in patients with severe sMR compared to matched disease controls, (ii) the correlation between circulating miRNAs and surrogates of sMR severity as well as (iii) the prognostic implications of miRNA levels in severe sMR. MATERIALS AND METHODS Sixty-six HFrEF patients were included, of these 44 patients with severe sMR 2:1 matched to HFrEF controls with no/mild sMR. A comprehensive set of miRNAs (miR-21, miR-29a, miR-122, miR-132, miR-133a, miR-let7i) were measured and correlated to echocardiographic sMR severity. RESULTS miRNA patterns differed distinctly between patients with severe sMR and HFrEF controls (P < .05). Among the panel of assessed miRNAs, miR-133a correlated most strongly with surrogates of sMR severity (r = -0.41, P = .001 with sMR vena contracta width). Interestingly, elevated levels of miR-133 were associated with an increased risk for cardiovascular death and/or HF hospitalizations with and adjusted HR of 1.85 (95% CI 1.24-2.76, P = .003). CONCLUSIONS This study unveils distinct pathophysiologic maladaptions at a cellular level in patients with severe sMR compared to no/mild sMR by showing significant differences in miRNA profiles and correlations with sMR severity, supporting the concept that sMR drives cardiac remodelling in heart failure. Moreover, the increased risk for adverse outcome in HFrEF patients with severe sMR conveyed by miR-133a might indicate irreversible myocardial damage.
Collapse
Affiliation(s)
- Georg Spinka
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Philipp E Bartko
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Claudia Freitag
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Suriya Prausmüller
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Henrike Arfsten
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Gregor Heitzinger
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia Mascherbauer
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Hülsmann
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
52
|
Kura B, Kalocayova B, Szeiffova Bacova B, Fulop M, Sagatova A, Sykora M, Andelova K, Abuawad Z, Slezak J. The effect of selected drugs on the mitigation of myocardial injury caused by gamma radiation. Can J Physiol Pharmacol 2021; 99:80-88. [PMID: 33438486 DOI: 10.1139/cjpp-2020-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Marko Fulop
- Slovak Medical University, 831 01, Bratislava, Slovak Republic
| | - Andrea Sagatova
- Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovak Republic
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| | - Ziad Abuawad
- Faculty of Public Health, Al-Quds University, Jerusalem, Palestine
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
53
|
Guo H, Zhao X, Su H, Ma C, Liu K, Kong S, Liu K, Li H, Chang J, Wang T, Guo H, Wei H, Fu Z, Lv X, Li Y. miR-21 is upregulated, promoting fibrosis and blocking G2/M in irradiated rat cardiac fibroblasts. PeerJ 2020; 8:e10502. [PMID: 33354435 PMCID: PMC7733651 DOI: 10.7717/peerj.10502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Radiation exposure of the thorax is associated with a greatly increased risk of cardiac morbidity and mortality even after several decades of advancement in the field. Although many studies have demonstrated the damaging influence of ionizing radiation on cardiac fibroblast (CF) structure and function, myocardial fibrosis, the molecular mechanism behind this damage is not well understood. miR-21, a small microRNA, promotes the activation of CFs, leading to cardiac fibrosis. miR-21 is overexpressed after irradiation; however, the relationship between increased miR-21 and myocardial fibrosis after irradiation is unclear. This study was conducted to investigate gene expression after radiation-induced CF damage and the role of miR-21 in this process in rats. Methods We sequenced irradiated rat CFs and performed weighted correlation network analysis (WGCNA) combined with differentially expressed gene (DEG) analysis to observe the effect on the expression profile of CF genes after radiation. Results DEG analysis showed that the degree of gene changes increased with the radiation dose. WGCNA revealed three module eigengenes (MEs) associated with 8.5-Gy-radiation—the Yellow, Brown, Blue modules. The three module eigengenes were related to apoptosis, G2/M phase, and cell death and S phase, respectively. By blocking with the cardiac fibrosis miRNA miR-21, we found that miR-21 was associated with G2/M blockade in the cell cycle and was mainly involved in regulating extracellular matrix-related genes, including Grem1, Clu, Gdf15, Ccl7, and Cxcl1. Stem-loop quantitative real-time PCR was performed to verify the expression of these genes. Five genes showed higher expression after 8.5 Gy-radiation in CFs. The target genes of miR-21 predicted online were Gdf15 and Rsad2, which showed much higher expression after treatment with antagomir-miR-21 in 8.5-Gy-irradiated CFs. Thus, miR-21 may play the role of fibrosis and G2/M blockade in regulating Grem1, Clu, Gdf15, Ccl7, Cxcl1, and Rsad2 post-irradiation.
