51
|
Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, Olalla Saad ST, Chorilli M. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm 2021; 168:76-89. [PMID: 34461214 DOI: 10.1016/j.ejpb.2021.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBM has aggressive development, and the pharmacological treatment remains a challenge due to GBM anatomical characteristics' (the blood-brain barrier and tumor microenvironment) and the increasing resistance to marketed drugs, such as temozolomide (TMZ), the first-line drug for GBM treatment. Due to physical-chemical properties such as short half-life time and the increasing resistance shown by GBM cells, high doses and repeated administrations are necessary, leading to significant adverse events. This review will discuss the main molecular mechanisms of TMZ resistance and the use of functionalized nanocarriers as an efficient and safe strategy for TMZ delivery. GBM-targeting nanocarriers are an important tool for the treatment of GBM, demonstrating to improve the biopharmaceutical properties of TMZ and repurpose its use in anti-GBM therapy. Technical aspects of nanocarriers will be discussed, and biological models highlighting the advantages and effects of functionalization strategies in TMZ anti-GBM activity. Finally, conclusions regarding the main findings will be made in the context of new perspectives for the treatment of GBM using TMZ as a chemotherapy agent, improving the sensibility and biological anti-tumor effect of TMZ through functionalization strategies.
Collapse
Affiliation(s)
| | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Luiza Ribeiro Nicoleti
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
52
|
The Renin-Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2021; 13:cancers13164004. [PMID: 34439159 PMCID: PMC8392691 DOI: 10.3390/cancers13164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GB) is the most aggressive brain cancer in humans. Patient survival outcomes have remained dismal despite intensive research over the past 50 years, with a median overall survival of only 14.6 months. We highlight the critical role of the renin–angiotensin system (RAS) on GB cancer stem cells and the tumor microenvironment which, in turn, influences cancer stem cells in driving tumorigenesis and treatment resistance. We present recent developments and underscore the need for further research into the GB tumor microenvironment. We discuss the novel therapeutic targeting of the RAS using existing commonly available medications and utilizing model systems to further this critical investigation. Abstract Glioblastoma (GB) is an aggressive primary brain tumor. Despite intensive research over the past 50 years, little advance has been made to improve the poor outcome, with an overall median survival of 14.6 months following standard treatment. Local recurrence is inevitable due to the quiescent cancer stem cells (CSCs) in GB that co-express stemness-associated markers and components of the renin–angiotensin system (RAS). The dynamic and heterogeneous tumor microenvironment (TME) plays a fundamental role in tumor development, progression, invasiveness, and therapy resistance. There is increasing evidence showing the critical role of the RAS in the TME influencing CSCs via its upstream and downstream pathways. Drugs that alter the hallmarks of cancer by modulating the RAS present a potential new therapeutic alternative or adjunct to conventional treatment of GB. Cerebral and GB organoids may offer a cost-effective method for evaluating the efficacy of RAS-modulating drugs on GB. We review the nexus between the GB TME, CSC niche, and the RAS, and propose re-purposed RAS-modulating drugs as a potential therapeutic alternative or adjunct to current standard therapy for GB.
Collapse
|
53
|
Red blood cell distribution width to platelet ratio substantiates preoperative survival prediction in patients with newly-diagnosed glioblastoma. J Neurooncol 2021; 154:229-235. [PMID: 34347223 PMCID: PMC8437903 DOI: 10.1007/s11060-021-03817-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Object The conception of individual patient-adjusted treatment strategies is constantly emerging in the field of neuro-oncology. Systemic laboratory markers may allow insights into individual needs and estimated treatment benefit at an earliest possible stage. Therefore, the present study was aimed at analyzing the prognostic significance of preoperative routine laboratory values in patients with newly-diagnosed glioblastoma. Methods Between 2014 and 2019, 257 patients were surgically treated for newly-diagnosed glioblastoma at the Neuro-Oncology Center of the University Hospital Bonn. Preoperative routine laboratory values including red blood cell distribution width (RDW) and platelet count were reviewed. RDW to platelet count ratio (RPR) was calculated and correlated to overall survival (OS) rates. Results Median preoperative RPR was 0.053 (IQR 0.044–0.062). The receiver operating characteristic (ROC) curve indicated an optimal cut-off value for RPR to be 0.05 (AUC 0.62; p = 0.002, 95% CI 0.544–0.685). 101 patients (39%) presented with a preoperative RPR < 0.05, whereas 156 patients (61%) had a RPR ≥ 0.05. Patients with preoperative RPR < 0.05 exhibited a median OS of 20 months (95% CI 17.9–22.1), which was significantly higher compared to a median OS of 13 months (95% CI 10.9–15.1) in patients with preoperative RPR ≥ 0.05 (p < 0.001). Conclusions The present study suggests the RPR to constitute a novel prognostic inflammatory marker for glioblastoma patients in the course of preoperative routine laboratory examinations and might contribute to a personalized medicine approach.
