51
|
Trigonella foenum-graecum Methanolic Extract on Isolated Smooth Muscles and Acetylcholinesterase Enzyme: An In Vitro and Mechanistic In Silico Investigation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4849464. [PMID: 35425837 PMCID: PMC9005292 DOI: 10.1155/2022/4849464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Background and Objective. Trigonella foenum-graecum Linn., also called fenugreek, is a popular medicinal plant cultivated all over the globe. Fenugreek seeds are known for their many medicinal properties. We present our findings on the effect of a 70% aqueous methanolic fenugreek seed extract (Tfg.Cr) on isolated GI smooth muscles (rabbit jejunum and rat ileum) and the effect of extract and its constituent diosgenin on acetylcholinesterase (AChE) enzyme. Results. When tested on the baseline of isolated tissues, Tfg.Cr was devoid of any activity (stimulant or relaxant) till 10 mg/ml. This is an interesting finding, keeping in mind that the fenugreek seeds are used to alleviate constipation and diarrhoea. When Tfg.Cr was tried for any potential AChE inhibitory activity, it did show an inhibitory effect in increasing concentrations (47-380 μg/ml). This inhibitory effect was comparable to the effect produced by a standard AChE inhibitor physostigmine. One of the known fenugreek constituents, diosgenin, was also tested, and it also showed an AChE inhibitory effect in a concentration-dependent manner (11-190 μg/ml). Interaction between diosgenin and AChE was further investigated by molecular docking and molecular dynamics simulations for 100 ns, which showed that diosgenin interacted with the active-site gorge of AChE through hydrophobic, pi-pi stacking, and hydrogen bonds with various amino acids of the AChE enzyme. Conclusion. The results show that the fenugreek extract does not possess any GI stimulant or relaxant activity even though it is used traditionally in GI motility disorders. The extract and diosgenin could inhibit the AChE enzyme pointing towards their benefit to enhance the memory.
Collapse
|
52
|
Wdowiak K, Rosiak N, Tykarska E, Żarowski M, Płazińska A, Płaziński W, Cielecka-Piontek J. Amorphous Inclusion Complexes: Molecular Interactions of Hesperidin and Hesperetin with HP-Β-CD and Their Biological Effects. Int J Mol Sci 2022; 23:ijms23074000. [PMID: 35409360 PMCID: PMC9000012 DOI: 10.3390/ijms23074000] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed at obtaining hesperidin (Hed) and hesperetin (Het) systems with HP-β-CD by means of the solvent evaporation method. The produced systems were identified using infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC). Moreover, in silico docking and molecular dynamics studies were performed to assess the most preferable site of interactions between tested compounds and HP-β-CD. The changes of physicochemical properties (solubility, dissolution rate, and permeability) were determined chromatographically. The impact of modification on biological activity was tested in an antioxidant study as well as with regards to inhibition of enzymes important in pathogenesis of neurodegenerative diseases. The results indicated improvement in solubility over 1000 and 2000 times for Hed and Het, respectively. Permeability studies revealed that Hed has difficulties in crossing biological membranes, in contrast with Het, which can be considered to be well absorbed. The improved physicochemical properties influenced the biological activity in a positive manner by the increase in inhibitory activity on the DPPH radical and cholinoesterases. To conclude the use of HP-β-CD as a carrier in the formation of an amorphous inclusion complex seems to be a promising approach to improve the biological activity and bioavailability of Hed and Het.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Anita Płazińska
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
- Correspondence:
| |
Collapse
|
53
|
Dwomoh L, Tejeda G, Tobin A. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neuronal Signal 2022; 6:NS20210004. [PMID: 35571495 PMCID: PMC9069568 DOI: 10.1042/ns20210004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) remains a major cause of morbidity and mortality worldwide, and despite extensive research, only a few drugs are available for management of the disease. One strategy has been to up-regulate cholinergic neurotransmission to improve cognitive function, but this approach has dose-limiting adverse effects. To avoid these adverse effects, new drugs that target specific receptor subtypes of the cholinergic system are needed, and the M1 subtype of muscarinic acetylcholine receptor (M1-mAChR) has been shown to be a good target for this approach. By using several strategies, M1-mAChR ligands have been developed and trialled in preclinical animal models and in human studies, with varying degrees of success. This article reviews the different approaches to targeting the M1-mAChR in AD and discusses the advantages and limitations of these strategies. The factors to consider in targeting the M1-mAChR in AD are also discussed.