Collapse
Affiliation(s)
- Huan Guo
- School of Basic Medical Sciences, Lan Zhou University, Lan Zhou, Gan Su, China.,Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China.,Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Xinke Zhao
- Department of Interventional Section, Affiliated Hospital of Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China.,Chinese Academy of Medical Sciences, Fuwai Hospital, Bei Jing, China
| | - Haixiang Su
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Kai Liu
- Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Shanshan Kong
- Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Kedan Liu
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Haining Li
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Juan Chang
- Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Tao Wang
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Hongyun Guo
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Huiping Wei
- Department of Interventional Section, Affiliated Hospital of Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Zhaoyuan Fu
- Department of Interventional Section, Affiliated Hospital of Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Xinfang Lv
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Yingdong Li
- School of Basic Medical Sciences, Lan Zhou University, Lan Zhou, Gan Su, China.,Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| |
Collapse
|
54
|
Barbalata T, Zhang L, Dulceanu MD, Stancu CS, Devaux Y, Sima AV, Niculescu LS. Regulation of microRNAs in high-fat diet induced hyperlipidemic hamsters. Sci Rep 2020; 10:20549. [PMID: 33239653 PMCID: PMC7688633 DOI: 10.1038/s41598-020-77539-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Dyslipidemia is a documented risk factor for cardiovascular diseases and other metabolic disorders. Therefore, the analysis of hyperlipidemia (HL)-related miRNAs is a potential approach for achieving new prognostic markers in lipid-metabolism related diseases. We aimed to analyze specific distribution of miRNAs in different tissues from HL animals. Golden Syrian hamsters were fed either regular chow (NL) or high-fat diet (HL) for 12 weeks. Microarray miRNAs profiling was performed in liver, heart and small intestine and data analyzed by R-studio software. Functional enrichment bioinformatics analysis was performed using miRWalk and DAVID tools. We observed a dysregulation of miRNAs in HL tissues evidencing a discrete distribution in the heart-liver axis and three lipid metabolism-related miRNAs were identified: hsa-miR-223-3p, hsa-miR-21-5p, and hsa-miR-146a-5p. Expression levels of these miRNAs were increased in HL livers and hearts. Functional bioinformatics analysis showed involvement of these miRNAs in the regulation of biological processes altered in HL conditions such as lipid metabolic process, fat cell differentiation, regulation of smooth muscle cells and cardiac septum development. We identified a set of miRNAs dysregulated in different tissues of HFD-induced HL hamsters. These findings motivate further studies aiming to investigate novel molecular mechanisms of lipid metabolism and atherogenic HL.
Collapse
Affiliation(s)
- Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Madalina D Dulceanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania.,Synevo Romania, 81, Pache Protopopescu Ave, 021408, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B. P. Hasdeu Street, 050568, Bucharest, Romania.
| | | |
Collapse
|
55
|
Scolari FL, Faganello LS, Garbin HI, Piva E Mattos B, Biolo A. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy. Int J Cardiol 2020; 327:146-154. [PMID: 33212095 DOI: 10.1016/j.ijcard.2020.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several microRNAs (miRNA) have been associated with hypertrophic cardiomyopathy (HCM), but studies differ regarding methods employed. In an attempt to understand their role in the disease, we performed a systematic review of studies assessing miRNAs and their association with HCM. METHODS The literature search was based on The Medical Subject Headings (MeSH) terms "Hypertrophic Cardiomyopathy" and "MicroRNA" combined with other synonyms on Embase, Medline and LILACS databases in April 2020. The selected studies and data extraction were independently evaluated. Only human reports with a clear definition of HCM diagnosis were included. RESULTS The search found 68 studies, 13 fulfilled the selection criteria, with a total of 329 patients. Eighty-seven miRNA were differentially expressed in HCM patients, being mir-21, mir-29a and mir-133 the most reported. The miRNA were mainly up-regulated, where mir-29a was up-regulated in 6 studies, followed by mir-133 in 4 and mir-21 in 3. The other miRNAs were mainly up-regulated. Blood samples were evaluated in the majority of patients (86%), but a greater number of miRNAs (79%) were assessed in myocardium. Six studies evaluating the phenotype correlation demonstrated that several miRNAs, mainly mir-1-3p, mir-19b, mir-21, mir-29a, mir-155, and mir-221, were related to either hypertrophy or fibrosis. Mir-29a showed a more consistent phenotypic correlation. CONCLUSION Eighty-seven miRNAs were differentially expressed in HCM patients, the majority in up-regulation. Mir-21, mir-29a and mir-133 were the most reported. Correlation with left ventricular hypertrophy and fibrosis was evaluated in six studies for several miRNAs, nevertheless, mir-29a showed more consistent findings and seems to be a promising biomarker.