Collapse
|
54
|
Ludwig N, Rao A, Sandlesh P, Yerneni SS, Swain AD, Bullock KM, Hansen KM, Zhang X, Jaman E, Allen J, Krueger K, Hong CS, Banks WA, Whiteside TL, Amankulor NM. Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro Oncol 2021; 24:197-209. [PMID: 34254643 DOI: 10.1093/neuonc/noab153] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gliomas are the most common primary brain tumors and are universally fatal. Mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) define a distinct glioma subtype associated with an immunosuppressive tumor microenvironment. Mechanisms underlying systemic immunosuppression in IDH mutant (mutIDH) gliomas are largely unknown. Here, we define genotype-specific local and systemic tumor immunomodulatory functions of tumor-derived glioma exosomes (TEX). METHODS TEX produced by human and murine wildtype and mutant IDH glioma cells (wtIDH and mutIDH, respectively) were isolated by size exclusion chromatography (SEC). TEX morphology, size, quantity, molecular profiles and biodistribution were characterized. TEX were injected into naive and tumor-bearing mice, and the local and systemic immune microenvironment composition was characterized. RESULTS Using in vitro and in vivo glioma models, we show that mutIDH TEX are more numerous, possess distinct morphological features and are more immunosuppressive than wtIDH TEX. mutIDH TEX cargo mimics their parental cells, and induces systemic immune suppression in naive and tumor-bearing mice. TEX derived from mutIDH gliomas and injected into wtIDH tumor-bearing mice reduce tumor-infiltrating effector lymphocytes, dendritic cells and macrophages, and increase circulating monocytes. Astonishingly, mutIDH TEX injected into brain tumor-bearing syngeneic mice accelerate tumor growth and increase mortality compared with wtIDH TEX. CONCLUSIONS Targeting of mutIDH TEX represents a novel therapeutic approach in gliomas.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Aparna Rao
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Poorva Sandlesh
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Alexander D Swain
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Kristin M Bullock
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Kim M Hansen
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Xiaoran Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jordan Allen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Katharine Krueger
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Departments of Immunology and Otolaryngology, Pittsburgh, USA
| |
Collapse
|
55
|
Whiteside TL, Diergaarde B, Hong CS. Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. Int J Mol Sci 2021; 22:ijms22126234. [PMID: 34207762 PMCID: PMC8229953 DOI: 10.3390/ijms22126234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in health and disease, including cancer. Tumors produce a mix of EVs differing in size, cellular origin, biogenesis and molecular content. Small EVs (sEV) or exosomes are a subset of 30-150 nm (virus-size) vesicles originating from the multivesicular bodies (MVBs) and carrying a cargo that in its content and topography approximates that of a parent cell. Tumor-derived exosomes (TEX) present in all body fluids of cancer patients, are considered promising candidates for a liquid tumor biopsy. TEX also mediate immunoregulatory activities: they maintain a crosstalk between the tumor and various non-malignant cells, including immunocytes. Effects that EVs exert on immune cells may be immunosuppressive or immunostimulatory. Here, we review the available data for TEX interactions with immunocytes, focusing on strategies that allow isolation from plasma and separation of TEX from sEV produced by non-malignant cells. Immune effects mediated by either of the subsets can now be distinguished and measured. The approach has allowed for the comparison of molecular and functional profiles of the two sEV fractions in plasma of cancer patients. While TEX carried an excess of immunosuppressive proteins and inhibited immune cell functions in vitro and in vivo, the sEV derived from non-malignant cells, including CD3(+)T cells, were variably enriched in immunostimulatory proteins and could promote functions of immunocytes. Thus, sEV in plasma of cancer patients are heterogenous, representing a complex molecular network which is not evident in healthy donors' plasma. Importantly, TEX appear to be able to reprogram functions of non-malignant CD3(+)T cells inducing them to produce CD3(+)sEV enriched in immunosuppressive proteins. Ratios of stimulatory/inhibitory proteins carried by TEX and by CD3(+)sEV derived from reprogrammed non-malignant cells vary broadly in patients and appear to negatively correlate with disease progression. Simultaneous capture from plasma and functional/molecular profiling of TEX and the CD3(+)sEV fractions allows for defining their role as cancer biomarkers and as monitors of cancer patients' immune competence, respectively.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- Department of Pathology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-(412)-624-0096; Fax: +1-(412)-623-0264