Collapse
Affiliation(s)
- Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo S. Tejeda
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
54
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
55
|
Xin Q, Shi W, Wang Y, Yuan R, Miao Y, Chen K, Cong W. Pantao Pill Improves the Learning and Memory Abilities of APP/PS1 Mice by Multiple Mechanisms. Front Pharmacol 2022; 13:729605. [PMID: 35281906 PMCID: PMC8915116 DOI: 10.3389/fphar.2022.729605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: To explore the effect and mechanisms of Pantao Pill (PTP) on cognitive impairment. Methods: Network pharmacology was performed to analyze the mechanism of PTP treating cognitive impairment. The targets of PTP and cognitive impairment were predicted and used to construct protein-protein interaction (PPI) networks. The intersection network was selected, and the core network was obtained through topological analysis. Enrichment analysis was conducted to obtain the GOBP terms and KEGG pathways. We then performed experiments to validate the results of the network pharmacology by using an APP/PS1 transgenic mouse model. The APP/PS1 mice were divided into four groups: the model group, the high-dose PTP (3.6 g/kg·d) group, the low-dose PTP (1.8 g/kg·d) group, and the positive control group (donepezil hydrochloride, 2 mg/kg·d). Wild-type (WT) C57 mice served as a normal control group. PTP and donepezil were administered by gavage for 8 weeks. Results: Network pharmacology showed that PTP might improve cognitive impairment by regulating autophagy, apoptosis, and oxidative stress. For the Morris water maze test, a significant difference was shown in the total swimming distance among groups (p < 0.05) in the positioning navigation experiment, and with training time extension, the swimming speed increased (p < 0.01). In the space probe test, PTP administration significantly reduced the swimming path length and the escape latency of APP/PS1 mice (p < 0.05 or p < 0.01), whereas it had no effect on the swimming speed (p > 0.05). PTP (3.6 g/kg/d) rescued the reduction of norepinephrine and acetylcholine levels (p < 0.05), and increased the acetylcholinesterase concentration (p < 0.05) in the brain tissue. PTP (1.8 g/kg/d) increased the norepinephrine level (p < 0.01). PTP rescued the activity reduction of superoxide dismutase in the brain tissue (p < 0.01) and the neuron cell pyknosis in the hippocampal CA region (p < 0.05). PTP reduced ATG12 and PS1 expression (p < 0.05 or p < 0.01), and increased Bcl-2 expression in the brain tissue (p < 0.05). Conclusion: PTP can significantly improve the learning and memory abilities of APP/PS1 mice, and the mechanism may be related to the increase of neurotransmitter acetylcholine and norepinephrine levels, the reduction of the excessive autophagic activation, and the suppression of oxidative stress and excessive apoptotic activity.
Collapse
Affiliation(s)
- Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weili Shi
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
56
|
Sultzer DL, Lim AC, Gordon HL, Yarns BC, Melrose RJ. Cholinergic receptor binding in unimpaired older adults, mild cognitive impairment, and Alzheimer's disease dementia. Alzheimers Res Ther 2022; 14:25. [PMID: 35130968 PMCID: PMC8819935 DOI: 10.1186/s13195-021-00954-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cholinergic neurotransmitter system dysfunction contributes to cognitive impairment in Alzheimer's disease and other syndromes. However, the specific cholinergic mechanisms and brain structures involved, time course of alterations, and relationships with specific cognitive deficits are not well understood. METHODS This study included 102 older adults: 42 cognitively unimpaired (CU), 28 with mild cognitive impairment (MCI), and 32 with Alzheimer's disease (AD) dementia. Each participant underwent a neuropsychological assessment. Regional brain α4β2 nicotinic cholinergic receptor binding (VT/fp) was measured using 2-[18F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and PET imaging. Voxel-wise analyses of group differences were performed. Relationships between receptor binding and cognition, age, and cholinesterase inhibitor medication use were assessed using binding values in six prespecified regions of interest. RESULTS SPM analysis showed the group VT/fp binding differences in the bilateral entorhinal cortex, hippocampus, insula, anterior cingulate, thalamus, and basal ganglia (p < .05, FWE-corrected). Pairwise comparisons revealed lower binding in the AD group compared to the CU group in similar regions. Binding in the entorhinal cortex was lower in the MCI group than in the CU group; binding in the hippocampus was lower in the AD group than in the MCI group. AD participants taking cholinesterase inhibitor medication had lower 2FA binding in the bilateral hippocampus and thalamus compared to those not taking medication. In the CU group, age was negatively associated with 2FA binding in each region of interest (rs = - .33 to - .59, p < .05 for each, uncorrected). Attention, immediate recall, and delayed recall scores were inversely associated with 2FA binding in most regions across the full sample. In the combined group of CU and MCI participants, attention was inversely associated with 2FA binding in most regions, beyond the effect of hippocampal volume. CONCLUSIONS Nicotinic cholinergic receptor binding in specific limbic and subcortical regions is lower in MCI and further reduced in AD dementia, compared to CU older adults, and is related to cognitive deficits. Cognitive decline with age may be a consequence of reduced cholinergic receptor density or binding affinity that may also promote vulnerability to other Alzheimer's processes. Contemporary modification of the "cholinergic deficit" of aging and AD may reveal opportunities to prevent or improve clinical symptoms.