Collapse
Affiliation(s)
- Fernando Luís Scolari
- Division of Cardiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Faculty of Medicine, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Lucas Simonetto Faganello
- Department of Cardiac Electrophysiology, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Henrique Iahnke Garbin
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Porto Alegre, Rio Grande do Sul, Brazil
| | - Beatriz Piva E Mattos
- Division of Cardiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Faculty of Medicine, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Andreia Biolo
- Division of Cardiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Faculty of Medicine, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
56
|
Association of miR-21-5p, miR-122-5p, and miR-320a-3p with 90-Day Mortality in Cardiogenic Shock. Int J Mol Sci 2020; 21:ijms21217925. [PMID: 33114482 PMCID: PMC7662780 DOI: 10.3390/ijms21217925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiogenic shock (CS) is a life-threatening emergency. New biomarkers are needed in order to detect patients at greater risk of adverse outcome. Our aim was to assess the characteristics of miR-21-5p, miR-122-5p, and miR-320a-3p in CS and evaluate the value of their expression levels in risk prediction. Circulating levels of miR-21-5p, miR-122-5p, and miR-320a-3p were measured from serial plasma samples of 179 patients during the first 5-10 days after detection of CS, derived from the CardShock study. Acute coronary syndrome was the most common cause (80%) of CS. Baseline (0 h) levels of miR-21-5p, miR-122-5p, and miR-320a-3p were all significantly elevated in nonsurvivors compared to survivors (p < 0.05 for all). Above median levels at 0h of each miRNA were each significantly associated with higher lactate and alanine aminotransferase levels and decreased glomerular filtration rates. After adjusting the multivariate regression analysis with established CS risk factors, miR-21-5p and miR-320a-3p levels above median at 0 h were independently associated with 90-day all-cause mortality (adjusted hazard ratio 1.8 (95% confidence interval 1.1-3.0), p = 0.018; adjusted hazard ratio 1.9 (95% confidence interval 1.2-3.2), p = 0.009, respectively). In conclusion, circulating plasma levels of miR-21-5p, miR-122-5p, and miR-320a-3p at baseline were all elevated in nonsurvivors of CS and associated with markers of hypoperfusion. Above median levels of miR-21-5p and miR-320a-3p at baseline appear to independently predict 90-day all-cause mortality. This indicates the potential of miRNAs as biomarkers for risk assessment in cardiogenic shock.
Collapse
|
57
|
Prakash A, Crespo-Avilan GE, Hernandez-Resendiz S, Ong SG, Hausenloy DJ. Extracellular vesicles - mediating and delivering cardioprotection in acute myocardial infarction and heart failure. CONDITIONING MEDICINE 2020; 3:227-238. [PMID: 34296067 PMCID: PMC8294590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New treatments are urgently needed to reduce myocardial infarct size and prevent adverse post-infarct left ventricular remodeling, in order to preserve cardiac function, and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI). In this regard, extracellular vesicles (EVs) have emerged as key mediators of cardioprotection. Endogenously produced EVs are known to play crucial roles in maintaining normal cardiac homeostasis and function, by acting as mediators of intercellular communication between different types of cardiac cells. Endogenous EVs have also been shown to contribute to innate cardioprotective strategies such as remote ischemic conditioning. In terms of EV-based therapeutics, stem cell-derived EVs have been shown to confer cardioprotection in a large number of small and large animal AMI models, and have the therapeutic potential to be applied in the clinical setting for the benefit of AMI patients, although several challenges need to be overcome. Finally, EVs may be used as vehicles to deliver therapeutics to the infarcted heart, providing a potential synergist approach to cardioprotection. In this review article, we highlight the various roles that EVs play as mediators and deliverers of cardioprotection, and discuss their therapeutic potential for improving clinical outcomes following AMI.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
| | - Gustavo E. Crespo-Avilan
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Sang-Ging Ong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Derek J. Hausenloy
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
58
|
Tocchetti CG, Ameri P, de Boer RA, D’Alessandra Y, Russo M, Sorriento D, Ciccarelli M, Kiss B, Bertrand L, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Linke WA, Mayr M, van der Velden J, Zacchigna S, Ghigo A, Hirsch E, Lyon AR, Görbe A, Ferdinandy P, Madonna R, Heymans S, Thum T. Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2020; 116:1820-1834. [DOI: 10.1093/cvr/cvaa222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.