| | - Brenda Diergaarde
- Department of Human Genetics and UPMC Hillman Cancer Center, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA;
| | - Chang-Sook Hong
- Department of Pathology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
56
|
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME, Eskandari N. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer 2021; 20:83. [PMID: 34078376 PMCID: PMC8170799 DOI: 10.1186/s12943-021-01376-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-derived exosomes (TDEs) have been shown to impede anti-tumor immune responses via their immunosuppressive cargo. Since dendritic cells (DCs) are the key mediators of priming and maintenance of T cell-mediated responses; thus it is logical that the exosomes released by tumor cells can exert a dominant influence on DCs biology. This paper intends to provide a mechanistic insight into the TDEs-mediated DCs abnormalities in the tumor context. More importantly, we discuss extensively how tumor exosomes induce subversion of DCs differentiation, maturation and function in separate sections. We also briefly describe the importance of TDEs at therapeutic level to help guide future treatment options, in particular DC-based vaccination strategy, and review advances in the design and discovery of exosome inhibitors. Understanding the exosomal content and the pathways by which TDEs are responsible for immune evasion may help to revise treatment rationales and devise novel therapeutic approaches to overcome the hurdles in cancer treatment.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
57
|
Ma J, Chen CC, Li M. Macrophages/Microglia in the Glioblastoma Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22115775. [PMID: 34071306 PMCID: PMC8198046 DOI: 10.3390/ijms22115775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
The complex interaction between glioblastoma and its microenvironment has been recognized for decades. Among various immune profiles, the major population is tumor-associated macrophage, with microglia as its localized homolog. The present definition of such myeloid cells is based on a series of cell markers. These good sentinel cells experience significant changes, facilitating glioblastoma development and protecting it from therapeutic treatments. Huge, complicated mechanisms are involved during the overall processes. A lot of effort has been dedicated to crack the mysterious codes in macrophage/microglia recruiting, activating, reprogramming, and functioning. We have made our path. With more and more key factors identified, a lot of new therapeutic methods could be explored to break the ominous loop, to enhance tumor sensitivity to treatments, and to improve the prognosis of glioblastoma patients. However, it might be a synergistic system rather than a series of clear, stepwise events. There are still significant challenges before the light of truth can shine onto the field. Here, we summarize recent advances in this field, reviewing the path we have been on and where we are now.
Collapse
Affiliation(s)
| | | | - Ming Li
- Correspondence: (C.C.C.); (M.L.)
| |
Collapse
|
58
|
Benecke L, Coray M, Umbricht S, Chiang D, Figueiró F, Muller L. Exosomes: Small EVs with Large Immunomodulatory Effect in Glioblastoma. Int J Mol Sci 2021; 22:3600. [PMID: 33808435 PMCID: PMC8036988 DOI: 10.3390/ijms22073600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are among the most aggressive tumors, and with low survival rates. They are characterized by the ability to create a highly immunosuppressive tumor microenvironment. Exosomes, small extracellular vesicles (EVs), mediate intercellular communication in the tumor microenvironment by transporting various biomolecules (RNA, DNA, proteins, and lipids), therefore playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Exosomes are found in all body fluids and can cross the blood-brain barrier due to their nanoscale size. Recent studies have highlighted the multiple influences of tumor-derived exosomes on immune cells. Owing to their structural and functional properties, exosomes can be an important instrument for gaining a better molecular understanding of tumors. Furthermore, they qualify not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting aggressive tumor cells, like glioblastomas.