Collapse
Affiliation(s)
- David L. Sultzer
- grid.417119.b0000 0001 0384 5381Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA USA ,grid.266093.80000 0001 0668 7243Department of Psychiatry and Human Behavior, School of Medicine, and Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA USA
| | - Aaron C. Lim
- grid.417119.b0000 0001 0384 5381Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853Department of Family Medicine, USC Keck School of Medicine, Alhambra, CA USA
| | - Hailey L. Gordon
- grid.417119.b0000 0001 0384 5381Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA USA ,grid.147455.60000 0001 2097 0344Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA USA
| | - Brandon C. Yarns
- grid.417119.b0000 0001 0384 5381Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Rebecca J. Melrose
- grid.417119.b0000 0001 0384 5381Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
57
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
58
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. (-)-Epigallocatechin-3-Gallate Diminishes Intra-and Extracellular Amyloid-Induced Cytotoxic Effects on Cholinergic-like Neurons from Familial Alzheimer's Disease PSEN1 E280A. Biomolecules 2021; 11:biom11121845. [PMID: 34944489 PMCID: PMC8699501 DOI: 10.3390/biom11121845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5–50 μM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 μM) significantly inhibited the aggregation of (i)sAPPβf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aβ42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.
Collapse
|
59
|
Wichur T, Godyń J, Góral I, Latacz G, Bucki A, Siwek A, Głuch-Lutwin M, Mordyl B, Śniecikowska J, Walczak M, Knez D, Jukič M, Sałat K, Gobec S, Kołaczkowski M, Malawska B, Brazzolotto X, Więckowska A. Development and crystallography-aided SAR studies of multifunctional BuChE inhibitors and 5-HT 6R antagonists with β-amyloid anti-aggregation properties. Eur J Med Chem 2021; 225:113792. [PMID: 34530376 DOI: 10.1016/j.ejmech.2021.113792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
The lack of an effective treatment makes Alzheimer's disease a serious healthcare problem and a challenge for medicinal chemists. Herein we report interdisciplinary research on novel multifunctional ligands targeting proteins and processes involved in the development of the disease: BuChE, 5-HT6 receptors and β-amyloid aggregation. Structure-activity relationship analyses supported by crystallography and docking studies led to the identification of a fused-type multifunctional ligand 50, with remarkable and balanced potencies against BuChE (IC50 = 90 nM) and 5-HT6R (Ki = 4.8 nM), and inhibitory activity against Aβ aggregation (53% at 10 μM). In in vitro ADME-Tox and in vivo pharmacokinetic studies compound 50 showed good stability in the mouse liver microsomes, favourable safety profile and brain permeability with the brain to plasma ratio of 6.79 after p.o. administration in mice, thus being a promising candidate for in vivo pharmacology studies and a solid foundation for further research on effective anti-AD therapies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marko Jukič
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
60
|
Wichur T, Pasieka A, Godyń J, Panek D, Góral I, Latacz G, Honkisz-Orzechowska E, Bucki A, Siwek A, Głuch-Lutwin M, Knez D, Brazzolotto X, Gobec S, Kołaczkowski M, Sabate R, Malawska B, Więckowska A. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT 6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur J Med Chem 2021; 225:113783. [PMID: 34461507 DOI: 10.1016/j.ejmech.2021.113783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022]
Abstract
Multifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile. Compounds 17 and 35 are 5-HT6R antagonists (Ki = 13 nM and Ki = 15 nM respectively) and cholinesterase inhibitors with distinct mechanisms of enzyme inhibition. Compound 17, a tacrine derivative is a reversible inhibitor of acetyl- and butyrylcholinesterase (IC50 = 8 nM and IC50 = 24 nM respectively), while compound 35 with rivastigmine-derived phenyl N-ethyl-N-methylcarbamate fragment is a selective, pseudo-irreversible inhibitor of butyrylcholinesterase (IC50 = 455 nM). Both compounds inhibit aggregation of amyloid β in vitro (75% for compound 17 and 68% for 35 at 10 μM) moreover, compound 35 is a potent tau aggregation inhibitor in cellulo (79%). In ADMET in vitro studies both compounds showed acceptable metabolic stability on mouse liver microsomes (28% and 60% for compound 17 and 35 respectively), no or little effect on CYP3A4 and 2D6 up to a concentration of 10 μM and lack of toxicity on HepG2 cell line (IC50 values of 80 and 21 μM, for 17 and 35 respectively). Based on the pharmacological characteristics and favorable pharmacokinetic properties, we propose compounds 17 and 35 as an excellent starting point for further optimization and in-depth biological studies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
61
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
62
|