Collapse
Affiliation(s)
- Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
- Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, AB31, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Yuri D’Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine Surgery and Odontology, University of Salerno, Salerno, Italy
| | - Bernadett Kiss
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
| | - Luc Bertrand
- IREC Institute, Pole of Cardiovascular Research, Université Catholique de Louvain, Brussels, Belgium
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Ines Falcao-Pires
- Unidade de Investigação e Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
- Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Witten, Germany
| | | | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Imperial College London, London, UK
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| |
Collapse
|
59
|
Wang B, Wang H, Zhang M, Ji R, Wei J, Xin Y, Jiang X. Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J Cell Mol Med 2020; 24:7717-7729. [PMID: 32536032 PMCID: PMC7348163 DOI: 10.1111/jcmm.15479] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
Radiation-induced myocardial fibrosis (RIMF) is a potentially lethal clinical complication of chest radiotherapy (RT) and a final stage of radiation-induced heart disease (RIHD). RIMF is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure and even sudden cardiac death. Together, these conditions impair the long-term health of post-RT survivors and limit the dose and intensity of RT required to effectively kill tumour cells. Although the exact mechanisms involving in RIMF are unclear, increasing evidence indicates that the occurrence of RIMF is related to various cells, regulatory molecules and cytokines. However, accurately diagnosing and identifying patients who may progress to RIMF has been challenging. Despite the urgent need for an effective treatment, there is currently no medical therapy for RIMF approved for routine clinical application. In this review, we investigated the underlying pathophysiology involved in the initiation and progression of RIMF before outlining potential preventative and therapeutic strategies to counter this toxicity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| | - Huanhuan Wang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| | - Mengmeng Zhang
- Phase I Clinical Research CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Ji
- Department of BiologyValencia CollegeOrlandoFLUSA
| | - Jinlong Wei
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Xin
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchunChina
| | - Xin Jiang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| |
Collapse
|
60
|
Liu S, Guo X, Zhong W, Weng R, Liu J, Gu X, Zhong Z. Circulating MicroRNA Expression Profiles in Patients with Stable and Unstable Angina. Clinics (Sao Paulo) 2020; 75:e1546. [PMID: 32667489 PMCID: PMC7337223 DOI: 10.6061/clinics/2020/e1546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES High incidence and case fatality of unstable angina (UA) is, to a large extent, a consequence of the lack of highly sensitive and specific non-invasive markers. Circulating microRNAs (miRNAs) have been widely recommended as potential biomarkers for numerous diseases. In the present study, we characterized distinctive miRNA expression profiles in patients with stable angina (SA), UA, and normal coronary arteries (NCA), and identified promising candidates for UA diagnosis. METHODS Serum was collected from patients with SA, UA, and NCA who visited the Department of Cardiovascular Diseases of the Meizhou People's Hospital. Small RNA sequencing was carried out on an Illumina HiSeq 2500 platform. miRNA expression in different groups of patients was profiled and then confirmed based on that in an independent set of patients. Functions of differentially expressed miRNAs were predicted using gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS Our results indicated that circulating miRNA expression profiles differed between SA, UA, and NCA patients. A total of 36 and 161 miRNAs were dysregulated in SA and UA patients, respectively. miRNA expression was validated by reverse transcription quantitative polymerase chain reaction. CONCLUSION The results suggest that circulating miRNAs are potential biomarkers of UA.
Collapse
Affiliation(s)
- Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xuemin Guo
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Jing Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- *Corresponding author. E-mail:
| |
Collapse
|