Collapse
Affiliation(s)
- Laura Benecke
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| | - Mali Coray
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Sandra Umbricht
- Faculty of Medicine, University of Basel, 4051 Basel, Switzerland;
| | - Dapi Chiang
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil;
| | - Laurent Muller
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| |
Collapse
|
59
|
Xuan W, Lesniak MS, James CD, Heimberger AB, Chen P. Context-Dependent Glioblastoma-Macrophage/Microglia Symbiosis and Associated Mechanisms. Trends Immunol 2021; 42:280-292. [PMID: 33663953 DOI: 10.1016/j.it.2021.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM-GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM-GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77007, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
60
|
Han C, Zhang C, Wang H, Zhao L. Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment. Oncoimmunology 2021; 10:1887552. [PMID: 33680573 PMCID: PMC7901554 DOI: 10.1080/2162402x.2021.1887552] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles released from numerous types of cells that are involved in multiple tumors development. Exosomes contribute to the modulation of tumor microenvironment (TME) through intercellular communication. As essential immune stromal cells in the TME, tumor-associated macrophages (TAMs) participate in tumor development by mediating angiogenesis, metastasis, chemoresistance, and immune escape. Due to communication with multiple cells in the TME, they exhibit plasticity and heterogeneity during the progress of polarization from monocytes to macrophages. Previous studies suggest that targeting TAMs is a promising therapeutic strategy; however, the detailed mechanism by which TAMs regulate tumor development still remains unclear. In this review, we provide an overview of the roles of exosomes as messengers in the communication between tumor cells and polarization of TAMs; we also describe the effects of their interaction on tumor development. Finally, we comprehensively discussed the potential application of exosomes as the promising tumor immunotherapy strategy.
Collapse
Affiliation(s)
- Chen Han
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hengxiao Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
61
|
Yin CD, Hou YL, Liu XR, He YS, Wang XP, Li CJ, Tan XH, Liu J. Development of an immune-related prognostic index associated with osteosarcoma. Bioengineered 2020; 12:172-182. [PMID: 33371790 PMCID: PMC8806312 DOI: 10.1080/21655979.2020.1864096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor immunity is closely associated with the prognosis of tumors, including osteosarcoma (OS). The aim of the present study was to construct an immune-related prognostic index (PI) to predict the prognosis of OS. Herein, OS expression data were sourced from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. We divided the OS patients into nonmetastatic and metastatic groups, allowing differentially immune-related genes (DIRGs) to be selected. After DIRGs were further investigated by enrichment analysis, four keys prognostic IRGs (CD79A, CSF3R, MTNR1B and NPPC) were identified using a Cox proportional hazards model. Then, an immune-related prognostic index was constructed. Finally, gene set enrichment analysis (GSEA) was employed to further explore the underlying mechanisms. The difference in tumor-infiltrating immune cell (TIIC) abundance was also discussed. In our study, eight upregulated genes and 30 downregulated genes were identified. Several Gene Ontology (GO) terms and the most significantly enriched KEGG pathways were immune-associated functions and pathways. Four genes, including CD79A, CSF3R, MTNR1B and NPPC, were used to establish a risk assessment model for evaluating OS prognosis. GSEA revealed that the risk score was related to cytokine receptor interaction and to the chemokine and B cell receptor signaling pathways. Furthermore, high risk markedly related to the infiltration of several immune cell types, including M2 macrophages, naïve CD4 T cells, and CD8 T cells. In sum, we developed a survival model for OS. The underlying molecular mechanisms of the high-risk group may affect immune-related biological processes and TIICs.Abbreviations TARGET: Therapeutically Applicable Research To Generate Effective Treatments; PI: Prognostic index; OS: Osteosarcoma; DIRGs: Differentially immune-related genes; GSEA: Gene set enrichment analysis; TIIC: Tumor-infiltrating immune cell.
Collapse
Affiliation(s)
- Chao-Dong Yin
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Ying-Lan Hou
- Health Management Centre, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Xiao-Ren Liu
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Yu-Sheng He
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Xin-Ping Wang
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Cheng-Jie Li
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Xiao-Hong Tan
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| | - Jun Liu
- Department of Hand and Foot Surgery and Microsurgery, Affiliated to the First People's Hospital of Chenzhou , P.R. China
| |
Collapse
|
62
|
Mittal P, Wang L, Akimova T, Leach CA, Clemente JC, Sender MR, Chen Y, Turunen BJ, Hancock WW. The CCR2/MCP-1 Chemokine Pathway and Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E3723. [PMID: 33322474 PMCID: PMC7763565 DOI: 10.3390/cancers12123723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Host anti-tumor immunity can be hindered by various mechanisms present within the tumor microenvironment, including the actions of myeloid-derived suppressor cells (MDSCs). We investigated the role of the CCR2/MCP-1 pathway in MDSC-associated tumor progression in murine lung cancer models. Phenotypic profiling revealed maximal expression of CCR2 by tumor-resident MDSCs, and MCP-1 by transplanted TC1 tumor cells, respectively. Use of CCR2-knockout (CCR2-KO) mice showed dependence of tumor growth on CCR2 signaling. Tumors in CCR2-KO mice had fewer CCR2low MDSCs, CD4 T cells and Tregs than WT mice, and increased infiltration by CD8 T cells producing IFN-γ and granzyme-B. Effects were MDSC specific, since WT and CCR2-KO conventional T (Tcon) cells had comparable proliferation and production of inflammatory cytokines, and suppressive functions of WT and CCR2-KO Foxp3+ Treg cells were also similar. We used a thioglycolate-induced peritonitis model to demonstrate a role for CCR2/MCP-1 in trafficking of CCR2+ cells to an inflammatory site, and showed the ability of a CCR2 antagonist to inhibit such trafficking. Use of this CCR2 antagonist promoted anti-tumor immunity and limited tumor growth. In summary, tumor cells are the prime source of MCP-1 that promotes MDSC recruitment, and our genetic and pharmacologic data demonstrate that CCR2 targeting may be an important component of cancer immunotherapy.