Le TD, Inoue YH. Sesamin Activates Nrf2/Cnc-Dependent Transcription in the Absence of Oxidative Stress in Drosophila Adult Brains. Antioxidants (Basel) 2021; 10:antiox10060924. [PMID: 34200419 PMCID: PMC8227698 DOI: 10.3390/antiox10060924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/11/2022] Open
Abstract
Sesamin, a major lignin in sesame seeds, possesses health-promoting properties. Sesamin feeding suppresses several aging-related phenotypes such as age-dependent accumulation of damaged proteins in the muscles and neuronal loss in the brains of Drosophila adults with high levels of reactive oxygen species. Sesamin promotes the transcription of several genes that are responsible for oxidative stress, although the underlying mechanism remains unclear. Here, we aimed to demonstrate that sesamin mediates its action through activation of a transcription factor, Nrf2 (Cnc in Drosophila), essential for anti-aging oxidative stress response. Nrf2/Cnc activation was determined using the antioxidant response element, Green Fluorescence Protein reporter, that can monitor Nrf2/Cnc-dependent transcription. We observed strong fluorescence in the entire bodies, particularly in the abdomens and brains, of adult flies fed sesamin. Interestingly, Nrf2/Cnc was strongly activated in neuronal cells, especially in several neuron types, including glutamatergic and cholinergic, and some dopaminergic and/or serotonergic neurons but not in GABAergic neurons or the mushroom bodies of flies fed sesamin. These results indicate that the anti-aging effects of sesamin are exerted via activation of Nrf2/Cnc-dependent transcription to circumvent oxidative stress accumulation in several types of neurons of adult brains. Sesamin could be explored as a potential dietary supplement for preventing neurodegeneration associated with accumulation of oxidative stress.
Collapse
|
63
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
64
|
Nazir N, Nisar M, Zahoor M, Uddin F, Ullah S, Ullah R, Ansari SA, Mahmood HM, Bari A, Alobaid A. Phytochemical Analysis, In Vitro Anticholinesterase, Antioxidant Activity and In Vivo Nootropic Effect of Ferula ammoniacum ( Dorema ammoniacum) D. Don. in Scopolamine-Induced Memory Impairment in Mice. Brain Sci 2021; 11:brainsci11020259. [PMID: 33669503 PMCID: PMC7922987 DOI: 10.3390/brainsci11020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Ferula ammoniacum (D. Don) is one of the endemic medicinal plants that is traditionally used to treat a number of diseases. Although the plant has been used to enhance memory, the investigational evidence supporting the nootropic effect was unsubstantial. Hence, the rationale for this study was to assess the potential beneficial effect of F. ammoniacum seed extracts on learning and memory in mice. Methods: The powdered plant samples (aerial parts) were subjected to extraction ad fractionation. Among the extracts, crude and ethyl acetate extracts were screened for major phytochemicals through HPLC analysis. All the extracts were evaluated for the in vitro anticholinesterase (AChE and BChE) and antioxidant potentials. Among the extracts the active fraction was further assessed for improving learning and memory in mice using behavioural tests like Y-maze and novel object recognition test (NORT) using standard protocols. After behavioural tests, all the animals were sacrificed and brains tissues were assessed for the ex vivo anticholinesterase and antioxidant potentials. Results: Phytochemicals like chlorogenic acid, quercetin, mandelic acid, phloroglucinol, hydroxy benzoic acid, malic acid, epigallocatechin gallate, ellagic acid, rutin, and pyrogallol were identified in crude methanolic extract (Fa.Met) and ethyl acetate fraction (Fa.EtAc) through HPLC. Fa.EtAc and Fa.Chf extracts more potently inhibited AChE and BChE with IC50 values of 40 and 43 µg/mL, and 41 and 42 µg/mL, respectively. Similarly highest free radical scavenging potential was exhibited by Fa.EtAc fraction against DPPH (IC50 = 100 µg/mL) and ABTS (IC50 = 120 µg/mL). The extract doses, 100 and 200 mg/kg body weight significantly (p < 0.01) improved the short-term memory by increasing the percent spontaneous alternation in the Y-maze test along with increasing discrimination index in the NORT that clearly indicated the enhancement in the recognition memory of mice. Conclusion: The extracts more potently scavenged the tested free radicals, exhibited anticholinesterase activities, improved the learning abilities and reduced the memory impairment induced by scopolamine in mice model thus suggesting that these extracts could be effectively used for the management of oxidative stress, neurodegenerative diseases and memory loss.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
- Correspondence:
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
| | - Faheem Uddin
- Department of Engineering, Sarhad University of Information Technology, Peshawar 23000, Pakistan;
| | - Saeed Ullah
- Saidu Group of Teaching Hospital Swat, Khyber Pakhtunkhwa 19130, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (A.B.); (A.A.)
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (A.B.); (A.A.)
| | - Abdulrehman Alobaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (A.B.); (A.A.)
| |
Collapse
|