Collapse
Affiliation(s)
- Payal Mittal
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| | - Liqing Wang
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| | - Tatiana Akimova
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| | - Craig A. Leach
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Jose C. Clemente
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Matthew R. Sender
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Yao Chen
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Brandon J. Turunen
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Wayne W. Hancock
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| |
Collapse
|
63
|
Potential Roles of Tumor Cell- and Stroma Cell-Derived Small Extracellular Vesicles in Promoting a Pro-Angiogenic Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12123599. [PMID: 33276428 PMCID: PMC7760552 DOI: 10.3390/cancers12123599] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In this review, we focus on the distinct functions of tumor-cell-derived small extracellular vesicles in promotion of angiogenesis and describe their potential as a therapeutic target for anti-angiogenic therapies. Also, we focus on extracellular vesicles derived from non-cancer cells and their potential role in stimulating a pro-angiogenic tumor microenvironment. The article describes the biogenesis of small extracellular vesicles and refers to their proteomic cargo components that play a role in promoting angiogenesis. Moreover, we explain how small extracellular vesicles derived from tumors and non-cancer cells can interact with recipient cells and alter their functions. We particularly focus on phenotypical and functional changes in endothelial cells, macrophages, and neutrophils that result in proangiogenic signaling. Abstract Extracellular vesicles (EVs) are produced and released by all cells and are present in all body fluids. They exist in a variety of sizes, however, small extracellular vesicles (sEVs), the EV subset with a size range from 30 to 150 nm, are of current interest. They are characterized by a distinct biogenesis and complex cargo composition, which reflects the cytosolic contents and cell-surface molecules of the parent cells. This cargo consists of proteins, nucleic acids, and lipids and is competent in inducing signaling cascades in recipient cells after surface interactions or in initiating the generation of a functional protein by delivering nucleic acids. Based on these characteristics, sEVs are now considered as important mediators of intercellular communication. One hallmark of sEVs is the promotion of angiogenesis. It was shown that sEVs interact with endothelial cells (ECs) and promote an angiogenic phenotype, ultimately leading to increased vascularization of solid tumors and disease progression. It was also shown that sEVs reprogram cells in the tumor microenvironment (TME) and act in a functionally cooperative fashion to promote angiogenesis by a paracrine mechanism involving the differential expression and secretion of angiogenic factors from other cell types. In this review, we will focus on the distinct functions of tumor-cell-derived sEVs (TEX) in promotion of angiogenesis and describe their potential as a therapeutic target for anti-angiogenic therapies. Also, we will focus on non-cancer stroma-cell-derived small extracellular vesicles and their potential role in stimulating a pro-angiogenic TME.
Collapse
|
64
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
65
|
Macrophage-derived exosomes in cancers: Biogenesis, functions and therapeutic applications. Immunol Lett 2020; 227:102-108. [PMID: 32888974 DOI: 10.1016/j.imlet.2020.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are fundamental to promote tumorigenesis, tumor development and metastasis, and chemotherapy resistance through modulating tumor microenvironment and cancer cells. Recently, increasing studies have shown that exosomes could play a crucial role in orchestrating the crosstalk between macrophages and cancer cells. Exosomes, as one of the extracellular vehicles, deliver a diverse cast of molecules including lipids, proteins, and nucleic acids, etc. to the targeted cells to exert pleiotropic effects. The macrophage-derived exosomes have heterogeneity in different cancers and play paradoxical roles in suppressing and promoting tumors mainly via post-transcriptional control and regulating the phosphorylation of proteins in the recipient cells. Meanwhile, exosomes secreted by different phenotypes of macrophages provide diverse therapeutic options. Thus, in this review, we summarized the latest progress in outlining the current understanding of macrophage-derived exosomal biogenesis and mechanisms in mediating cancer progression, as well as their potential clinical applications.
Collapse
|